Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(15): 3227-3244.e20, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37339632

ABSTRACT

Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.


Subject(s)
Protein Biosynthesis , Ribosomes , Animals , Ribosomes/metabolism , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Codon, Terminator/metabolism , Mammals/metabolism
2.
Annu Rev Genomics Hum Genet ; 23: 193-222, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35537467

ABSTRACT

Metazoans have evolved to produce various types of extracellular matrix (ECM) that provide structural support, cell adhesion, cell-cell communication, and regulated exposure to external cues. Epithelial cells produce and adhere to a specialized sheet-like ECM, the basement membrane, that is critical for cellular homeostasis and tissue integrity. Mesenchymal cells, such as chondrocytes in cartilaginous tissues and keratocytes in the corneal stroma, produce a pericellular matrix that presents optimal levels of growth factors, cytokines, chemokines, and nutrients to the cell and regulates mechanosensory signals through specific cytoskeletal and cell surface receptor interactions. Here, we discuss laminins, collagen types IV and VII, and perlecan, which are major components of these two types of ECM. We examinegenetic defects in these components that cause basement membrane pathologies such as epidermolysis bullosa, Alport syndrome, rare pericellular matrix-related chondrodysplasias, and corneal keratoconus and discuss recent advances in cell and gene therapies being developed for some of these disorders.


Subject(s)
Extracellular Matrix , Regenerative Medicine , Cornea/metabolism , Cornea/pathology , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Genetic Therapy , Humans
3.
Cell Mol Life Sci ; 81(1): 44, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236412

ABSTRACT

The platelet receptors, glycoprotein VI (GPVI) and integrin α2ß1 jointly control collagen-dependent thrombus formation via protein tyrosine kinases. It is unresolved to which extent the ITIM (immunoreceptor tyrosine-based inhibitory motif) receptor PECAM1 and its downstream acting protein tyrosine phosphatase PTPN11 interfere in this process. Here, we hypothesized that integrin α2ß1 has a co-regulatory role in the PECAM1- and PTPN11-dependent restraint of thrombus formation. We investigated platelet activation under flow on collagens with a different GPVI dependency and using integrin α2ß1 blockage. Blood was obtained from healthy subjects and from patients with Noonan syndrome with a gain-of-function mutation of PTPN11 and variable bleeding phenotype. On collagens with decreasing GPVI activity (types I, III, IV), the surface-dependent inhibition of PECAM1 did not alter thrombus parameters using control blood. Blockage of α2ß1 generally reduced thrombus parameters, most effectively on collagen IV. Strikingly, simultaneous inhibition of PECAM1 and α2ß1 led to a restoration of thrombus formation, indicating that the suppressing signaling effect of PECAM1 is masked by the platelet-adhesive receptor α2ß1. Blood from 4 out of 6 Noonan patients showed subnormal thrombus formation on collagen IV. In these patients, effects of α2ß1 blockage were counterbalanced by PECAM1 inhibition to a normal phenotype. In summary, we conclude that the suppression of GPVI-dependent thrombus formation by either PECAM1 or a gain-of-function of PTPN11 can be overruled by α2ß1 engagement.


Subject(s)
Integrin alpha2beta1 , Thrombosis , Humans , Integrin alpha2beta1/genetics , Blood Platelets , Glycoproteins , Collagen , Thrombosis/genetics
4.
Exp Dermatol ; 33(1): e14955, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897068

ABSTRACT

Preclinical human skin ageing research has been limited by the paucity of instructive and clinically relevant models. In this pilot study, we report that healthy human skin of different age groups undergoes extremely accelerated ageing within only 3 days, if organ-cultured in a defined serum-free medium. Quantitative (immuno-)histomorphometry documented this unexpected ex vivo phenotype on the basis of ageing-associated biomarkers: the epidermis showed significantly reduced rete ridges and keratinocyte proliferation, sirtuin-1, MTCO1 and collagen 17a1 protein levels; this contrasted with significantly increased expression of the DNA-damage marker, γH2A.X. In the dermis, collagen 1 and 3 and hyaluronic acid content were significantly reduced compared to Day 0 skin. qRT-PCR of whole skin RNA extracts also showed up-regulated mRNA levels of several (inflamm-) ageing biomarkers (MMP-1, -2, -3, -9; IL6, IL8, CXCL10 and CDKN1). Caffeine, a methylxanthine with recognized anti-ageing properties, counteracted the dermal collagen 1 and 3 reduction, the epidermal accumulation of γH2A.X, and the up-regulation of CXCL10, IL6, IL8, MMP2 and CDKN1. Finally, we present novel anti-ageing effects of topical 2,5-dimethylpyrazine, a natural pheromone TRPM5 ion channel activator. Thus, this instructive, clinically relevant "speed-ageing" assay provides a simple, but powerful new research tool for dissecting skin ageing and rejuvenation, and is well-suited to identify novel anti-ageing actives directly in the human target organ.


Subject(s)
Caffeine , Pyrazines , Skin Aging , Humans , Infant, Newborn , Caffeine/pharmacology , Senotherapeutics , Organ Culture Techniques , Pilot Projects , Interleukin-6/metabolism , Interleukin-8/metabolism , Skin/metabolism , Aging , Collagen/metabolism , Collagen Type I/metabolism , Biomarkers/metabolism
5.
Macromol Rapid Commun ; 45(4): e2300573, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37924252

ABSTRACT

Mimicking triple helix and fibrillar network of collagen through collagen model peptide(CMP) with short GPO tripeptide repeats is a great challenge. Herein, a minimalistic CMP comprising only five GPO repeats [(GPO)5 ] is presented. This novel approach involves the fusion of ultrashort peptide with the synergetic power of π-system and ß-sheet formation to short CMP (GPO)5 . Accordingly, a hydrogel-forming, fluorenylmethoxycarbonyl (Fmoc)-functionalized ultrashort peptide (NFGAIL) is fused at the N-terminus and phenylalanine at the C-terminus of (GPO)5 (Fmoc-NFGAIL-(GPO)5 -F-COOH, FmP-5GPO). At room temperature, it forms a robust triple helix in aqueous buffer solution and has a relatively high melting point of 35 °C. The fluorenyl motif stabilizes the triple helix by aromatic π-π interactions as in its absence, triple helix is not formed. NFGAIL, which forms a ß-sheet, also aids in triple helix stabilization via intermolecular hydrogen bonding and hydrophobic interactions. FmP-5GPO forms highly entangled nanofibrils with a micrometer length, which have excellent cell viability. The achievement of stable triple helix and fibrils in such a short CMP(FmP-5GPO) sequence is a challenging feat, and its significance in CMP-based biomaterials is undeniable. The present strategy highlights the potential for developing new CMP sequences through intelligent tuning of fusion peptides and GPO repeats.


Subject(s)
Collagen , Peptides , Peptides/chemistry , Collagen/chemistry
6.
BMC Urol ; 24(1): 43, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368330

ABSTRACT

Peritoneal loose body (PLB) is a kind of lesions located in the abdominal cavity or pelvic cavity, which is rare and difficult to diagnose. The diameter of PLB is mostly 0.5-2.5 cm. Most PLBS are asymptomatic. Here we reported a case of giant PLB in the pelvis and analyzed its structure and protein composition. Surgical exploration revealed a white oval mass (4.5*4*3 cm) in the pelvic cavity. After the mass was removed, the symptoms of hematuria disappeared and the patient was discharged on the second postoperative day. Histochemical staining showed that PLB was mainly composed of collagen and scattered calcification. The protein components of PLB were detected by proteome analysis, and a variety of proteins related to collagen deposition and calcification were identified in PLB.


Subject(s)
Calcinosis , Laparoscopy , Peritoneal Diseases , Humans , Peritoneal Diseases/diagnosis , Peritoneal Diseases/surgery , Peritoneal Diseases/pathology , Peritoneum/pathology , Tomography, X-Ray Computed , Collagen
7.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062889

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease affecting both children and adults. The clinical picture of AD manifests in typical skin lesions, such as localized eczema and dry skin, with dominant, persistent itching that leads to sleep disturbances. The pathophysiology of AD has been extensively investigated with respect to epigenetic and genetic factors, skin barrier defects, as well as immunological and microbial disorders. However, to date, the involvement of extracellular matrix (ECM) elements has received limited attention. Collagen, a major component of the ECM, may serve as a therapeutic target for the future treatment of AD. This paper summarizes the role of collagens, which are the most abundant components of the extracellular matrix in AD.


Subject(s)
Collagen , Dermatitis, Atopic , Extracellular Matrix , Dermatitis, Atopic/metabolism , Humans , Collagen/metabolism , Extracellular Matrix/metabolism , Animals , Skin/metabolism , Skin/pathology
8.
J Biol Chem ; 298(12): 102622, 2022 12.
Article in English | MEDLINE | ID: mdl-36272642

ABSTRACT

Fibrosis, stiffening and scarring of an organ/tissue due to genetic abnormalities, environmental factors, infection, and/or injury, is responsible for > 40% of all deaths in the industrialized world, and to date, there is no cure for it despite extensive research and numerous clinical trials. Several biomarkers have been identified, but no effective therapeutic targets are available. Human galectin-3 is a chimeric gene product formed by the fusion of the internal domain of the collagen alpha gene [N-terminal domain (ND)] at the 5'-end of galectin-1 [C-terminal domain (CRD)] that appeared during evolution together with vertebrates. Due to the overlapping structural similarities between collagen and galectin-3 and their shared susceptibility to cleavage by matrix metalloproteases to generate circulating collagen-like peptides, this review will discuss present knowledge on the role of collagen and galectin-3 as biomarkers of fibrosis. We will also highlight the need for transformative approaches targeting both the ND and CRD domains of galectin-3, since glycoconjugate binding by the CRD is triggered by ND-mediated oligomerization and the therapies targeted only at the CRD have so far achieved limited success.


Subject(s)
Collagen , Fibrosis , Galectin 3 , Animals , Humans , Biomarkers , Collagen/genetics , Collagen/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Vertebrates , Glycoconjugates , Matrix Metalloproteinases
9.
BMC Genomics ; 24(1): 122, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927452

ABSTRACT

BACKGROUND: Regeneration studies help to understand the strategies that replace a lost or damaged organ and provide insights into approaches followed in regenerative medicine and engineering. Amphibians regenerate their limbs effortlessly and are indispensable models to study limb regeneration. Xenopus and axolotl are the key models for studying limb regeneration but recent studies on non-model amphibians have revealed species specific differences in regeneration mechanisms. RESULTS: The present study describes the de novo transcriptome of intact limbs and three-day post-amputation blastemas of tadpoles and froglets of the Asian tree frog Polypedates maculatus, a non-model amphibian species commonly found in India. Differential gene expression analysis between early tadpole and froglet limb blastemas discovered species-specific novel regulators of limb regeneration. The present study reports upregulation of proteoglycans, such as epiphycan, chondroadherin, hyaluronan and proteoglycan link protein 1, collagens 2,5,6, 9 and 11, several tumour suppressors and methyltransferases in the P. maculatus tadpole blastemas. Differential gene expression analysis between tadpole and froglet limbs revealed that in addition to the expression of larval-specific haemoglobin and glycoproteins, an upregulation of cysteine and serine protease inhibitors and downregulation of serine proteases, antioxidants, collagenases and inflammatory genes in the tadpole limbs were essential for creating an environment that would support regeneration. Dermal myeloid cells were GAG+, EPYC+, INMT+, LEF1+ and SALL4+ and seemed to migrate from the unamputated regions of the tadpole limb to the blastema. On the other hand, the myeloid cells of the froglet limb blastemas were few and probably contributed to sustained inflammation resulting in healing. CONCLUSIONS: Studies on non-model amphibians give insights into alternate tactics for limb regeneration which can help devise a plethora of methods in regenerative medicine and engineering.


