Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.950
Filter
Add more filters

Publication year range
1.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38309258

ABSTRACT

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Subject(s)
Brain , Microglia , Axons , Brain/cytology , Brain/growth & development , Macrophages/physiology , Microglia/pathology , Morphogenesis
2.
J Neurosci ; 44(37)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39160067

ABSTRACT

During infancy and adolescence, language develops from a predominantly interhemispheric control-through the corpus callosum (CC)-to a predominantly intrahemispheric control, mainly subserved by the left arcuate fasciculus (AF). Using multimodal neuroimaging, we demonstrate that human left-handers (both male and female) with an atypical language lateralization show a rightward participation of language areas from the auditory cortex to the inferior frontal cortex when contrasting speech to tone perception and an enhanced interhemispheric anatomical and functional connectivity. Crucially, musicianship determines two different structural pathways to this outcome. Nonmusicians present a relation between atypical lateralization and intrahemispheric underdevelopment across the anterior AF, hinting at a dysregulation of the ontogenetic shift from an interhemispheric to an intrahemispheric brain. Musicians reveal an alternative pathway related to interhemispheric overdevelopment across the posterior CC and the auditory cortex. We discuss the heterogeneity in reaching atypical language lateralization and the relevance of early musical training in altering the normal development of language cognitive functions.


Subject(s)
Functional Laterality , Music , Humans , Male , Female , Music/psychology , Adult , Functional Laterality/physiology , Young Adult , Language , Neural Pathways/physiology , Auditory Cortex/physiology , Auditory Cortex/diagnostic imaging , Corpus Callosum/physiology , Corpus Callosum/diagnostic imaging , Magnetic Resonance Imaging , Adolescent , Brain Mapping
3.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35005774

ABSTRACT

Only mammals evolved a neocortex, which integrates sensory-motor and cognitive functions. Significant diversifications in the cellular composition and connectivity of the neocortex occurred between the two main therian groups: marsupials and eutherians. However, the developmental mechanisms underlying these diversifications are largely unknown. Here, we compared the neocortical transcriptomes of Sminthopsis crassicaudata, a mouse-sized marsupial, with those of eutherian mice at two developmentally equivalent time points corresponding to deeper and upper layer neuron generation. Enrichment analyses revealed more mature gene networks in marsupials at the early stage, which reverted at the later stage, suggesting a more precocious but protracted neuronal maturation program relative to birth timing of cortical layers. We ranked genes expressed in different species and identified important differences in gene expression rankings between species. For example, genes known to be enriched in upper-layer cortical projection neuron subtypes, such as Cux1, Lhx2 and Satb2, likely relate to corpus callosum emergence in eutherians. These results show molecular heterochronies of neocortical development in Theria, and highlight changes in gene expression and cell type composition that may underlie neocortical evolution and diversification. This article has an associated 'The people behind the papers' interview.


Subject(s)
Biological Evolution , Eutheria/growth & development , Marsupialia/growth & development , Neocortex/growth & development , Transcriptome , Animals , Eutheria/classification , Eutheria/genetics , Marsupialia/classification , Marsupialia/genetics , Mice , Neocortex/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37950874

ABSTRACT

Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as a vital fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.


Subject(s)
White Matter , Animals , Humans , White Matter/diagnostic imaging , Brain , Corpus Callosum/diagnostic imaging , Corpus Callosum/physiology , Thalamus/diagnostic imaging , Macaca mulatta , Mammals
5.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38300178

ABSTRACT

Obesity has been linked to abnormal frontal function, including the white matter fibers of anterior portion of the corpus callosum, which is crucial for information exchange within frontal cortex. However, alterations in white matter anatomical connectivity between corpus callosum and cortical regions in patients with obesity have not yet been investigated. Thus, we enrolled 72 obese and 60 age-/gender-matched normal weight participants who underwent clinical measurements and diffusion tensor imaging. Probabilistic tractography with connectivity-based classification was performed to segment the corpus callosum and quantify white matter anatomical connectivity between subregions of corpus callosum and cortical regions, and associations between corpus callosum-cortex white matter anatomical connectivity and clinical behaviors were also assessed. Relative to normal weight individuals, individuals with obesity exhibited significantly greater white matter anatomical connectivity of corpus callosum-orbitofrontal cortex, which was positively correlated with body mass index and self-reported disinhibition of eating behavior, and lower white matter anatomical connectivity of corpus callosum-prefrontal cortex, which was significantly negatively correlated with craving for high-calorie food cues. The findings show that alterations in white matter anatomical connectivity between corpus callosum and frontal regions involved in reward and executive control are associated with abnormal eating behaviors.


