Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.177
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(24): e2121978119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35666876

ABSTRACT

Though chickens are the most numerous and ubiquitous domestic bird, their origins, the circumstances of their initial association with people, and the routes along which they dispersed across the world remain controversial. In order to establish a robust spatial and temporal framework for their origins and dispersal, we assessed archaeological occurrences and the domestic status of chickens from ∼600 sites in 89 countries by combining zoogeographic, morphological, osteometric, stratigraphic, contextual, iconographic, and textual data. Our results suggest that the first unambiguous domestic chicken bones are found at Neolithic Ban Non Wat in central Thailand dated to ∼1650 to 1250 BCE, and that chickens were not domesticated in the Indian Subcontinent. Chickens did not arrive in Central China, South Asia, or Mesopotamia until the late second millennium BCE, and in Ethiopia and Mediterranean Europe by ∼800 BCE. To investigate the circumstances of their initial domestication, we correlated the temporal spread of rice and millet cultivation with the first appearance of chickens within the range of red junglefowl species. Our results suggest that agricultural practices focused on the production and storage of cereal staples served to draw arboreal red junglefowl into the human niche. Thus, the arrival of rice agriculture may have first facilitated the initiation of the chicken domestication process, and then, following their integration within human communities, allowed for their dispersal across the globe.


Subject(s)
Chickens , Domestication , Animals , Animals, Domestic , Branchial Region , Cultural Characteristics , Millets , Thailand
2.
BMC Genomics ; 25(1): 104, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38262955

ABSTRACT

INTRODUCTION: White Striping (WS) and Wooden Breast (WB) pectoral myopathies are relevant disorders for contemporary broiler production worldwide. Several studies aimed to elucidate the genetic components associated with the occurrence of these myopathies. However, epigenetic factors that trigger or differentiate these two conditions are still unclear. The aim of this study was to identify miRNAs differentially expressed (DE) between normal and WS and WB-affected broilers, and to verify the possible role of these miRNAs in metabolic pathways related to the manifestation of these pectoral myopathies in 28-day-old broilers. RESULTS: Five miRNAs were DE in the WS vs control (gga-miR-375, gga-miR-200b-3p, gga-miR-429-3p, gga-miR-1769-5p, gga-miR-200a-3p), 82 between WB vs control and 62 between WB vs WS. Several known miRNAs were associated with WB, such as gga-miR-155, gga-miR-146b, gga-miR-222, gga-miR-146-5p, gga-miR- 29, gga-miR-21-5p, gga-miR-133a-3p and gga-miR-133b. Most of them had not previously been associated with the development of this myopathy in broilers. We also have predicted 17 new miRNAs expressed in the broilers pectoral muscle. DE miRNA target gene ontology analysis enriched 6 common pathways for WS and WB compared to control: autophagy, insulin signaling, FoxO signaling, endocytosis, and metabolic pathways. The WS vs control contrast had two unique pathways, ERBB signaling and the mTOR signaling, while WB vs control had 14 unique pathways, with ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing being the most significant. CONCLUSIONS: We found miRNAs DE between normal broilers and those affected with breast myopathies at 28 days of age. Our results also provide novel evidence of the miRNAs role on the regulation of WS and in the differentiation of both WS and WB myopathies. Overall, our study provides insights into miRNA-mediated and pathways involved in the occurrence of WS and WB helping to better understand these chicken growth disorders in an early age. These findings can help developing new approaches to reduce these complex issues in poultry production possibly by adjustments in nutrition and management conditions. Moreover, the miRNAs and target genes associated with the initial stages of WS and WB development could be potential biomarkers to be used in selection to reduce the occurrence of these myopathies in broiler production.


Subject(s)
MicroRNAs , Muscular Diseases , Animals , Chickens , Gene Expression Profiling , Transcriptome
3.
BMC Genomics ; 25(1): 131, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302894

ABSTRACT

BACKGROUND: Exploring the hypoxia adaptation mechanism of Tibetan chicken is of great significance for revealing the survival law of Tibetan chicken and plateau animal husbandry production. To investigate the hypoxia adaptation of Tibetan chickens (TBCs), an integrative metabolomic-transcriptomic analysis of the liver on day 18 of embryonic development was performed. Dwarf laying chickens (DLCs), a lowland breed, were used as a control. RESULTS: A total of 1,908 metabolites were identified in both TBCs and DLCs. Energy metabolism and amino acid metabolism related differentially regulated metabolites (DRMs) were significantly enriched under hypoxia. Important metabolic pathways including the TCA cycle and arginine and proline metabolism were screened; PCK1, SUCLA2, and CPS1 were found to be altered under hypoxic conditions. In addition, integrated analysis suggested potential differences in mitochondrial function, which may play a crucial role in the study of chicken oxygen adaptation. CONCLUSIONS: These results suggest that hypoxia changed the gene expression and metabolic patterns of embryonic liver of TBCs compared to DLCs. Our study provides a basis for uncovering the molecular regulation mechanisms of hypoxia adaptation in TBCs with the potential application of hypoxia adaptation research for other animals living on the Qinghai-Tibet plateau, and may even contribute to the study of diseases caused by hypoxia.


Subject(s)
Chickens , Hypoxia , Animals , Chickens/genetics , Tibet , Hypoxia/genetics , Hypoxia/veterinary , Gene Expression Profiling , Liver , Adaptation, Physiological/genetics , Altitude
4.
BMC Genomics ; 25(1): 485, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755540

ABSTRACT

BACKGROUND: Indigenous chickens were developed through a combination of natural and artificial selection; essentially, changes in genomes led to the formation of these modern breeds via admixture events. However, their confusing genetic backgrounds include a genomic footprint regulating complex traits, which is not conducive to modern animal breeding. RESULTS: To better evaluate the candidate regions under domestication in indigenous chickens, we considered both runs of homozygosity (ROHs) and selective signatures in 13 indigenous chickens. The genomes of Silkie feather chickens presented the highest heterozygosity, whereas the highest inbreeding status and ROH number were found in Luhua chickens. Short ROH (< 1 Mb), were the principal type in all chickens. A total of 291 ROH islands were detected, and QTLdb mapping results indicated that body weight and carcass traits were the most important traits. An ROH on chromosome 2 covering VSTM2A gene was detected in 12 populations. Combined analysis with the Tajima's D index revealed that 18 genes (e.g., VSTM2A, BBOX1, and RYR2) were under selection and covered by ROH islands. Transcriptional analysis results showed that RYR2 and BBOX1 were specifically expressed in the heart and muscle tissue, respectively. CONCLUSION: Based on genome-wide scanning for ROH and selective signatures, we evaluated the genomic characteristics and detected significant candidate genes covered by ROH islands and selective signatures. The findings in this study facilitated the understanding of genetic diversity and provided valuable insights for chicken breeding and conservation strategies.


Subject(s)
Chickens , Domestication , Homozygote , Animals , Chickens/genetics , Selection, Genetic , Quantitative Trait Loci , Genome , Genomics/methods , Polymorphism, Single Nucleotide
5.
BMC Genomics ; 25(1): 193, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373904

ABSTRACT

BACKGROUND: The application of biotechnologies which make use of genetic markers in chicken breeding is developing rapidly. Diversity Array Technology (DArT) is one of the current Genotyping-By-Sequencing techniques allowing the discovery of whole genome sequencing. In livestock, DArT has been applied in cattle, sheep, and horses. Currently, there is no study on the application of DArT markers in chickens. The aim was to study the effectiveness of DArTSeq markers in the genetic diversity and population structure of indigenous chickens (IC) and SASSO in the Eastern Province of Rwanda. METHODS: In total 87 blood samples were randomly collected from 37 males and 40 females of indigenous chickens and 10 females of SASSO chickens purposively selected from 5 sites located in two districts of the Eastern Province of Rwanda. Genotyping by Sequencing (GBS) using DArTseq technology was employed. This involved the complexity reduction method through digestion of genomic DNA and ligation of barcoded adapters followed by PCR amplification of adapter-ligated fragments. RESULTS: From 45,677 DArTseq SNPs and 25,444 SilicoDArTs generated, only 8,715 and 6,817 respectively remained for further analysis after quality control. The average call rates observed, 0.99 and 0.98 for DArTseq SNPs and SilicoDArTs respectively were quite similar. The polymorphic information content (PIC) from SilicoDArTs (0.33) was higher than that from DArTseq SNPs (0.22). DArTseq SNPs and SilicoDArTs had 34.4% and 34% of the loci respectively mapped on chromosome 1. DArTseq SNPs revealed distance averages of 0.17 and 0.15 within IC and SASSO chickens respectively while the respective averages observed with SilicoDArTs were 0.42 and 0.36. The average genetic distance between IC and SASSO chickens was moderate for SilicoDArTs (0.120) compared to that of DArTseq SNPs (0.048). The PCoA and population structure clustered the chicken samples into two subpopulations (1 and 2); 1 is composed of IC and 2 by SASSO chickens. An admixture was observed in subpopulation 2 with 12 chickens from subpopulation 1. CONCLUSIONS: The application of DArTseq markers have been proven to be effective and efficient for genetic relationship between IC and separated IC from exotic breed used which indicate their suitability in genomic studies. However, further studies using all chicken genetic resources available and large big sample sizes are required.


Subject(s)
Chickens , Genomics , Male , Female , Animals , Cattle , Horses , Sheep , Chickens/genetics , Genotype , Rwanda , Genomics/methods , Polymorphism, Single Nucleotide , Genetic Variation
6.
J Transl Med ; 22(1): 80, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38243294

ABSTRACT

BACKGROUND: Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS: This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS: Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION: Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.


Subject(s)
Clostridium Infections , Enteritis , Gastrointestinal Microbiome , Poultry Diseases , Humans , Animals , Clostridium perfringens/genetics , Chickens/genetics , RNA, Ribosomal, 16S/genetics , Dysbiosis , Jejunum/chemistry , Jejunum/pathology , Enteritis/microbiology , Enteritis/pathology , Enteritis/veterinary , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Clostridium Infections/pathology , Poultry Diseases/microbiology , Poultry Diseases/pathology
7.
Microb Pathog ; 189: 106586, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382628

ABSTRACT

Avian colibacillosis is a bacterial disease caused by avian pathogenic Escherichia coli (APEC) that results in great losses in the poultry industry every year. Individual Silkie chickens of the same breed that are given the same feed in the same feeding conditions have different levels of resistance or susceptibility to APEC. Differences in gut microbes, gut metabolites, and gene expression in the spleen of APEC-resistant and APEC-susceptible chickens were compared, and multiple omics associations were analyzed to explore the mechanism of resistance to APEC in Silkie chickens. Compared with those in the APEC-susceptible group, the APEC-resistant group showed significantly increased abundances of many gut microorganisms, including Bacillus, Thermoactinomyces, Arthrobacter, and Ureibacillus, which were positively correlated with norvaline, l-arginine, and valyl-glycine levels. Intestinal tryptophan, indole, and indole derivative-related differentially abundant metabolites played an active role in combatting APEC infection. In the spleen, "response to stimulus" was the most significantly enriched GO term, and "cytokine‒cytokine receptor interaction" was the most significantly enriched KEGG pathway. The arginine biosynthesis and PPAR signaling pathways were the KEGG pathways that were significantly enriched with differentially abundant metabolites and differentially expressed genes. This study provides new insight into the prevention and treatment of APEC infection in Silkie chickens and lays a foundation to study the mechanism of APEC infection in poultry.


Subject(s)
Escherichia coli Infections , Microbiota , Poultry Diseases , Animals , Escherichia coli/genetics , Chickens/microbiology , Transcriptome , Escherichia coli Infections/microbiology , Metabolome , Indoles , Poultry Diseases/microbiology
8.
Neuroendocrinology ; 114(8): 749-774, 2024.
Article in English | MEDLINE | ID: mdl-38718758

ABSTRACT

INTRODUCTION: Since the discovery of gonadotropin-inhibitory hormone (GnIH), it has been found to play a critical role in reproduction in vertebrates. Recently, a regulatory role of GnIH in appetite and energy metabolism has emerged, although its precise physiological mechanisms remain unknown. METHODS: Thus, the present study evaluated the effects of a single or long-term intraperitoneal GnIH treatment on the food intake, weight, and glucolipid metabolism of chickens, as well as investigating the possible neuroendocrinology factors and mechanisms involved in GnIH-induced obesity and glucolipid metabolism disorder. RESULTS: Our results show that the intraperitoneal administration of GnIH to chickens resulted in a marked body mass increase, hyperlipidemia, hyperglycemia, and glucose intolerance. Subsequently, the results of metabolomics studies and the pharmacological inhibition of the 5-HT2C receptor revealed that blocking the 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight, and blood glucose and lipid levels, resulting in even worse cases of GnIH-induced hyperglycemia, hyperlipidemia, and hepatic lipid deposition. This suggests that, via the 5-HT2C receptor, peripheral 5-HT may act as a negative feedback regulator to interplay with GnIH and jointly control energy balance homeostasis in chickens. DISCUSSION: Our present study provides evidence of cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level, and it proposes a molecular basis for these interactions, suggesting that functional interactions between GnIH and 5-HT may open new avenues for understanding the mechanism of the neuroendocrine network involved in appetite and energy metabolism, as well as providing a new therapeutic strategy to prevent obesity, diabetes, and metabolic disorders.


Subject(s)
Chickens , Energy Metabolism , Feeding Behavior , Receptor, Serotonin, 5-HT2C , Serotonin , Animals , Energy Metabolism/drug effects , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin/metabolism , Feeding Behavior/drug effects , Feeding Behavior/physiology , Hypothalamic Hormones/metabolism , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Hyperlipidemias/metabolism , Hyperlipidemias/chemically induced
9.
Br J Nutr ; 131(1): 41-53, 2024 01 14.
Article in English | MEDLINE | ID: mdl-37469294

ABSTRACT

Reducing dietary crude protein (CP) concentration while maintaining adequate amino acid (AA) supply by free AA inclusion can contribute to attenuate the negative environmental effects of animal farming. This study investigated upper limits of dietary free AA inclusions without undesirable effects including the dependence on asparagine (Asn) and glutamine (Gln) supply. Ten broilers were allocated to sixty-three metabolism units each and offered nine experimental diets from day (d) 7-21 (n 7). One diet (167 g CP/kg) contained 80 g soya protein isolate (SPI)/kg. In the other diets, 25, 50, 75 and 100 % of the digestible AA from SPI were substituted with free AA. Digestible Asn+aspartic acid (Asp) and Gln+glutamic acid (Glu) were substituted with Asp/Glu or 50/50 mixes of Asp/Asn and Glu/Gln, respectively. Total excreta were collected from d 11-14 and from d 18-21. Growth and nitrogen accretion were unaffected by 25 and 50 % substitution without and with free Asn/Gln, respectively, but decreased at higher substitution (P ≤ 0·024). Circulating concentrations of Asp, Glu and Gln were unaffected by treatment, while Asn decreased at substitution higher than 50 % when Asn/Gln were not provided (P ≤ 0·005). Blood gas analysis on d 21 indicated a compensated metabolic acidosis at substitution higher than 50 and 75 % without and with free Asn/Gln, respectively (P ≤ 0·017). Results suggest that adding Asn/Gln increased an upper limit for proportion of dietary free AA from 10 to 19 % of dietary CP and enabled higher free AA inclusion without affecting the acid-base balance.


Subject(s)
Amino Acids , Glutamine , Animals , Amino Acids/metabolism , Chickens/metabolism , Asparagine/metabolism , Acid-Base Equilibrium , Diet/veterinary , Glutamic Acid , Peptides , Dietary Proteins/pharmacology , Nitrogen/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
10.
Virus Genes ; 60(1): 25-31, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38102511

ABSTRACT

Rotavirus A infects many mammalian species, including humans and causes diarrhea and gastrointestinal diseases. The virus also infects various bird species, including chickens, although information of avian rotavirus A (ARVA) infection in chicken populations in Japan is scarce. In this study, we report for the first time the whole-genome sequences of ARVA strains from Japanese chicken populations. The virus strains were inoculated to MA104 cells and cultured viruses were used to obtain the sequences with the MiSeq system, and genetic analysis demonstrated the genotype constellation of G19-P[30]-I11-R6-C6-M7-A16-N6-T8-E10-H8 of the Japanese chicken ARVA isolates. Phylogenetic analyses demonstrated that the VP1, VP2, VP3, VP4, VP7, NSP2, and NSP4 coding gene sequences of the Japanese strains were closer to those of Korean than the European ARVA strains, although such relationship was not clear for other genes. The data suggest that the Japanese ARVA strains and the ones in Korea have genetically close relationship, although the origin is not clear at this point. Further information including the whole-genome sequences of the Korean strains and sequences of other Japanese chicken ARVA strains will be necessary for elucidation of their origin.


Subject(s)
Rotavirus Infections , Rotavirus , Animals , Humans , Chickens , Phylogeny , Genome, Viral/genetics , Genotype , Sequence Analysis , Mammals
11.
Epidemiol Infect ; 152: e41, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38403893

ABSTRACT

Foodborne infections with antimicrobial-resistant Campylobacter spp. remain an important public health concern. Publicly available data collected by the National Antimicrobial Resistance Monitoring System for Enteric Bacteria related to antimicrobial resistance (AMR) in Campylobacter spp. isolated from broiler chickens and turkeys at the slaughterhouse level across the United States between 2013 and 2021 were analysed. A total of 1,899 chicken-origin (1,031 Campylobacter coli (C. coli) and 868 Campylobacter jejuni (C. jejuni)) and 798 turkey-origin (673 C. coli and 123 C. jejuni) isolates were assessed. Chicken isolates exhibited high resistance to tetracycline (43.65%), moderate resistance to ciprofloxacin (19.5%), and low resistance to clindamycin (4.32%) and azithromycin (3.84%). Turkey isolates exhibited very high resistance to tetracycline (69%) and high resistance to ciprofloxacin (39%). The probability of resistance to all tested antimicrobials, except for tetracycline, significantly decreased during the latter part of the study period. Turkey-origin Campylobacter isolates had higher odds of resistance to all antimicrobials than isolates from chickens. Compared to C. jejuni isolates, C. coli isolates had higher odds of resistance to all antimicrobials, except for ciprofloxacin. The study findings emphasize the need for poultry-type-specific strategies to address differences in AMR among Campylobacter isolates.


Subject(s)
Anti-Infective Agents , Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , United States/epidemiology , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Turkeys/microbiology , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology , Tetracycline/pharmacology , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology
12.
Avian Pathol ; 53(5): 368-379, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38529824

ABSTRACT

Coccidiosis, caused by parasites of the genus Eimeria, is a significant economic burden to the poultry industry. In this study, we conducted a comprehensive analysis to evaluate the financial losses associated with Eimeria infection in chickens in Algeria, relying on data provided by key stakeholders in the Algerian poultry industry to assess sub-clinical as well as clinical impact. We employed the updated 2020 version of a model established to estimate the cost of coccidiosis in chickens, taking into consideration specific cultural and technical aspects of poultry farming in Algeria. The findings predict economic losses due to coccidiosis in chickens of approximately £86.7 million in Algeria for the year 2022, representing £0.30 per chicken raised. The majority of the cost was attributed to morbidity (74.9%), emphasizing the substantial economic impact of reduced productivity including decreased bodyweight gain and increased feed conversion ratio. Costs associated with control measures made up 20.5% of the total calculated cost, with 4.6% of the cost related to mortality. These figures provide a clear indication of the scope and economic impact of Eimeria infection of chickens in Algeria, illustrating the impact of practices common across North Africa. They underscore the ongoing requirement for effective preventive and control measures to reduce these financial losses while improving productivity and welfare, ensuring the economic sustainability of the Algerian poultry industry.


Subject(s)
Animal Husbandry , Chickens , Coccidiosis , Eimeria , Poultry Diseases , Animals , Coccidiosis/veterinary , Coccidiosis/economics , Coccidiosis/epidemiology , Coccidiosis/parasitology , Chickens/parasitology , Poultry Diseases/economics , Poultry Diseases/parasitology , Poultry Diseases/epidemiology , Algeria/epidemiology , Eimeria/isolation & purification , Animal Husbandry/economics
13.
Avian Pathol ; 53(1): 1-13, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37722832

ABSTRACT

RESEARCH HIGHLIGHTS: High Campylobacter prevalence in chickens; C. jejuni more prevalent than C. coli.Susceptibility to macrolides but resistance to quinolones/tetracyclines in isolates.Homogeneous resistance patterns within farms; higher in broilers than in native birds.Partial association between phenotypic and genotypic resistance among isolates.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , Chickens , Campylobacter jejuni/genetics , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Thailand/epidemiology , Anti-Bacterial Agents/pharmacology , Campylobacter coli/genetics , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests/veterinary
14.
Avian Pathol ; : 1-7, 2024 Oct 24.
Article in English | MEDLINE | ID: mdl-39446860

ABSTRACT

Two vaccination-challenge trials were performed using a commercial infectious bronchitis virus (IBV) BR1 vaccine, given alone or combined with a commercial IBV Mass vaccine against challenges with IBV M41, 793B, D388 (QX), Q1, Brasil-1 or Variant 2 challenge viruses, which includes the IB viruses that are dominant in South America. The efficacy of the vaccines against the challenge viruses was investigated by determination of the ciliary activity of the tracheal epithelium after challenge. The level of protection induced by the IBV BR1 vaccine alone against the six IBV challenge strains, of which five were of heterologous genotypes, varied from 50% to 100% with an average of 80%. The level of protection induced by the combination of the IBV BR1 and IBV Mass vaccines against the six IBV challenge strains, of which four were of heterologous genotypes, varied from 80% to 100% with an average of 92%. Vaccination with IBV BR1 alone provided a high level of protection against most tested challenge viruses, though the combination of IBV BR1 and IBV Mass was more consistent, showing less variation and compliance with the criterium mentioned in the European Pharmacopoeia 10th edition (at least 80% protection) for all tested challenge viruses. These trials show that vaccination with a combination of IBV BR1 and IBV Mass vaccines provides high levels of protection against the circulating IBV strains in South America.

15.
Avian Pathol ; : 1-14, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38995197

ABSTRACT

Infectious bursal disease virus (IBDV) can cause a highly contagious disease, resulting in severe damage to the immune system that causes immunosuppression in young chickens. Both spleen and thymus are important immune organs, which play a key role in eliciting protective immune responses. However, the effects of very virulent IBDV (vvIBDV) strain LJ-5 infection on chicken spleen and thymus are still unknown. In the present study, 3-week-old specific pathogen-free chickens were infected with vvIBDV for 1-5 days. The vvIBDV infection significantly increased the spleen index and decreased the thymus index. Microscopic analysis indicated necrosis, depletion of the lymphoid cells, and complete loss of structural integrity in spleen and thymus. Ultrastructural analysis displayed mitochondrial and nuclear damage, including mitochondrial cristae breaks, and deformation of nuclear membrane in vvIBDV-infected spleen and thymus tissues. Cytokine levels increased in the spleen and thymus after IBDV infection, promoting inflammation and causing an inflammatory imbalance. Moreover, the mRNA expression of apoptosis-related genes was significantly upregulated in the vvIBDV-infected group compared to the control group. Meanwhile, the mRNA expression of mitochondrial dynamics was altered in the spleen and thymus of vvIBDV-infected chickens. These results suggested that vvIBDV infection triggers an imbalance of inflammatory cytokines, and apoptosis in the spleen and thymus, resulting in immune injury in chickens. This study provides basic data for the further study of vvIBDV pathogenesis.

16.
Avian Pathol ; 53(4): 264-284, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38349388

ABSTRACT

ABSTRACTThe study was conducted to investigate the effect of dietary encapsulated organic acids (EOAs) and anticoccidials on the age-dependent development trend of intestinal Lactobacillus, E. coli, coliforms, and Eimeria in Eimeria spp.-infected broiler chickens from reused litter. In total, 525 mixed-sex 1-day-old broiler chickens were used in an uninfected/un-supplemented control plus a 2 (no EOA or 0.1% EOA) × 3 (no anticoccidial, 0.05% maduramicin, and 0.02% diclazuril) factorial arrangement of treatments as a completely randomized design with five replicates of 15 chickens. Results indicated that the cubic model is the best model for explaining the development trends of the intestinal microbial population in uninfected and infected chickens (affected by the EOAs and anticoccidials). Based on the cubic models, the microbial populations had development trends with a decreasing slope from 1-day-old until the early or middle finisher period. EOAs and anticoccidials, especially their simultaneous usage, improved (P < 0.05) the linear and cubic models' slope (affected negatively by Eimeria infection). A polynomial model (order = 6) was determined as the best model for explaining the EOAs and anticoccidial effects on the trend of intestinal Eimeria oocysts in infected chickens. The infection peak (which happened at 25 days) was reduced by EOAs and anticoccidials, especially their simultaneous usage. In conclusion, cubic and polynomial (order = 6) regressions are the best models fitted for explaining the microbiota and Eimeria oocysts trends, respectively. EOAs and anticoccidials, especially their simultaneous usage, had beneficial effects on the microbiota and Eimeria development trends and gastrointestinal health in coccidia-infected broiler chickens. RESEARCH HIGHLIGHTSCubic regression is the best model for explaining intestinal microbiota development.Polynomial regression is the best model for intestinal Eimeria oocysts development.Age-development trends are affected by dietary encapsulated organic acids and anticoccidials.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Coccidiostats , Eimeria , Gastrointestinal Microbiome , Oocysts , Poultry Diseases , Animals , Chickens/parasitology , Chickens/growth & development , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/prevention & control , Coccidiosis/drug therapy , Eimeria/drug effects , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Gastrointestinal Microbiome/drug effects , Oocysts/drug effects , Diet/veterinary , Male , Dietary Supplements , Female , Intestines/parasitology , Intestines/microbiology , Triazines/pharmacology , Triazines/administration & dosage , Acids/pharmacology , Lactones , Nitriles
17.
BMC Vet Res ; 20(1): 41, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302973

ABSTRACT

The coinfection of ALVs (ALV-J plus ALV-A or/and ALV-B) has played an important role in the incidence of tumors recently found in China in local breeds of yellow chickens. The study aims to obtain a better knowledge of the function and relevance of ALV coinfection in the clinical disease of avian leukosis, as well as its unique effect on the pathogenicity in Three-yellow chickens. One-day-old Three-yellow chicks (one day old) were infected with ALV-A, ALV-B, and ALV-J mono-infections, as well as ALV-A + J, ALV-B + J, and ALV-A + B + J coinfections, via intraperitoneal injection, and the chicks were then grown in isolators until they were 15 weeks old. The parameters, including the suppression of body weight gain, immune organ weight, viremia, histopathological changes and tumor incidence, were observed and compared with those of the uninfected control birds. The results demonstrated that coinfection with ALVs could induce more serious suppression of body weight gain (P < 0.05), damage to immune organs (P < 0.05) and higher tumor incidences than monoinfection, with triple infection producing the highest pathogenicity. The emergence of visible tumors and viremia occurred faster in the coinfected birds than in the monoinfected birds. These findings demonstrated that ALV coinfection resulted in considerably severe pathogenic and immunosuppressive consequences.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Coinfection , Neoplasms , Poultry Diseases , Animals , Chickens , Coinfection/veterinary , Virulence , Viremia/veterinary , Avian Leukosis/epidemiology , Neoplasms/veterinary , Body Weight , Poultry Diseases/epidemiology
18.
BMC Vet Res ; 20(1): 244, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849870

ABSTRACT

BACKGROUND: Fowl adenovirus-4 is a causative agent of hydropericardium hepatitis syndrome (HHS) in chickens and has been frequently reported from many countries. Fowl adenoviruses cause severe disease and mortality in broiler and layer breeders in Azerbaijan. Therefore, in this study, pathological lesions and the dissemination of fowl adenovirus-4 into the visceral organs of infected birds were investigated as well as molecular characterisation of detected strains. For this, liver, heart and spleen from 20 necropsied chickens originated from a broiler breeder flock and a layer breeder flock were embeded on the FTA cards and the samples were analysed for adenovirus-DNA by PCR and sequencing. RESULTS: The findings of necropsy in both broiler and layer breeder chickens were similar, and the liver was severely effected showing hepatitis, and the heart with hydropericardium lesions. The kidneys were swollen with haemorrhages and small white foci on the surface of the spleens were noted. Intestinal congestion and ecchymotic hemorrhages were also observed in some birds. Fowl adenovirus-4-DNA was detected by PCR in all collected organs of 20 birds. The sequence analysis revealed that fowl adenovirus-4 present in Azerbaijan and close similarity of the hexon genes of the adenoviruses existing in the Middle East, North America, far east and Indian subcontinent were determined by phylogenetic analysis. However, sequence diversity was detected from the adenovirus strains circulating in Europe, North and South America. CONCLUSIONS: This study indicates the impact of fowl adenovirus-4 on the poultry health and production, and improved disease control and prevention strategies are necessary to reduce the HHS disease in chickens in Azerbaijan.


Subject(s)
Adenoviridae Infections , Chickens , Phylogeny , Poultry Diseases , Animals , Poultry Diseases/virology , Poultry Diseases/epidemiology , Poultry Diseases/pathology , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Adenoviridae Infections/epidemiology , Azerbaijan/epidemiology , Aviadenovirus/genetics , Aviadenovirus/isolation & purification , Aviadenovirus/classification , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/pathology , Hepatitis, Viral, Animal/epidemiology , DNA, Viral/genetics , Liver/pathology , Liver/virology , Spleen/pathology , Spleen/virology
19.
J Appl Toxicol ; 44(2): 184-200, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37646433

ABSTRACT

L-tryptophan has been utilized as a feed additive in animal nutrition to improve growth performance, as well as a dietary supplement to alleviate various emotional symptoms in humans. Despite its benefits, concerns regarding its safety arose following the outbreak of eosinophilia-myalgia syndrome (EMS) among individuals who consumed L-tryptophan. The causative material of EMS was determined to be not L-tryptophan itself, but rather L-tryptophan impurities resulting from a specific manufacturing process. To investigate the effect of L-tryptophan and its impurities on humans who consume meat products derived from animals that were fed L-tryptophan and its impurities, an animal study involving broiler chickens was conducted. The animals in test groups were fed diet containing 0.065%-0.073% of L-tryptophan for 27 days. This study aimed to observe the occurrence of toxicological or EMS-related symptoms and analyze the residues of L-tryptophan impurities in meat products. The results indicated that there was no evidence of adverse effects associated with the test substance in the investigated parameters. Furthermore, most of the consumed EMS-causing L-tryptophan impurities did not remain in the meat of broiler chickens. Thus, this study demonstrated the safety of L-tryptophan and some of its impurities as a feed additive.


Subject(s)
Eosinophilia-Myalgia Syndrome , Tryptophan , Humans , Animals , Tryptophan/toxicity , Chickens , Diet/veterinary , Dietary Supplements/adverse effects , Animal Feed/toxicity , Animal Feed/analysis
20.
Anim Biotechnol ; 35(1): 2309955, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38323808

ABSTRACT

Lysozymes, efficient alternative supplements to antibiotics, have several benefits in poultry production. In the present study, 120, one-day-old, Ross 308 broiler chickens of mixed sex, were allocated into 2 equal groups, lysozyme treated group (LTG) and lysozyme free group (LFG), to evaluate the efficacy of lysozyme (Lysonir®) usage via both drinking water (thrice) and spray (once). LTG had better (p = 0.042) FCR, and higher European production efficiency factor compared to LFG (p = 0.042). The intestinal integrity score of LTG was decreased (p = 0.242) compared to that of LFG; 0.2 vs. 0.7. Higher (p ≤ 0.001) intestinal Lactobacillus counts were detected in chickens of LTG. Decreased (p ≤ 0.001) IL-1ß and CXCL8 values were reported in LTG. The cellular immune modulation showed higher (p ≤ 0.001) opsonic activity (MΦ and phagocytic index) in LTG vs. LFG at 25 and 35 days. Also, higher (p ≤ 0.001) local, IgA, and humoral, HI titers, for both Newcastle, and avian influenza H5 viruses were found in LTG compared to LFG. In conclusion, microbial lysozyme could improve feed efficiency, intestinal integrity, Lactobacillus counts, anti-inflammatory, and immune responses in broiler chickens.


Exogenous aqueous and spray microbial lysozyme enhanced growth in commercial broiler chickensThe postbiotic effects of microbial lysozyme modulated intestinal integrity.Anti-inflammatory, as well as local, cellular, and humoral immune response were stimulated by lysozyme supplementation.


Subject(s)
Chickens , Muramidase , Animals , Chickens/physiology , Muramidase/pharmacology , Dietary Supplements , Lactobacillus , Immunity , Anti-Inflammatory Agents/pharmacology , Animal Feed/analysis , Diet/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL