Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38833323

ABSTRACT

The emergence and rapid spread of SARS-CoV-2 prompted the global community to identify innovative approaches to diagnose infection and sequence the viral genome because at several points in the pandemic positive case numbers exceeded the laboratory capacity to characterize sufficient samples to adequately respond to the spread of emerging variants. From week 10, 2020, to week 13, 2023, Slovenian routine complete genome sequencing (CGS) surveillance network yielded 41 537 complete genomes and revealed a typical molecular epidemiology with early lineages gradually being replaced by Alpha, Delta, and finally Omicron. We developed a targeted next-generation sequencing based variant surveillance strategy dubbed Spike Screen through sample pooling and selective SARS-CoV-2 spike gene amplification in conjunction with CGS of individual cases to increase throughput and cost-effectiveness. Spike Screen identifies variant of concern (VOC) and variant of interest (VOI) signature mutations, analyses their frequencies in sample pools, and calculates the number of VOCs/VOIs at the population level. The strategy was successfully applied for detection of specific VOC/VOI mutations prior to their confirmation by CGS. Spike Screen complemented CGS efforts with an additional 22 897 samples sequenced in two time periods: between week 42, 2020, and week 24, 2021, and between week 37, 2021, and week 2, 2022. The results showed that Spike Screen can be applied to monitor VOC/VOI mutations among large volumes of samples in settings with limited sequencing capacity through reliable and rapid detection of novel variants at the population level and can serve as a basis for public health policy planning.


Subject(s)
COVID-19 , High-Throughput Nucleotide Sequencing , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , High-Throughput Nucleotide Sequencing/methods , COVID-19/virology , COVID-19/diagnosis , COVID-19/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Mutation , Genome, Viral , Slovenia/epidemiology
2.
Arch Microbiol ; 206(3): 131, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421449

ABSTRACT

A new strain of Bacillus velezensis NDB was isolated from Xiangshan Harbor and antibacterial test revealed antibacterial activity of this strain against 12 major pathogenic bacteria. The whole genome of the bacterium was sequenced and found to consist of a 4,214,838 bp circular chromosome and a 7410 bp circular plasmid. Furthermore, it was predicted by AntiSMASH and BAGEL4 to have 12 clusters of secondary metabolism genes for the synthesis of the inhibitors, fengycin, bacillomycin, macrolactin H, bacillaene, and difficidin, and there were also five clusters encoding potentially novel antimicrobial substances, as well as three bacteriocin biosynthesis gene clusters of amylocyclicin, ComX1, and LCI. qRT-PCR revealed significant up-regulation of antimicrobial secondary metabolite synthesis genes after 24 h of antagonism with pathogenic bacteria. Furthermore, MALDI-TOF mass spectrometry revealed that it can secrete surfactin non-ribosomal peptide synthase and polyketide synthase to exert antibacterial effects. GC-MS was used to analyze methanol extract of B. velezensis NDB, a total of 68 compounds were identified and these metabolites include 16 amino acids, 17 acids, 3 amines, 11 sugars, 11 alcohols, 1 ester, and 9 other compounds which can inhibit pathogenic bacteria by initiating the antibiotic secretion pathway. A comparative genomic analysis of gene families showed that the specificity of B. velezensis NDB was mainly reflected in environmental adaptability. Overall, this research on B. velezensis NDB provides the basis for elucidating its biocontrol effect and promotes its future application as a probiotic.


Subject(s)
Bacillus , Bacillus/genetics , Anti-Bacterial Agents/pharmacology , Amines , Amino Acids
3.
Antonie Van Leeuwenhoek ; 116(6): 577-593, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37186067

ABSTRACT

In this study, a strain was isolated from a sewage treatment plant in Jiangsu Province, China. The strain was identified as Brevundimonas sp. KX-1. After 5 days, 50.2% 3-chlorocarbazole (3-CCZ) was degraded under the optimum condition as follows: 1 g/L starch, 30 °C, pH 6.5 and 50 mg/L 3-CCZ. The degradation of 3-CCZ by KX-1 conformed to the first-order kinetic model under different initial concentrations in this experiment. The intermediate product of 3-CCZ degradation was identified as (2E,4Z)-6-(2-amino-5-chlorophenyl)-2-hydroxy-6-oxohexa-2,4-dienoic acid. The activities of the meta-cleavage enzymes for biphenyl-2,3-diol (the analogs of intermediate product 2'-amino-5'-chloro-[1,1'-biphenyl]-2,3-diol) were measured with the crude extracts of cells grown in the presence of 3-CCZ. The complete genome of KX-1 was sequenced and compared with the Brevundimonas diminuta BZC3. BZC3 and KX-1 belonged to the same species, displaying the genetic similarity of 99%. But BZC3 could efficiently degrade gentamicin for the potential microbial function analysis. Compared with BZC3, KX-1 possessed the primary function annotations about transportation and metabolism of amino acids (6.65%) and the transportation and metabolism of carbohydrates (5.96%). In addition, KX-1 was rich in sucrose and starch metabolism pathways (ko00500) compared with the genome of BZC3, indicating the high efficiency of KX-1 for starch utilization during degradation. This article reveals the difference between strain KX-1 and bacteria of the same genus in terms of the whole genome sequence, demonstrating that KX-1 is a novel strain Brevundimonas with the ability to degrade 3-CCZ.


Subject(s)
Carbazoles , Fatty Acids , Fatty Acids/analysis , Carbazoles/analysis , Biphenyl Compounds , Bacteria, Aerobic , Phylogeny , Biodegradation, Environmental
4.
Mar Drugs ; 21(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37999388

ABSTRACT

Alginate oligosaccharides prepared by alginate lyases attracted great attention because of their desirable biological activities. However, the hydrolysis products are always a mixture of oligosaccharides with different degrees of polymerization, which increases the production cost because of the following purification procedures. In this study, an alginate lyase, Alg4755, with high product specificity was identified, heterologously expressed, and characterized from Vibrio alginolyticus S10, which was isolated from the intestine of sea cucumber. Alg4755 belonged to the PL7 family with two catalytic domains, which was composed of 583 amino acids. Enzymatic characterization results show that the optimal reaction temperature and pH of Alg4755 were 35 °C and 8.0, respectively. Furthermore, Alg4755 was identified to have high thermal and pH stability. Moreover, the final hydrolysis products of sodium alginate catalyzed by Alg4755 were mainly alginate disaccharides with a small amount of alginate trisaccharides. The results demonstrate that alginate lyase Alg4755 could have a broad application prospect because of its high product specificity and desirable catalytic properties.


Subject(s)
Disaccharides , Vibrio alginolyticus , Vibrio alginolyticus/genetics , Vibrio alginolyticus/metabolism , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Substrate Specificity , Oligosaccharides/metabolism , Polysaccharide-Lyases/metabolism , Alginates/metabolism
5.
Emerg Infect Dis ; 28(2): 457-460, 2022 02.
Article in English | MEDLINE | ID: mdl-34906290

ABSTRACT

This overview of severe acute respiratory syndrome coronavirus 2 circulation over 1.5 years in Guinea demonstrates that virus clades and variants of interest and concern were progressively introduced, mostly by travellers through Conakry, before spreading through the country. Sequencing is key to following virus evolution and establishing efficient control strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Guinea/epidemiology , Humans
6.
Plant Dis ; 106(1): 307-309, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34328362

ABSTRACT

Fusarium brachygibbosum Padwick, the causal agent of stalk rot disease, is a threat to the maize crop in China. However, genomic information of the pathogen is not available yet. The current study presented the genomic information of F. brachygibbosum, isolated from maize. The genome size is 40.36 Mb and consists of 12,510 genes. The GC content is 47.95%, and there are 913 predicted secretory proteins. The presented genomic data highlighted the virulence features, plant-microbe interaction ability, genes associated with the pathogen's metabolic processes, and host-binding ability. Presented results would extend our knowledge of the pathogen and help us develop suitable disease management strategies.


Subject(s)
Fusarium , Zea mays , Fusarium/genetics , Plant Diseases , Virulence
7.
BMC Microbiol ; 21(1): 133, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33932986

ABSTRACT

BACKGROUND: The prevalence of clinical multidrug-resistant (MDR) Pseudomonas aeruginosa has been increasing rapidly worldwide over the years and responsible for a wide range of acute and chronic infections with high mortalities. Although hundreds of complete genomes of clinical P. aeruginosa isolates have been sequenced, only a few complete genomes of mucoid strains are available, limiting a comprehensive understanding of this important group of opportunistic pathogens. Herein, the complete genome of a clinically isolated mucoid strain P. aeruginosa JNQH-PA57 was sequenced and assembled using Illumina and Oxford nanopore sequencing technologies. Genomic features, phylogenetic relationships, and comparative genomics of this pathogen were comprehensively analyzed using various bioinformatics tools. A series of phenotypic and molecular-genetic tests were conducted to investigate the mechanisms of carbapenem resistance in this strain. RESULTS: Several genomic features of MDR P. aeruginosa JNQH-PA57 were identified based on the whole-genome sequencing. We found that the accessory genome of JNQH-PA57 including several prophages, genomic islands, as well as a PAPI-1 family integrative and conjugative element (ICE), mainly contributed to the larger genome of this strain (6,747,067 bp) compared to other popular P. aeruginosa strains (with an average genome size of 6,445,223 bp) listed in Pseudomonas Genome Database. Colony morphology analysis and biofilm crystal staining assay respectively demonstrated an enhanced alginate production and a thicker biofilm formation capability of JNQH-PA57. A deleted mutation at nt 424 presented in mucA gene, resulted in the upregulated expression of a sigma-factor AlgU and a GDP mannose dehydrogenase AlgD, which might explain the mucoid phenotype of this strain. As for the carbapenem resistance mechanisms, our results revealed that the interplay between impaired OprD porin, chromosomal ß-lactamase OXA-488 expression, MexAB-OprM and MexXY-OprM efflux pumps overexpression, synergistically with the alginates-overproducing protective biofilm, conferred the high carbapenem resistance to P. aeruginosa JNQH-PA57. CONCLUSION: Based on the genome analysis, we could demonstrate that the upregulated expression of algU and algD, which due to the truncation variant of MucA, might account for the mucoid phenotype of JNQH-PA57. Moreover, the resistance to carbapenem in P. aeruginosa JNQH-PA57 is multifactorial. The dataset presented in this study provided an essential genetic basis for the comprehensive cognition of the physiology, pathogenicity, and carbapenem resistance mechanisms of this clinical mucoid strain.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/genetics , Pseudomonas aeruginosa/genetics , Bacterial Proteins/genetics , Carbapenems/pharmacology , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Genomics , Phylogeny , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/drug effects , Sequence Deletion
8.
Virol J ; 18(1): 168, 2021 08 14.
Article in English | MEDLINE | ID: mdl-34391446

ABSTRACT

A growing number of emerging SARS-CoV-2 variants is being identified worldwide, potentially impacting the effectiveness of current vaccines. We report the data obtained in several Italian regions involved in the SARS-CoV-2 variant monitoring from the beginning of the epidemic and spanning the period from October 2020 to March 2021.


Subject(s)
COVID-19/epidemiology , Epidemics , SARS-CoV-2/genetics , COVID-19/virology , Humans , Italy/epidemiology , Prevalence
9.
Article in English | MEDLINE | ID: mdl-33974532

ABSTRACT

The conversion of major ginsenosides into minor ginsenosides attracts a lot of interest because of their biological and pharmaceutical activities. Therefore, for the conversion of ginsenosides, finding a novel competent glycoside hydrolase-producing bacterial strain is useful for future research studies and the mass production of minor ginsenosides. Wastewater samples were collected and screened for novel glycoside hydrolase bacterial strains using Reasoner's 2A+aesculin agar medium. As a result, a novel glycoside hydrolase positive bacterial strain (SB-02T) was identified and subjected to a polyphasic taxonomic analysis. Based on genome analysis, strain SB-02T was found to be affiliated with the family Chitinophagaceae and have less than 92.8 % sequence similarity to other members of the same family. Functional analysis indicated that SB-02T was able to hydrolyse the ginsenosides Rb1, Rc and Rd to F2 and C-K. Due to the conversion of ginsenosides, the strain's genome was sequenced and the genes were annotated by the NCBI. The average amino acid identity and average nucleotide identity values between SB-02T and the available reference genomes were 65.7 and 65.9 %, respectively. The novel isolate contained MK-7 as the predominant menaquinone, the major polyamine putrescine, and iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH as major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Thus, based on the data presented here, strain SB-02T represents a novel species within a new genus in the family Chitinophagaceae, for which the name Phnomibacter ginsenosidimutans gen. nov., sp. nov. is proposed. The type strain of Phnomibacter ginsenosidimutans is SB-02T (=KACC 21266T=LMG 31707T). The genome annotation of SB-02T shows many glycoside hydrolase genes, which may be responsible for the efficient production of many kinds of minor ginsenosides and will be very helpful for future research (target gene cloning) and mass production of either F2 or C-K.


Subject(s)
Bacteroidetes/classification , Ginsenosides/metabolism , Phylogeny , Wastewater/microbiology , Bacterial Typing Techniques , Bacteroidetes/enzymology , Bacteroidetes/isolation & purification , Base Composition , Cambodia , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycoside Hydrolases/genetics , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
10.
J Med Virol ; 92(10): 2209-2215, 2020 10.
Article in English | MEDLINE | ID: mdl-32462705

ABSTRACT

In January 2020, we identified two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients in a familial cluster with one person coming from Wuhan, China. The complete genome sequences of two SARS-CoV-2 strains isolated from these patients were identical and 99.98% similar to strains isolated in Wuhan. This is genetically suggestive of human-to-human transmission of SARS-CoV-2 and indicates Wuhan as the most plausible origin of the early outbreak in Vietnam. The younger patient had a mild upper respiratory illness and a brief viral shedding, whereas the elderly with multi-morbidity had pneumonia, prolonged viral shedding, and residual lung damage. The evidence of nonsynonymous substitutions in the ORF1ab region of the viral sequence warrants further studies.


Subject(s)
COVID-19/transmission , Genome, Viral , Lung/virology , SARS-CoV-2/genetics , Adult , Aged , COVID-19/diagnosis , COVID-19/pathology , COVID-19/virology , China/epidemiology , Family , Genotype , Humans , Lung/pathology , Male , Mutation , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Travel , Vietnam/epidemiology , Virus Replication , Whole Genome Sequencing
11.
Int J Syst Evol Microbiol ; 70(9): 5001-5011, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32783807

ABSTRACT

Kiritimatiellaeota is widespread and ecologically important in various anoxic environments. However, the portion of culturable bacteria within this phylum is quite low and, in fact, there is only one currently described species. In this study, a novel anaerobic, non-motile, coccoid, Gram-stain-negative bacterial strain, designated S-5007T, was isolated from surface marine sediment. The 16S rRNA gene sequence was found to have very low 16S rRNA gene sequence similarity to the nearest known type strain, Kiritimatiella glycovorans L21-Fru-ABT (84.9 %). The taxonomic position of the novel isolate was investigated using a polyphasic approach and comparative genomic analysis. Phylogenetic analyses based on 16S rRNA genes and genomes indicated that strain S-5007T branched within the radiation of the phylum Kiritimatiellaeota. Different from the type strain, strain S-5007T can grow under microaerobic conditions, and the genomes of strain S-5007T and the other strains in its branch have many more antioxidant-related genes. Meanwhile, other different metabolic features deduced from genome analysis supported the separate evolution of the proposed class (strain S-5007T branch) and K. glycovorans L21-Fru-ABT. Based on phylogenetic and phenotypic characterization studies, Tichowtungia aerotolerans gen. nov., sp. nov. is proposed with S-5007T (=MCCC 1H00402T=KCTC 15876T) as the type strain, as the first representative of novel taxa, Tichowtungiales ord. nov., Tichowtungiaceae fam. nov. in Tichowtungiia class. nov.


Subject(s)
Geologic Sediments/microbiology , Gram-Negative Anaerobic Cocci/classification , Phylogeny , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gram-Negative Anaerobic Cocci/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
Antonie Van Leeuwenhoek ; 113(5): 719-727, 2020 May.
Article in English | MEDLINE | ID: mdl-31980980

ABSTRACT

In this study, a novel ginsenoside transforming bacterium, strain W1-2-3T, was isolated from mineral water. The 16S rRNA gene sequence analysis showed that strain W1-2-3T shares 93.7-92.2% sequence similarity with the members of the family Sphingomonadaceae and makes a group with Sphingoaurantiacus capsulatus YLT33T (93.7%) and S. polygranulatus MC 3718T (93.4%). The novel isolate efficiently hydrolyses the ginsenoside Rc to Rd. The genome comprises a single circular 2,880,809, bp chromosome with 3211 genes in total, and 1993 protein coding genes. The isolate was observed to grow at 10-37 °C and at pH 6-10 on R2A agar medium; maximum growth was found to occur at 25 °C and pH 7.0. Strain W1-2-3T was found to contain ubiquinone-10 as the predominant quinone and the fatty acids C16:1, C17:1ω6c, C14:0 2-OH, summed feature 3 (C16:1ω6c/C16:1ω7c) and summed feature 8 (C18:1ω6c/C18:1ω7c). The DNA G+C content was determined to be 65.9 mol%. Strain W1-2-3T can be distinguished from the other members of the family Sphingomonadaceae by a number of chemotaxonomic and phenotypic characteristics. The major polar lipids of strain W1-2-3T were identified as phosphatidylethanolamine, an unidentified glycolipid and an unidentified polar lipid. The major poly amine was found to be homospermidine. Based on polyphasic taxonomic analysis, strain W1-2-3T is concluded to represent a novel species within a new genus, for which the name Hankyongella ginsenosidimutans gen. nov., sp. nov. is proposed. The type strain of Hankyongella ginsenosidimutans is W1-2-3T (= KACC 18307T = LMG 28594T).


Subject(s)
Ginsenosides/metabolism , Mineral Waters/microbiology , Sphingomonadaceae , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sphingomonadaceae/classification , Sphingomonadaceae/genetics , Sphingomonadaceae/isolation & purification , Sphingomonadaceae/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/analysis
13.
BMC Genomics ; 20(1): 643, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31405380

ABSTRACT

BACKGROUND: Ensifer alkalisoli YIC4027, a recently characterized nitrogen-fixing bacterium of the genus Ensifer, has been isolated from root nodules of the host plant Sesbania cannabina. This plant is widely used as green manure and for soil remediation. E. alkalisoli YIC4027 can grow in saline-alkaline soils and is a narrow-host-range strain that establishes a symbiotic relationship with S. cannabina. The complete genome of this strain was sequenced to better understand the genetic basis of host specificity and adaptation to saline-alkaline soils. RESULTS: E. alkalisoli YIC4027 was found to possess a 6.1-Mb genome consisting of three circular replicons: one chromosome (3.7 Mb), a chromid (1.9 Mb) and a plasmid (0.46 Mb). Genome comparisons showed that strain YIC4027 is phylogenetically related to broad-host-range Ensifer fredii strains. Synteny analysis revealed a strong collinearity between chromosomes of E. alkalisoli YIC4027 and those of the E. fredii NGR234 (3.9 Mb), HH103 (4.3 Mb) and USDA257 (6.48 Mb) strains. Notable differences were found for genes required for biosynthesis of nodulation factors and protein secretion systems, suggesting a role of these genes in host-specific nodulation. In addition, the genome analysis led to the identification of YIC4027 genes that are presumably related to adaptation to saline-alkaline soils, rhizosphere colonization and nodulation competitiveness. Analysis of chemotaxis cluster genes and nodulation tests with constructed che gene mutants indicated a role of chemotaxis and flagella-mediated motility in the symbiotic association between YIC4027 and S. cannabina. CONCLUSIONS: This study provides a basis for a better understanding of host specific nodulation and of adaptation to a saline-alkaline rhizosphere. This information offers the perspective to prepare optimal E. alkalisoli inocula for agriculture use and soil remediation.


Subject(s)
Adaptation, Physiological/genetics , Environment , Genomics , Host Specificity , Rhizobiaceae/genetics , Rhizobiaceae/physiology , Genes, Bacterial/genetics , Polysaccharides, Bacterial/biosynthesis , Rhizobiaceae/metabolism , Rhizosphere , Soil/chemistry
14.
Microb Pathog ; 128: 178-183, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30610900

ABSTRACT

Janthinobacterium sp. B9-8, isolated from low temperature-sewage in Xinjiang, China, is capable of producing violacein, a promising antibiotic. Here we report the genome sequence of B9-8, which consist of 4,726,850 bp with a G + C content of 48.72%. The violacein biosynthesis gene cluster vioABCDE was identified and analyzed based on the genomic data, which revealed relatively low query coverage (3-44%) and identity (66-87%) with existing strains. Janthinobacterium sp. B9-8 grew fast and reached a high cell density and violacein content within 24 h at 25 °C. The availability of this genome sequence will greatly benefit the industrial production of violacein and facilitate supplementary studies on the mechanism for violacein biosynthesis.


Subject(s)
Cold Temperature , Indoles/metabolism , Oxalobacteraceae/genetics , Oxalobacteraceae/isolation & purification , Oxalobacteraceae/metabolism , Sewage/microbiology , Whole Genome Sequencing , Amino Acid Sequence , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Base Composition , Base Sequence , China , Chromosomes, Bacterial , Genes, Bacterial/genetics , Indoles/pharmacology , Microbial Sensitivity Tests , Multigene Family/genetics , Oxalobacteraceae/classification , RNA, Ribosomal, 16S/genetics , Sequence Alignment
15.
BMC Genomics ; 19(1): 117, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29394882

ABSTRACT

BACKGROUND: The bacterial pathogen Mycoplasma synoviae can cause subclinical respiratory disease, synovitis, airsacculitis and reproductive tract disease in poultry and is a major cause of economic loss worldwide. The M. synoviae strain MS-H was developed by chemical mutagenesis of an Australian isolate and has been used as a live attenuated vaccine in many countries over the past two decades. As a result it may now be the most prevalent strain of M. synoviae globally. Differentiation of the MS-H vaccine from local field strains is important for epidemiological investigations and is often required for registration of the vaccine. RESULTS: The complete genomic sequence of the MS-H strain was determined using a combination of Illumina and Nanopore methods and compared to WVU-1853, the M. synoviae type strain isolated in the USA 30 years before the parent strain of MS-H, and MS53, a more recent isolate from Brazil. The vaccine strain genome had a slightly larger number of pseudogenes than the two other strains and contained a unique 55 kb chromosomal inversion partially affecting a putative genomic island. Variations in gene content were also noted, including a deoxyribose-phosphate aldolase (deoC) fragment and an ATP-dependent DNA helicase gene found only in MS-H. Some of these sequences may have been acquired horizontally from other avian mycoplasma species. CONCLUSIONS: MS-H was somewhat more similar to WVU-1853 than to MS53. The genome sequence of MS-H will enable identification of vaccine-specific genetic markers for use as diagnostic and epidemiological tools to better control M. synoviae.


Subject(s)
Bacterial Proteins/genetics , Bacterial Vaccines/genetics , Genome, Bacterial , Mycoplasma Infections/veterinary , Mycoplasma synoviae/genetics , Poultry Diseases/prevention & control , Animals , Chickens/microbiology , Chromosome Inversion , Genetic Markers , High-Throughput Nucleotide Sequencing , Mycoplasma Infections/microbiology , Mycoplasma Infections/prevention & control , Poultry Diseases/microbiology , Sequence Analysis, DNA , Vaccines, Attenuated/genetics
16.
J Virol ; 91(18)2017 09 15.
Article in English | MEDLINE | ID: mdl-28659482

ABSTRACT

Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms for a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. Of these, 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genomes of 123 IAV isolates and found 31 H1N1, 26 H1N2, 63 H3N2, and 3 mixed IAVs. Based on the IAV hemagglutinin, seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs, although an additional viral group was identified for gene segment 3 (PA). Moreover, the codetection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs), highlighting the environment for potential IAV reassortment. Additionally, 3 out of 5 farms contained IAV isolates (n = 5) with gene segments from more than one VG, and 79% of all the IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were detected only once, while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics are important to better understand the diversity and epidemiology of swine IAVs.IMPORTANCE On a global scale, swine are one of the main reservoir species for influenza A viruses (IAVs) and play a key role in the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine IAVs on farrow-to-wean farms, where novel IAVs can emerge. In this study, we studied 5 swine farrow-to-wean farms for a year and characterized the genetic diversity of IAVs among three different pig subpopulations commonly housed on this type of farm. Using next-generation-sequencing technologies, we demonstrated the complex distribution and diversity of IAVs among the pig subpopulations studied. Our results demonstrated the dynamic evolution of IAVs within farrow-to-wean farms, which is crucial to improve health interventions to reduce the risk of transmission between pigs and from pigs to people.


Subject(s)
Genetic Variation , Influenza A virus/classification , Influenza A virus/isolation & purification , Orthomyxoviridae Infections/veterinary , Sequence Analysis, DNA , Swine Diseases/epidemiology , Swine Diseases/virology , Animals , Farms , Genotype , Influenza A virus/genetics , Longitudinal Studies , Molecular Epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Swine
17.
Emerg Infect Dis ; 23(12): 1974-1981, 2017 12.
Article in English | MEDLINE | ID: mdl-29148396

ABSTRACT

In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird and poultry viruses. Phylogenetic analysis showed that the viruses are related to H5 clade 2.3.4.4 viruses detected in Russia in May 2016 but contained novel polymerase basic 2 and nucleoprotein gene segments and 2 different variants of the polymerase acidic segment. Molecular dating suggests that the reassortment events most likely occurred in wild birds in Russia or Mongolia. Furthermore, 2 genetically distinct H5N5 reassortant viruses were detected in wild birds in the Netherlands. Our study provides evidence for fast and continuing reassortment of H5 clade 2.3.4.4 viruses, which might lead to rapid changes in virus characteristics, such as pathogenicity, infectivity, transmission, and zoonotic potential.


Subject(s)
Disease Outbreaks , Genome, Viral , Influenza A Virus, H5N8 Subtype/genetics , Influenza in Birds/epidemiology , Phylogeny , Reassortant Viruses/genetics , Animals , Animals, Wild , Birds/virology , Gene Expression , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/pathology , Influenza in Birds/transmission , Influenza in Birds/virology , Mongolia/epidemiology , Netherlands/epidemiology , Nucleoproteins/genetics , Nucleoproteins/metabolism , Poultry/virology , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Reassortant Viruses/pathogenicity , Russia/epidemiology , Viral Proteins/genetics , Viral Proteins/metabolism , Whole Genome Sequencing
18.
Mol Genet Genomics ; 292(1): 133-144, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27796642

ABSTRACT

Myroides odoratimimus (M. odoratimimus) has been gradually implicated as an important nosocomial pathogen that poses a serious health threat to immunocompromised patients owing to its multi-drug resistance. However, the resistance mechanism is currently unclear. To clarify the antibiotic resistance and infectivity mechanisms of M. odoratimimus, whole genome sequencing was performed on the multi-drug-resistant M. odoratimimus strain PR63039. The genome sequence was completed with single molecule real-time (SMRT) technologies. Then, annotation was performed using RAST and IMG-ER. A number of databases and software programs were used to analyze the genomic characteristics, including GC-Profile, ISfinder, CG viewer, ARDB, CARD, ResFinder, the VFDB database, PHAST and Progressive Mauve. The M. odoratimimus PR63039 genome consisted of a chromosome and a plasmid. The genome contained a large number of resistance genes and virulence factors. The distribution of the resistance genes was distinctive, and a resistance region named MY63039-RR was found. The subsystem features generated by RAST indicated that the annotated genome had 108 genes that were potentially involved in virulence, disease and defense, all of which had strong associations with resistance and pathogenicity. The prophage analysis showed two incomplete prophages in the genome. The genomic analysis of M. odoratimimus PR63039 partially clarified its antibiotic resistance mechanisms and virulence factors. Obtaining a clear understanding of its genomic characteristics will be conducive to the management of multidrug-resistant M. odoratimimus.


Subject(s)
Drug Resistance, Multiple, Bacterial , Flavobacteriaceae/drug effects , Flavobacteriaceae/isolation & purification , Genome, Bacterial , DNA, Bacterial , Flavobacteriaceae/classification , Flavobacteriaceae Infections/microbiology , Humans , Male , Middle Aged , Sequence Analysis, DNA , Urinary Tract Infections/microbiology , Virulence Factors/genetics
19.
Virus Genes ; 53(6): 848-855, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28643180

ABSTRACT

Sapoviruses (SaVs) are enteric viruses and have been detected in various mammals. They are divided into multiple genogroups and genotypes based on the entire major capsid protein (VP1) encoding region sequences. In this study, we determined the first complete genome sequences of two genogroup V, genotype 3 (GV.3) SaV strains detected from swine fecal samples, in combination with Illumina MiSeq sequencing of the libraries prepared from viral RNA and PCR products. The lengths of the viral genome (7494 nucleotides [nt] excluding polyA tail) and short 5'-untranslated region (14 nt) as well as two predicted open reading frames are similar to those of other SaVs. The amino acid differences between the two porcine SaVs are most frequent in the central region of the VP1-encoding region. A stem-loop structure which was predicted in the first 41 nt of the 5'-terminal region of GV.3 SaVs and the other available complete genome sequences of SaVs may have a critical role in viral genome replication. Our study provides complete genome sequences of rarely reported GV.3 SaV strains and highlights the common 5'-terminal genomic feature of SaVs detected from different mammalian species.


Subject(s)
Genome, Viral/genetics , Sapovirus/genetics , 5' Untranslated Regions/genetics , Animals , Base Sequence , Caliciviridae Infections/virology , Capsid Proteins/genetics , Gastroenteritis/virology , Genomics/methods , Genotype , Open Reading Frames/genetics , Phylogeny , RNA, Viral/genetics , Swine , Swine Diseases/virology , Whole Genome Sequencing/methods
20.
Microbiol Resour Announc ; 13(6): e0086923, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38727231

ABSTRACT

Prevention and control of camelpox can be achieved by efficient vaccination. A limited number of homologous attenuated vaccines have been commercialized. In this study, we report the draft genome sequence of camelpox virus vaccine strain "CAMPOX vaccine" after 175 passages of attenuation in Vero cells.

SELECTION OF CITATIONS
SEARCH DETAIL