Subject(s)
Corpus Callosum , White Matter , Humans , Corpus Callosum/diagnostic imaging , Brain , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , Obesity/diagnostic imaging
6.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38436465

ABSTRACT

Alzheimer's disease (AD) is associated with functional disruption in gray matter (GM) and structural damage to white matter (WM), but the relationship to functional signal in WM is unknown. We performed the functional connectivity (FC) and graph theory analysis to investigate abnormalities of WM and GM functional networks and corpus callosum among different stages of AD from a publicly available dataset. Compared to the controls, AD group showed significantly decreased FC between the deep WM functional network (WM-FN) and the splenium of corpus callosum, between the sensorimotor/occipital WM-FN and GM visual network, but increased FC between the deep WM-FN and the GM sensorimotor network. In the clinical groups, the global assortativity, modular interaction between occipital WM-FN and visual network, nodal betweenness centrality, degree centrality, and nodal clustering coefficient in WM- and GM-FNs were reduced. However, modular interaction between deep WM-FN and sensorimotor network, and participation coefficients of deep WM-FN and splenium of corpus callosum were increased. These findings revealed the abnormal integration of functional networks in different stages of AD from a novel WM-FNs perspective. The abnormalities of WM functional pathways connect downward to the corpus callosum and upward to the GM are correlated with AD.


Subject(s)
Alzheimer Disease , White Matter , Humans , Alzheimer Disease/diagnostic imaging , White Matter/diagnostic imaging , Cerebral Cortex , Corpus Callosum/diagnostic imaging , Gray Matter/diagnostic imaging
7.
Cell Mol Life Sci ; 81(1): 346, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134808

ABSTRACT

In people with multiple sclerosis (MS), newborn and surviving oligodendrocytes (OLs) can contribute to remyelination, however, current therapies are unable to enhance or sustain endogenous repair. Low intensity repetitive transcranial magnetic stimulation (LI-rTMS), delivered as an intermittent theta burst stimulation (iTBS), increases the survival and maturation of newborn OLs in the healthy adult mouse cortex, but it is unclear whether LI-rTMS can promote remyelination. To examine this possibility, we fluorescently labelled oligodendrocyte progenitor cells (OPCs; Pdgfrα-CreER transgenic mice) or mature OLs (Plp-CreER transgenic mice) in the adult mouse brain and traced the fate of each cell population over time. Daily sessions of iTBS (600 pulses; 120 mT), delivered during cuprizone (CPZ) feeding, did not alter new or pre-existing OL survival but increased the number of myelin internodes elaborated by new OLs in the primary motor cortex (M1). This resulted in each new M1 OL producing ~ 471 µm more myelin. When LI-rTMS was delivered after CPZ withdrawal (during remyelination), it significantly increased the length of the internodes elaborated by new M1 and callosal OLs, increased the number of surviving OLs that supported internodes in the corpus callosum (CC), and increased the proportion of axons that were myelinated. The ability of LI-rTMS to modify cortical neuronal activity and the behaviour of new and surviving OLs, suggests that it may be a suitable adjunct intervention to enhance remyelination in people with MS.


Subject(s)
Cuprizone , Demyelinating Diseases , Myelin Sheath , Oligodendroglia , Remyelination , Transcranial Magnetic Stimulation , Animals , Transcranial Magnetic Stimulation/methods , Oligodendroglia/metabolism , Demyelinating Diseases/therapy , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Mice , Myelin Sheath/metabolism , Disease Models, Animal , Mice, Transgenic , Motor Cortex/pathology , Motor Cortex/metabolism , Cell Survival , Mice, Inbred C57BL , Multiple Sclerosis/therapy , Multiple Sclerosis/pathology
8.
J Physiol ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129269

ABSTRACT

It is a paradox of neurological rehabilitation that, in an era in which preclinical models have produced significant advances in our mechanistic understanding of neural plasticity, there is inadequate support for many therapies recommended for use in clinical practice. When the goal is to estimate the probability that a specific form of therapy will have a positive clinical effect, the integration of mechanistic knowledge (concerning 'the structure or way of working of the parts in a natural system') may improve the quality of inference. This is illustrated by analysis of three contemporary approaches to the rehabilitation of lateralized dysfunction affecting people living with stroke: constraint-induced movement therapy; mental practice; and mirror therapy. Damage to 'cross-road' regions of the structural (white matter) brain connectome generates deficits that span multiple domains (motor, language, attention and verbal/spatial memory). The structural integrity of these regions determines not only the initial functional status, but also the response to therapy. As structural disconnection constrains the recovery of functional capability, 'disconnectome' modelling provides a basis for personalized prognosis and precision rehabilitation. It is now feasible to refer a lesion delineated using a standard clinical scan to a (dis)connectivity atlas derived from the brains of other stroke survivors. As the individual disconnection pattern thus obtained suggests the functional domains most likely be compromised, a therapeutic regimen can be tailored accordingly. Stroke is a complex disorder that burdens individuals with distinct constellations of brain damage. Mechanistic knowledge is indispensable when seeking to ameliorate the behavioural impairments to which such damage gives rise.

9.
Neuroimage ; 299: 120844, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39260781

ABSTRACT

Congenital blindness offers a unique opportunity to investigate human brain plasticity. The influence of congenital visual loss on the asymmetry of the structural network remains poorly understood. To address this question, we recruited 21 participants with congenital blindness (CB) and 21 age-matched sighted controls (SCs). Employing diffusion and structural magnetic resonance imaging, we constructed hemispheric white matter (WM) networks using deterministic fiber tractography and applied graph theory methodologies to assess topological efficiency (i.e., network global efficiency, network local efficiency, and nodal local efficiency) within these networks. Statistical analyses revealed a consistent leftward asymmetry in global efficiency across both groups. However, a different pattern emerged in network local efficiency, with the CB group exhibiting a symmetric state, while the SC group showed a leftward asymmetry. Specifically, compared to the SC group, the CB group exhibited a decrease in local efficiency in the left hemisphere, which was caused by a reduction in the nodal properties of some key regions mainly distributed in the left occipital lobe. Furthermore, interhemispheric tracts connecting these key regions exhibited significant structural changes primarily in the splenium of the corpus callosum. This result confirms the initial observation that the reorganization in asymmetry of the WM network following congenital visual loss is associated with structural changes in the corpus callosum. These findings provide novel insights into the neuroplasticity and adaptability of the brain, particularly at the network level.


Subject(s)
Blindness , Diffusion Tensor Imaging , Neuronal Plasticity , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Male , Female , Neuronal Plasticity/physiology , Adult , Blindness/congenital , Blindness/physiopathology , Blindness/diagnostic imaging , Blindness/pathology , Young Adult , Diffusion Tensor Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology , Magnetic Resonance Imaging , Adolescent , Sensory Deprivation/physiology
10.
Neurobiol Dis ; 193: 106455, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408685

ABSTRACT

White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively. DTI is particularly valuable in unpinning structural tract connectivity defects of neural networks in NDDs. In this study, we used 3D DTI to unveil brain-specific tract defects in two mouse models lacking the Nr2f1 gene, which mutations in patients have been proven to cause an emerging NDD, called Bosch-Boonstra-Schaaf Optic Atrophy (BBSOAS). We aimed to investigate the impact of the lack of cortical Nr2f1 function on WM morphometry and tract microstructure quantifications. We found in both mutant mice partial loss of fibers and severe misrouting of the two major cortical commissural tracts, the corpus callosum, and the anterior commissure, as well as the two major hippocampal efferent tracts, the post-commissural fornix, and the ventral hippocampal commissure. DTI tract malformations were supported by 2D histology, 3D fluorescent imaging, and behavioral analyses. We propose that these interhemispheric connectivity impairments are consistent in explaining some cognitive defects described in BBSOAS patients, particularly altered information processing between the two brain hemispheres. Finally, our results highlight 3DDTI as a relevant neuroimaging modality that can provide appropriate morphometric biomarkers for further diagnosis of BBSOAS patients.


Subject(s)
Optic Atrophy , White Matter , Humans , Mice , Animals , Diffusion Tensor Imaging , White Matter/diagnostic imaging , White Matter/pathology , Brain , Magnetic Resonance Imaging , Optic Atrophy/pathology
11.
Am J Hum Genet ; 108(5): 951-961, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33894126

ABSTRACT

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ßIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ßIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.


Subject(s)
Agenesis of Corpus Callosum/genetics , Cerebellum/abnormalities , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Adult , Agenesis of Corpus Callosum/diagnostic imaging , Cerebellum/diagnostic imaging , Child , Child, Preschool , Female , Humans , Hydrolases/chemistry , Hydrolases/genetics , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Male , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Models, Molecular , Neurodevelopmental Disorders/diagnostic imaging , Tubulin/metabolism , Young Adult
12.
Am J Hum Genet ; 108(6): 1069-1082, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34022130

ABSTRACT

BCAS3 microtubule-associated cell migration factor (BCAS3) is a large, highly conserved cytoskeletal protein previously proposed to be critical in angiogenesis and implicated in human embryogenesis and tumorigenesis. Here, we established BCAS3 loss-of-function variants as causative for a neurodevelopmental disorder. We report 15 individuals from eight unrelated families with germline bi-allelic loss-of-function variants in BCAS3. All probands share a global developmental delay accompanied by pyramidal tract involvement, microcephaly, short stature, strabismus, dysmorphic facial features, and seizures. The human phenotype is less severe compared with the Bcas3 knockout mouse model and cannot be explained by angiogenic defects alone. Consistent with being loss-of-function alleles, we observed absence of BCAS3 in probands' primary fibroblasts. By comparing the transcriptomic and proteomic data based on probands' fibroblasts with those of the knockout mouse model, we identified similar dysregulated pathways resulting from over-representation analysis, while the dysregulation of some proposed key interactors could not be confirmed. Together with the results from a tissue-specific Drosophila loss-of-function model, we demonstrate a vital role for BCAS3 in neural tissue development.


Subject(s)
Loss of Function Mutation , Loss of Heterozygosity , Neoplasm Proteins/genetics , Neurodevelopmental Disorders/etiology , Adolescent , Adult , Animals , Cell Movement , Child , Child, Preschool , Drosophila , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Infant , Male , Mice , Mice, Knockout , Neoplasm Proteins/metabolism , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Pedigree , Proteome/analysis , Young Adult
13.
Hum Brain Mapp ; 45(1): e26568, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224539

ABSTRACT

White matter hyperintensities (WMH) are a radiological manifestation of progressive white matter integrity loss. The total volume and distribution of WMH within the corpus callosum have been associated with pathological cognitive ageing processes but have not been considered in relation to post-stroke aphasia outcomes. We investigated the contribution of both the total volume of WMH, and the extent of WMH lesion load in the corpus callosum to the recovery of language after first-ever stroke. Behavioural and neuroimaging data from individuals (N = 37) with a left-hemisphere stroke were included at the early subacute stage of recovery. Spoken language comprehension and production abilities were assessed using word and sentence-level tasks. Neuroimaging data was used to derive stroke lesion variables (volume and lesion load to language critical regions) and WMH variables (WMH volume and lesion load to three callosal segments). WMH volume did not predict variance in language measures, when considered together with stroke lesion and demographic variables. However, WMH lesion load in the forceps minor segment of the corpus callosum explained variance in early subacute comprehension abilities (t = -2.59, p = .01) together with corrected stroke lesion volume and socio-demographic variables. Premorbid WMH lesions in the forceps minor were negatively associated with early subacute language comprehension after aphasic stroke. This negative impact of callosal WMH on language is consistent with converging evidence from pathological ageing suggesting that callosal WMH disrupt the neural networks supporting a range of cognitive functions.


Subject(s)
Aphasia , Stroke , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Aphasia/diagnostic imaging , Aphasia/etiology , Cognition , Stroke/complications , Stroke/diagnostic imaging , Stroke/pathology , Aging , Magnetic Resonance Imaging
14.
Hum Brain Mapp ; 45(3): e26629, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38379508

ABSTRACT

The corpus callosum (CC) is the principal white matter bundle supporting communication between the two brain hemispheres. Despite its importance, a comprehensive mapping of callosal connections is still lacking. Here, we constructed the first bidirectional population-based callosal connectional atlas between the midsagittal section of the CC and the cerebral cortex of the human brain by means of diffusion-weighted imaging tractography. The estimated connectional topographic maps within this atlas have the most fine-grained spatial resolution, demonstrate histological validity, and were reproducible in two independent samples. This new resource, a complete and comprehensive atlas, will facilitate the investigation of interhemispheric communication and come with a user-friendly companion online tool (CCmapping) for easy access and visualization of the atlas.


Subject(s)
Cerebral Cortex , Corpus Callosum , Humans , Young Adult , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Diffusion Magnetic Resonance Imaging/methods , Brain , Brain Mapping/methods
15.
Mov Disord ; 39(2): 400-410, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314870

ABSTRACT

BACKGROUND: Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE: The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS: We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS: Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS: A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dyskinesias , Movement Disorders , Male , Female , Humans , Netrin-1/genetics , DCC Receptor/genetics , Movement Disorders/genetics , Mutation, Missense/genetics , Rho Guanine Nucleotide Exchange Factors/genetics
16.
J Magn Reson Imaging ; 59(3): 998-1007, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37334908

ABSTRACT

BACKGROUND: Carotid stenosis, even in the clinically asymptomatic stage, causes cognitive impairment, silent lesions, and hemispheric changes. The corpus callosum (CC) is crucial for hemispheric cortical integration and specialization. PURPOSE: To examine if CC morphology and connectivity relate to cognitive decline and lesion burden in asymptomatic carotid stenosis (ACS). STUDY TYPE: Retrospective, cross-sectional. POPULATION: 33 patients with unilaterally severe (70%) ACS and 28 demographically and comorbidity-matched controls. A publicly available healthy adult lifespan (ages between 18 and 80; n = 483) MRI dataset was also included. FIELD STRENGTH/SEQUENCE: A 3.0 T; T1 MPRAGE and diffusion weighted gradient echo-planar imaging sequences. ASSESSMENT: Structural MRI and multidomain cognitive data were obtained. Midsagittal CC area, circularity, thickness, integrity, and probabilistic tractography were calculated and correlated with cognitive tests and white matter hyperintensity. Fractional anisotropy, mean diffusivity (MD), and radial diffusivity were determined from DTI. STATISTICAL TESTS: Independent two-sample t-tests, χ2 tests, Mann-Whitney U, locally weighted scatterplot smoothing (LOWESS) curve fit, and Pearson correlation. A P value < 0.05 was considered statistically significant. RESULTS: Patients with ACS demonstrated significant reductions in callosal area, circularity, and thickness compared to controls. The callosal atrophy was significantly correlated with white matter hyperintensity size (r = -0.629, P < 0.001). Voxel-wise analysis of diffusion measures in the volumetric CC showed that ACS patients exhibited significantly lower fractional anisotropy and higher MD and radial diffusivity in the genu and splenium of the CC than controls. Further lifespan trajectory analysis showed that although the midsagittal callosal area, circularity, and thickness exhibited age-related decreases, the values in the ACS patients were significantly lower in all age groups. DATA CONCLUSION: Midsagittal callosal atrophy and connectivity reflect the load of silent lesions and the severity of cognitive decline, respectively, suggesting that CC degeneration has potential to serve as an early marker in ACS. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Carotid Stenosis , Adult , Humans , Adolescent , Young Adult , Middle Aged , Aged , Aged, 80 and over , Carotid Stenosis/pathology , Cross-Sectional Studies , Retrospective Studies , Corpus Callosum , Atrophy/pathology
17.
Am J Med Genet A ; 194(3): e63463, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37932938

ABSTRACT

MAPK-activating death domain protein (MADD) deficiency is associated with a broad clinical spectrum ranging from mild developmental impairment to fatal multisystem disorder. We report an additional case of severe form with some overlapping and unreported systemic features in a growth-restricted full-term male newborn. The novel findings include corpus callosum agenesis, bilateral adrenal agenesis, scrotal aplasia, and abnormal skin pigmentation. Microscopic changes are only remarkable in thyroid gland that shows decreased, variously sized follicles with absent or non-vacuolated pale colloid. This unique constellation of birth defects is associated with a novel homozygous in-frame MADD gene deletion (NM_003682.4: c.4853_4855delGCT:p.Cys1618del). This case report expands the phenotypic and genetic spectrum of MADD deficiency.


Subject(s)
Agenesis of Corpus Callosum , Guanine Nucleotide Exchange Factors , Infant, Newborn , Humans , Male , Death Domain , Guanine Nucleotide Exchange Factors/genetics , Death Domain Receptor Signaling Adaptor Proteins/genetics
18.
Am J Med Genet A ; 194(8): e63614, 2024 08.
Article in English | MEDLINE | ID: mdl-38562108

ABSTRACT

Sonic hedgehog signaling molecule (SHH) is a key molecule in the cilia-mediated signaling pathway and a critical morphogen in embryogenesis. The association between loss-of-function variants of SHH and holoprosencephaly is well established. In mice experiments, reduced or increased signaling of SHH have been shown to be associated with narrowing or excessive expansion of the facial midline, respectively. Herein, we report two unrelated patients with de novo truncating variants of SHH presenting with hypertelorism rather than hypotelorism. The first patient was a 13-year-old girl. Her facial features included hypertelorism, strabismus, telecanthus, malocclusion, frontal bossing, and wide widow's peak. She had borderline developmental delay and agenesis of the corpus callosum. She had a nonsense variant of SHH: Chr7(GRCh38):g.155802987C > T, NM_000193.4:c.1302G > A, p.(Trp434*). The second patient was a 25-year-old girl. Her facial features included hypertelorism and wide widow's peak. She had developmental delay and agenesis of the corpus callosum. She had a frameshift variant of SHH: Chr7(GRCh38):g.155803072_155803074delCGGinsT, NM_000193.4:c.1215_1217delCCGinsA, p.(Asp405Glufs*92). The hypertelorism phenotype contrasts sharply with the prototypical hypotelorism-holoprosencephaly phenotype associated with loss-of-function of SHH. We concluded that a subset of truncating variants of SHH could be associated with hypertelorism rather than hypotelorism.


Subject(s)
Hedgehog Proteins , Holoprosencephaly , Hypertelorism , Phenotype , Humans , Hedgehog Proteins/genetics , Female , Holoprosencephaly/genetics , Holoprosencephaly/pathology , Adolescent , Hypertelorism/genetics , Hypertelorism/pathology , Adult , Mutation/genetics
19.
Am J Med Genet A ; 194(8): e63621, 2024 08.
Article in English | MEDLINE | ID: mdl-38567931

ABSTRACT

GATA2 and ZNF148 have both been mapped to chromosome 3q. Pathogenic variants in GATA2 have been associated with immunodeficiency and high risk for myelodysplasia, acute myeloid leukemia, and chronic myelomonocytic leukemia. Gain-of-function variants in ZNF148 have previously been suggested as a mechanism for agenesis of the corpus callosum (ACC). Here, we report a novel 10.4 Mb interstitial deletion on 3q12.33q22.1 including GATA2 and ZNF148 in a child with developmental delay, agenesis of the corpus callosum, and vertebral segmentation defects. With this diagnosis, we were able to suggest preemptive referrals to hematology/oncology and allergy/immunology for close monitoring of early myelodysplasia. We also propose a possible link between ZNF148 loss of function variants and ACC.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 3 , GATA2 Transcription Factor , Transcription Factors , Humans , GATA2 Transcription Factor/genetics , Chromosomes, Human, Pair 3/genetics , Transcription Factors/genetics , Male , DNA-Binding Proteins/genetics , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/pathology , Female , Developmental Disabilities/genetics , Developmental Disabilities/pathology
20.
Cogn Neuropsychol ; : 1-23, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38942485

ABSTRACT

We present a case study detailing cognitive performance, functional neuroimaging, and effects of a hypothesis-driven treatment in a 10-year-old girl diagnosed with complete, isolated corpus callosum agenesis. Despite having average overall intellectual abilities, the girl exhibited profound surface dyslexia and dysgraphia. Spelling treatment significantly and persistently improved her spelling of trained irregular words, and this improvement generalized to reading accuracy and speed of trained words. Diffusion weighted imaging revealed strengthened intrahemispheric white matter connectivity of the left temporal cortex after treatment and identified interhemispheric connectivity between the occipital lobes, likely facilitated by a pathway crossing the midline via the posterior commissure. This case underlines the corpus callosum's critical role in lexical reading and writing. It demonstrates that spelling treatment may enhance interhemispheric connectivity in corpus callosum agenesis through alternative pathways, boosting the development of a more efficient functional organization of the visual word form area within the left temporo-occipital cortex.

SELECTION OF CITATIONS
SEARCH DETAIL