Subject(s)
Regeneration , Transcriptome , Animals , Regeneration/genetics , Xenopus laevis/genetics , Anura/genetics , Extremities/physiology , Gene Expression Profiling
10.
BMC Cancer ; 23(1): 949, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803411

ABSTRACT

BACKGROUND: Collagens are the major components of the extracellular matrix (ECM) and are known to contribute to tumor progression and metastasis. There are 28 different types of collagens each with unique functions in maintaining tissue structure and function. Type XVII collagen (BP180) is a type II transmembrane protein that provides stable adhesion between epithelial cells and the underlying basement membrane. Aberrant expression and ectodomain shedding of type XVII collagen have been associated with epithelial damage, tumor invasiveness, and metastasis in multiple tumor types and may consequently be used as a potential (non-invasive) biomarker in cancer and treatment target. METHOD: An ELISA targeting the type XVII collagen ectodomain (PRO-C17) was developed for use in serum. PRO-C17 was measured in a cohort of patients with 11 different cancer types (n = 214) and compared to healthy controls (n = 23) (cohort 1). Based on the findings from cohort 1, PRO-C17 and its association with survival was explored in patients with metastatic colorectal cancer (mCRC) treated with bevacizumab in combination with chemotherapy (n = 212) (cohort 2). RESULTS: PRO-C17 was robust and specific towards the ectodomain of type XVII collagen. In cohort 1, PRO-C17 levels were elevated (p < 0.05) in serum from patients with CRC, kidney, ovarian, bladder, breast, and head and neck cancer compared to healthy controls. PRO-C17 was especially good at discriminating between CRC patients and healthy controls with an AUROC of 0.904. In cohort 2, patients with mCRC and high levels (tertile 3) of PRO-C17 had shorter overall survival (OS) with a median OS of 390 days compared to 539 days for patients with low levels of PRO-C17. When evaluated by multivariate Cox regression analysis, high PRO-C17 was predictive for poor OS independent of risk factors and the tumor fibrosis biomarker PRO-C3. CONCLUSION: PRO-C17 measures the ectodomain of type XVII collagen in serum and is a promising non-invasive biomarker that can aid in understanding tumor heterogeneity as well as elaborate on the role of collagen XVII in tumor progression. Moreover, the findings in the study proposes PRO-C17 as novel biomarker of epithelial damage in specific cancer types including CRC.


Subject(s)
Colonic Neoplasms , Rectal Neoplasms , Humans , Prognosis , Non-Fibrillar Collagens/metabolism , Collagen/chemistry , Autoantigens/metabolism , Biomarkers , Collagen Type XVII
11.
Exp Eye Res ; 226: 109313, 2023 01.
Article in English | MEDLINE | ID: mdl-36403850

ABSTRACT

Akt is a central node of many signaling pathways, which plays important roles in cell survival, proliferation, migration, metabolism and collagen synthesis. Conjunctivochalasis (CCH) is one of the most common age-related ocular superficial diseases related to abnormalities in conjunctival extracellular matrix. Here, we studied the role of Akt regulating collagens and MMPs in the pathogenesis of CCH. Primary conjunctival fibroblasts were obtained from CCH patients (n = 13) and age-matched normal controls (n = 10). The levels of Akt, collagen type I, collagen type III, MMP1, and MMP3 were determined by Western blot, qRT-PCR, immunohistochemistry, and immunofluorescence staining. Normal control conjunctival fibroblasts were treated with Akt inhibitor A6730, and CCH fibroblasts were transfected with Akt overexpression vector. The expression of Akt in CCH was significantly lower than that in normal control of conjunctival tissues and cultured fibroblasts. Blocking Akt signaling with Akt inhibitor could inhibit the expression of collagen type I and collagen type III and upregulate the expression of MMP1 and MMP3. Meanwhile, compared with CCH fibroblasts transfected with control mimics, the protein and mRNA expression of collagen type I and collagen type III were increased significantly in Akt overexpression group, while the results of MMP1 and MMP3 in transfected fibroblasts were opposite. Taken together, Akt upregulated the expression of collagen type I and collagen type III and downregulated the expression of MMP1 and MMP3. Akt signaling pathway could provide a direct negative contribution to CCH and might be an attractive target for CCH therapy.


Subject(s)
Collagen , Conjunctival Diseases , Matrix Metalloproteinase 1 , Matrix Metalloproteinase 3 , Proto-Oncogene Proteins c-akt , Humans , Cells, Cultured , Collagen/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type III , Conjunctival Diseases/metabolism , Fibroblasts/metabolism , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism
12.
Fish Shellfish Immunol ; 134: 108593, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36746229

ABSTRACT

The inhibition of inflammatory response is an essential process to control the development of inflammation and is an important step to protect the organism from excessive inflammatory damage. As a pleiotropic cytokine, transforming growth factor beta (TGF-ß) plays a regulatory role in inhibiting inflammation in vertebrates. To investigate the role of TGF-ß in the regulation of inflammation in invertebrates, we cloned and characterized the TGF-ß gene from Apostichopus japonicus via rapid amplification of cDNA ends, and the sample was designated as AjTGF-ß. For Vibrio splendidus-challenged sea cucumbers, the expression of AjTGF-ß mRNAs in coelomocytes decreased at 96 h (0.27-fold), which was contrary to the trend of inflammation. AjTGF-ß was expressed in all tissues with the highest expression in the body wall. When AjTGF-ß was knocked down by using small interfering RNA (siRNA-KD) to 0.45-fold, AjSMAD 2/3 and AjSMAD6 were downregulated to 0.32- and 0.05-fold compared with the control group, respectively. Furthermore, when the damaged sea cucumber was challenged by V. splendidus co-incubated with rAjTGF-ß, the damage area had no extensive inflammation, and damaged repair appeared at 72 h compared with the Vs + BSA group, in which the expression of AjSMAD 2/3 was upregulated by 1.35-fold. Under this condition, AjSMAD 2/3 silencing alleviated rAjTGF-ß-induced damage recovery. Moreover, rAjTGF-ß slightly induced the collagen I expression from 6.13 ng/mL to 7.84 ng/mL, and collagen III was upregulated from 6.23 ng/mL to 6.89 ng/mL compared with the Vs + BSA group. This finding indicates that AjTGF-ß negatively regulated the inflammatory progress and accelerated the repair of damage by AjSMADs to regulate the collagens expression.


Subject(s)
Smad Proteins , Stichopus , Transforming Growth Factor beta , Amino Acid Sequence , Invertebrates/classification , Invertebrates/genetics , Invertebrates/immunology , Models, Molecular , Phylogeny , Protein Structure, Tertiary , Sequence Alignment , Smad Proteins/metabolism , Stichopus/classification , Stichopus/genetics , Stichopus/immunology , Stichopus/microbiology , Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Animals
13.
Mar Drugs ; 21(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37103346

ABSTRACT

The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing.


Subject(s)
Cnidaria , Scyphozoa , Animals , Humans , Cnidaria/metabolism , Wound Healing , Scyphozoa/chemistry , Collagen/chemistry , Antioxidants/pharmacology , Mammals/metabolism
14.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239902

ABSTRACT

MicroRNAs (miRNAs) are short non-coding RNA sequences with the ability to inhibit the expression of a target mRNA at the post-transcriptional level, acting as modulators of both the degenerative and regenerative processes. Therefore, these molecules constitute a potential source of novel therapeutic tools. In this study, we investigated the miRNA expression profile that presented in enthesis tissue upon injury. For this, a rodent enthesis injury model was developed by creating a defect at a rat's patellar enthesis. Following injury, explants were collected on days 1 (n = 10) and 10 (n = 10). Contra lateral samples (n = 10) were harvested to be used for normalization. The expression of miRNAs was investigated using a "Fibrosis" pathway-focused miScript qPCR array. Later, target prediction for the aberrantly expressed miRNAs was performed by means of the Ingenuity Pathway Analysis, and the expression of mRNA targets relevant for enthesis healing was confirmed using qPCRs. Additionally, the protein expression levels of collagens I, II, III, and X were investigated using Western blotting. The mRNA expression pattern of EGR1, COL2A1, RUNX2, SMAD1, and SMAD3 in the injured samples indicated their possible regulation by their respective targeting miRNA, which included miR-16, -17, -100, -124, -133a, -155 and -182. Furthermore, the protein levels of collagens I and II were reduced directly after the injury (i.e., day 1) and increased 10 days post-injury, while collagens III and X showed the opposite pattern of expression.


Subject(s)
MicroRNAs , Rats , Animals , MicroRNAs/metabolism , Rodentia/metabolism , Wound Healing/genetics , Patella , RNA, Messenger/metabolism , Gene Expression Profiling
15.
Connect Tissue Res ; 63(3): 200-209, 2022 05.
Article in English | MEDLINE | ID: mdl-35321605

ABSTRACT

This biography of Dr. Joel Rosenbloom is published on the occasion of the 50th anniversary of the journal. Dr. Rosenbloom presents the scientific milestones and achievements throughout his career emphasizing events that have spurred him to launch into a career in biomedical research and education. The biography spans several decades of the life and achievements of a distinguished physician scientist whose dedication to science demonstrates the development of new insights into a variety of connective tissues through technological advances and insightful approaches.


Subject(s)
Biomedical Research , Biomedical Research/education , Humans , Male
17.
Rheumatol Int ; 42(6): 1009-1014, 2022 06.
Article in English | MEDLINE | ID: mdl-34327558

ABSTRACT

The pathogenesis of psoriatic arthritis (PsA) involves inflammation and bone and soft tissue turnover. Dietary fatty acids have previously been associated with pro-inflammatory effects induced by saturated fatty acids (SFA) and anti-inflammatory effects achieved by at least some polyunsaturated fatty acids (PUFA). The aim of the study was to investigate the correlations between the content of fatty acids in granulocytes and clinical and biochemical markers of PsA. A total of 140 patients with PsA were included. Skin and joint disease activity were assessed. Fatty acid composition in granulocytes was determined by gas chromatography. Competitive enzyme-linked immunosorbent assays were used to assess bone and soft tissue turnover. The content of SFA, n-6 PUFA or n-3 PUFA in granulocytes was not associated with disease activity. Marine n-3 PUFA was significantly positively correlated with collagen degradation. In contrast, n-6 PUFA was significantly positively correlated with collagen formation and negatively correlated with collagen degradation. However, the correlations were all weak. No association was found between the content of fatty acids in granulocytes and disease activity in this population of patients with PsA. The correlation between fatty acids and biomarkers of bone and soft tissue turnover needs further investigation.


Subject(s)
Arthritis, Psoriatic , Fatty Acids, Omega-3 , Arthritis, Psoriatic/diagnosis , Arthritis, Psoriatic/drug therapy , Biomarkers , Collagen , Fatty Acids , Fatty Acids, Omega-3/pharmacology , Humans
18.
Mar Drugs ; 20(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35736179

ABSTRACT

Fish collagen has been widely used in tissue engineering (TE) applications as an implant, which is generally transplanted into target tissue with stem cells for better regeneration ability. In this case, the success rate of this research depends on the fundamental components of fish collagen such as amino acid composition, structural and rheological properties. Therefore, researchers have been trying to find an innovative raw material from marine origins for tissue engineering applications. Based on this concept, collagens such as acid-soluble (ASC) and pepsin-soluble (PSC) were extracted from a new type of cartilaginous fish, the blacktip reef shark, for the first time, and were further investigated for physicochemical, protein pattern, microstructural and peptide mapping. The study results confirmed that the extracted collagens resemble the protein pattern of type-I collagen comprising the α1, α2, ß and γ chains. The hydrophobic amino acids were dominant in both collagens with glycine and hydroxyproline as major amino acids. From the FTIR spectra, α helix (27.72 and 26.32%), ß-sheet (22.24 and 23.35%), ß-turn (21.34 and 22.08%), triple helix (14.11 and 14.13%) and random coil (14.59 and 14.12%) structures of ASC and PSC were confirmed, respectively. Collagens retained their triple helical and secondary structure well. Both collagens had maximum solubility at 3% NaCl and pH 4, and had absorbance maxima at 234 nm, respectively. The peptide mapping was almost similar for ASC and PSC at pH 2, generating peptides ranging from 15 to 200 kDa, with 23 kDa as a major peptide fragment. The microstructural analysis confirmed the homogenous fibrillar nature of collagens with more interconnected networks. Overall, the preset study concluded that collagen can be extracted more efficiently without disturbing the secondary structure by pepsin treatment. Therefore, the blacktip reef shark skin could serve as a potential source for collagen extraction for the pharmaceutical and biomedical applications.


Subject(s)
Pepsin A , Sharks , Acids/chemistry , Amino Acids/chemistry , Animals , Collagen/chemistry , Collagen Type I/chemistry , Fishes/metabolism , Pepsin A/chemistry , Sharks/metabolism , Skin/metabolism , Solubility
19.
Biochem Genet ; 60(5): 1630-1656, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35066702

ABSTRACT

Collagens are the most abundant proteins in the extra cellular matrix/ECM of human tissues that are encoded by different genes. There are single nucleotide polymorphisms/SNPs which are considered as the most useful biomarkers for some disease diagnosis or prognosis. The aim of this study is screening and identifying the functional missense SNPs of human ECM-collagens and investigating their correlation with human abnormalities. All of the missense SNPs were retrieved from the NCBI SNP database and screened for a global frequency of more than 0.1. Seventy missense SNPs that met the screening criteria were characterized for functional and stability impact using six and three protein analysis tools, respectively. Next, HOPE and geneMANIA analysis tools were used to show the effect of SNPs on three-dimensional structure (3D) and physical interaction of proteins. Results showed that 13 missense SNPs (rs2070739, rs28381984, rs13424243, rs1800517, rs73868680, rs12488457, rs1353613, rs59021909, rs9830253, rs2228547, rs3753841, rs2855430, and rs970547), which are in nine different collagen genes, affect the structure and function of different collagen proteins. Among these polymorphisms, COL4A3-rs13424243 and COL6A6-rs59021909 were predicted as the most effective ones. On the other hand, designed mutated and native 3D of rs13424243 variant illustrated that it can disturb the protein motifs. Also, geneMANIA predicted that COL4A3 and COL6A6 are interacting with some proteins including: DDR1, COL6A1, COL11A2 and so on. Based on our findings, ECM-collagens functional SNPs are important and may be considered as a risk factor or molecular marker for human disorders in the future studies.


Subject(s)
Collagen , Polymorphism, Single Nucleotide , Humans
20.
Int J Mol Sci ; 23(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36293285

ABSTRACT

Despite advances in cancer detection and therapy, it has been estimated that the incidence of cancers will increase, while the mortality rate will continue to remain high, a fact explained by the large number of patients diagnosed in advanced stages when therapy is often useless. Therefore, it is necessary to invest knowledge and resources in the development of new non-invasive biomarkers for the early detection of cancer and new therapeutic targets for better health management. In this review, we provided an overview on the collagen family as promising biomarkers and on how they may be exploited as therapeutic targets in cancer. The collagen family tridimensional structure, organization, and functions are very complex, being in a tight relationship with the extracellular matrix, tumor, and immune microenvironment. Moreover, accumulating evidence underlines the role of collagens in promoting tumor growth and creating a permissive tumor microenvironment for metastatic dissemination. Knowledge of the molecular basis of these interactions may help in cancer diagnosis and prognosis, in overcoming chemoresistance, and in providing new targets for cancer therapies.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Tumor Microenvironment , Collagen/chemistry , Extracellular Matrix/pathology , Biomarkers , Biomarkers, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL