Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 84(2): 277-292.e9, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38183983

ABSTRACT

iRhoms are pseudoprotease members of the rhomboid-like superfamily and are cardinal regulators of inflammatory and growth factor signaling; they function primarily by recognizing transmembrane domains of their clients. Here, we report a mechanistically distinct nuclear function of iRhoms, showing that both human and mouse iRhom2 are non-canonical substrates of signal peptidase complex (SPC), the protease that removes signal peptides from secreted proteins. Cleavage of iRhom2 generates an N-terminal fragment that enters the nucleus and modifies the transcriptome, in part by binding C-terminal binding proteins (CtBPs). The biological significance of nuclear iRhom2 is indicated by elevated levels in skin biopsies of patients with psoriasis, tylosis with oesophageal cancer (TOC), and non-epidermolytic palmoplantar keratoderma (NEPPK); increased iRhom2 cleavage in a keratinocyte model of psoriasis; and nuclear iRhom2 promoting proliferation of keratinocytes. Overall, this work identifies an unexpected SPC-dependent ER-to-nucleus signaling pathway and demonstrates that iRhoms can mediate nuclear signaling.


Subject(s)
Psoriasis , Signal Transduction , Animals , Humans , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Psoriasis/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
2.
Cancer Sci ; 115(5): 1492-1504, 2024 May.
Article in English | MEDLINE | ID: mdl-38476086

ABSTRACT

Long noncoding RNAs (lncRNAs) have emerged as important molecules and potential new targets for human cancers. This study investigates the function of lncRNA CTBP1 antisense RNA (CTBP1-AS) in prostate cancer (PCa) and explores the entailed molecular mechanism. Aberrantly expressed genes potentially correlated with PCa progression were probed using integrated bioinformatics analyses. A cohort of 68 patients with PCa was included, and their tumor and para-cancerous tissues were collected. CTBP1-AS was highly expressed in PCa tissues and cells and associated with poor patient prognosis. By contrast, tumor protein p63 (TP63) and S100 calcium binding protein A14 (S100A14) were poorly expressed in the PCa tissues and cells. CTBP1-AS did not affect TP63 expression; however it blocked the TP63-mediated transcriptional activation of S100A14, thereby reducing its expression. CTBP1-AS silencing suppressed proliferation, apoptosis resistance, migration, invasion, and tumorigenicity of PCa cell lines, while its overexpression led to inverse results. The malignant phenotype of cells was further weakened by TP63 overexpression but restored following artificial S100A14 silencing. In conclusion, this study demonstrates that CTBP1-AS plays an oncogenic role in PCa by blocking TP63-mediated transcriptional activation of S100A14. This may provide insight into the management of PCa.


Subject(s)
Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , RNA, Long Noncoding , Transcription Factors , Tumor Suppressor Proteins , Animals , Humans , Male , Mice , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
3.
Biochem Biophys Res Commun ; 728: 150314, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-38959528

ABSTRACT

BACKGROUND: Breast cancer ranks among the most prevalent tumor types worldwide. Copy number amplification of chromosome 8q24 is frequently detected in breast cancer. ZNF623 is a relatively unexplored gene mapped to 8q24. Here, we explore the expression profile, prognostic significance, and biological action of ZNF623 in breast carcinogenesis. METHODS: To evaluate the mRNA expression pattern and prognostic relevance of ZNF623 across different cancer types, we conducted bioinformatic analyses. The expression of the gene was suppressed using ZNF623 shRNAs/siRNAs and augmented through transfection with plasmids containing ZNF623 cDNA. Cell viability assay, clonogenic assay, and transwell migration assay were utilized to assess the proliferation, viability, and invasion capacity of breast cancer cell lines. Luciferase reporter assay served as a pivotal tool to ascertain the transcriptional activity of ZNF623. IP-MS and co-IP were employed to validate that ZNF623 interacted with CtBP1. ChIP analysis and ChIP-qPCR were conducted to assess the genes targeted by ZNF623/CtBP1 complex. Flow cytometry was conducted to evaluate the phosphorylation status of p65. RESULTS: ZNF623 expression was notably elevated in breast cancer (BC). Prognostic analysis indicated higher expression of ZNF623 indicated worse survival. Functional experiments discovered that the upregulation of ZNF623 significantly enhanced both the proliferative and migratory capacities of breast cancer cells. Luciferase reporter assay indicated that ZNF623 was a transcription repressor. Immunoprecipitation coupled mass spectrometry analysis revealed a physical association between ZNF623 and CtBP1 in the interaction group. The conjoint analysis of ChIP-seq and TCGA DEG analysis revealed that the ZNF623/CtBP1 complex repressed a series of genes, such as negative regulation of the NF-kappaB signaling pathway. Flow cytometry analysis discovered that knockdown of ZNF623 decreased the phosphorylation level of p65, indicating that ZNF623 could regulate the activity of the NF-κB pathway. CONCLUSION: ZNF623 predicts poor prognosis of BC and enhances breast cancer growth and metastasis. By recruiting CtBP1, ZNF623 could suppress NF-κB inhibitors, including COMMD1, NFKBIL1, PYCARD, and BRMS1, expression from the transcription level.


Subject(s)
Alcohol Oxidoreductases , Breast Neoplasms , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins , NF-kappa B , Nuclear Proteins , Phosphoproteins , Female , Humans , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , NF-kappa B/metabolism , Prognosis , Signal Transduction , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
4.
Cytokine ; 173: 156436, 2024 01.
Article in English | MEDLINE | ID: mdl-37979214

ABSTRACT

Failure of bone healing after fracture often results in nonunion, but the underlying mechanism of nonunion pathogenesis is poorly understood. Herein, we provide evidence to clarify that the inflammatory microenvironment of atrophic nonunion (AN) mice suppresses the expression levels of DNA methyltransferases 2 (DNMT2) and 3A (DNMT3a), preventing the methylation of CpG islands on the promoters of C-terminal binding protein 1/2 (CtBP1/2) and resulting in their overexpression. Increased CtBP1/2 acts as transcriptional corepressors that, along with histone acetyltransferase p300 and Runt-related transcription factor 2 (Runx2), suppress the expression levels of six genes involved in bone healing: BGLAP (bone gamma-carboxyglutamate protein), ALPL (alkaline phosphatase), SPP1 (secreted phosphoprotein 1), COL1A1 (collagen 1a1), IBSP (integrin binding sialoprotein), and MMP13 (matrix metallopeptidase 13). We also observe a similar phenomenon in osteoblast cells treated with proinflammatory cytokines or treated with a DNMT inhibitor (5-azacytidine). Forced expression of DNMT2/3a or blockage of CtBP1/2 with their inhibitors can reverse the expression levels of BGLAP/ALPL/SPP1/COL1A1/IBSP/MMP13 in the presence of proinflammatory cytokines. Administration of CtBP1/2 inhibitors in fractured mice can prevent the incidence of AN. Thus, we demonstrate that the downregulation of bone healing genes dependent on proinflammatory cytokines/DNMT2/3a/CtBP1/2-p300-Runx2 axis signaling plays a critical role in the pathogenesis of AN. Disruption of this signaling may represent a new therapeutic strategy to prevent AN incidence after bone fracture.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Cytokines , DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Fracture Healing , Animals , Mice , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Cytokines/metabolism , Matrix Metalloproteinase 13/metabolism , Methyltransferases/metabolism , Osteoblasts/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Fracture Healing/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A/genetics , DNA Methyltransferase 3A/metabolism
5.
Immunopharmacol Immunotoxicol ; 46(3): 385-394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622049

ABSTRACT

CONTEXT: Hemangioma (HA) is a benign vascular neoplasm that can lead to permanent scarring. C-C motif chemokine ligand 2 (CCL2) plays a crucial role in facilitating growth and angiogenesis during HA progression. However, the mechanism regulating CCL2 in HA remains poorly elucidated. OBJECTIVE: To elucidate the mechanism regulating CCL2 in HA. METHODS: Quantitative real-time polymerase chain reaction (RT-qPCR) was employed to determine the expression levels of CCL2, long noncoding RNA (lncRNA) CTBP1 divergent transcript (CTBP1-AS2), and microRNAs (miRNAs). Proliferation, migration, invasion, and angiogenic abilities of human HA endothelial cells (HemECs) were assessed using cell counting kit-8 (CCK-8), colony formation, flow cytometry, transwell, and tube formation assays. Bioinformatics analysis, RNA pull-down, and luciferase reporter assays were conducted to investigate whether CCL2 targets miR-335-5p. Additionally, rescue experiments were performed in this study. RESULTS: CCL2 expression was markedly upregulated in HemECs. CCL2 promoted HA cell proliferation, migration, invasion, and angiogenesis while inhibiting apoptosis. CCL2 was directly targeted by miR-335-5p. Additionally, we found that CTBP1-AS2 could function as a competing endogenous RNA (ceRNA) to sponge miR-335-5p, thereby upregulating CCL2. CONCLUSION: Our findings suggest that targeting the CTBP1-AS2/miR-335-5p/CCL2 axis may hold promise as a therapeutic strategy for HA.


Subject(s)
Chemokine CCL2 , Hemangioma , MicroRNAs , Neovascularization, Pathologic , Humans , MicroRNAs/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Hemangioma/genetics , Hemangioma/pathology , Hemangioma/metabolism , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/biosynthesis , Alcohol Oxidoreductases/genetics , Cell Proliferation/physiology , Cell Movement/genetics , Disease Progression , RNA, Long Noncoding/genetics , DNA-Binding Proteins/genetics , Angiogenesis
6.
Lab Invest ; 103(8): 100180, 2023 08.
Article in English | MEDLINE | ID: mdl-37230466

ABSTRACT

Hepatocellular carcinoma (HCC) remains a significant health burden globally due to its high prevalence and morbidity. C-terminal-binding protein 1 (CTBP1) is a transcriptional corepressor that modulates gene transcription by interacting with transcription factors or chromatin-modifying enzymes. High CTBP1 expression has been associated with the progression of various human cancers. In this study, bioinformatics analysis suggested the existence of a CTBP1/histone deacetylase 1 (HDAC1)/HDAC2 transcriptional complex that regulates the expression of methionine adenosyltransferase 1A (MAT1A), whose loss has been associated with ferroptosis suppression and HCC development. Thus, this study aims to investigate the interactions between the CTBP1/HDAC1/HDAC2 complex and MAT1A and their roles in HCC progression. First, high expression of CTBP1 was observed in HCC tissues and cells, where it promoted HCC cell proliferation and mobility while inhibiting cell apoptosis. CTBP1 interacted with HDAC1 and HDAC2 to suppress the MAT1A transcription, and silencing of either HDAC1 or HDAC2 or overexpression of MAT1A led to the inhibition of cancer cell malignancy. In addition, MAT1A overexpression resulted in increased S-adenosylmethionine levels, which promoted ferroptosis of HCC cells directly or indirectly by increasing CD8+ T-cell cytotoxicity and interferon-γ production. In vivo, MAT1A overexpression suppressed growth of CTBP1-induced xenograft tumors in mice while enhancing immune activity and inducing ferroptosis. However, treatment with ferrostatin-1, a ferroptosis inhibitor, blocked the tumor-suppressive effects of MAT1A. Collectively, this study reveals that the CTBP1/HDAC1/HDAC2 complex-induced MAT1A suppression is liked to immune escape and reduced ferroptosis of HCC cells.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Transcription Factors , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Histone Deacetylase 2/metabolism
7.
Biochem Biophys Res Commun ; 650: 9-16, 2023 04 02.
Article in English | MEDLINE | ID: mdl-36764210

ABSTRACT

CTBP1 has been demonstrated as a co-repressor in the transcriptional regulation of downstream genes and is involved in various cell process. However, the mechanism of CTBP1 in the progression of prostate cancer is still unclear. Here, we aim to investigate how CTBP1 exerts its role in prostate cancer progression, especially how CTBP1 was regulated by the upstream genes. We found that CTBP1 was highly expressed in prostate cancer and promoted the cell viability, migration, invasion and glycolysis of prostate cancer cells. CDH1 was verified to be the target of CTBP1. We determined that CTBP1 could directly bind with SP1 to inhibit the transcription of CDH1. Moreover, succinylation of CTBP1 was found to be up-regulated in prostate cancer cell. Further studies demonstrated that KAT2A promotes the succinylation of CTBP1 and mediates the transcription suppressing activity of it. In addition, the K46 and K280 was confirmed to be the two sites that regulated by KAT2A. In vivo studies further indicated that CTBP1 could promote the growth of prostate cancer, and this effect of CTBP1 could be partially reversed by KAT2A knockdown. Taken together, we found that succinylation of CTBP1 mediated by KAT2A suppresses the inhibitory activity of CTBP1 on the transcription of CDH1, thus act as an oncogene.


Subject(s)
DNA-Binding Proteins , Prostatic Neoplasms , Humans , Male , Alcohol Oxidoreductases/metabolism , Antigens, CD , Cadherins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Histone Acetyltransferases/metabolism , Prostatic Neoplasms/genetics , Transcription Factors/metabolism
8.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762332

ABSTRACT

Innovative therapeutic strategies for esophageal squamous cell carcinoma (ESCC) are urgently required due to the limited effectiveness of standard chemotherapies. C-Terminal Binding Protein 1 (CtBP1) has been implicated in various cancers, including ESCC. However, the precise expression patterns and functional roles of CtBP1 in ESCC remain inadequately characterized. In this study, we aimed to investigate CtBP1 expression and its role in the resistance of ESCC to paclitaxel, an effective chemotherapeutic agent. Western blotting and immunofluorescence were applied to assess CtBP1 expression in the TE-1 and KYSE-50 cell lines. We observed the marked expression of CtBP1, which was associated with enhanced proliferation, invasion, and metastasis in these cell lines. Further, we successfully generated paclitaxel resistant ESCC cell lines and conducted cell viability assays. We employed the CRISPR/Cas9 genome editing system to disable the CtBP1 gene in ESCC cell lines. Through the analysis of the drug dose-response curve, we assessed the sensitivity of these cell lines in different treatment groups. Remarkably, CtBP1-disabled cell lines displayed not only improved sensitivity but also a remarkable inhibition of proliferation, invasion, and metastasis. This demonstrates that CtBP1 may promote ESCC cell malignancy and confer paclitaxel resistance. In summary, our study opens a promising avenue for targeted therapies, revealing the potential of CtBP1 inhibition to enhance the effectiveness of paclitaxel treatment for the personalized management of ESCC.

9.
Immunology ; 165(1): 88-98, 2022 01.
Article in English | MEDLINE | ID: mdl-34435359

ABSTRACT

B-cell development undergoes a series of steps from the bone marrow to the secondary lymphoid organs. A defect in B-cell development can lead to immunodeficiency or malignant disorders, such as leukaemia or lymphoma. Long non-coding RNAs have been reported to act as important regulators of many pathological processes. However, very little is known regarding the role of lncRNAs during B-cell development and the regulation of their expression. In this study, we explored the expression and role of lncRNA Gme00492 in B-cell development. We observed that lnc00492 was highly expressed in B-cell development and primarily expressed in the nucleus. Lnc00492-deficient mice had fewer marginal zone B cells in the spleen, likely due to a developmental block. Importantly, lnc00492 interacts with CTBP1 and targets it for ubiquitination and degradation during B-cell development, whereas the transcriptional corepressor factor CTBP1 plays a critical role in Notch2 signalling. Thus, we identified a novel regulatory axis between lnc00492 and CTBP1 in B cells, suggesting that lnc00492 is essential for marginal zone B-cell development.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation/genetics , Lymphopoiesis/genetics , RNA, Long Noncoding/genetics , Alcohol Oxidoreductases/metabolism , Animals , B-Lymphocytes/immunology , Biomarkers , Bone Marrow/immunology , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Differentiation/immunology , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Immunophenotyping , Mice , Mice, Knockout , Models, Biological , Protein Binding , Receptor, Notch2/metabolism , Signal Transduction , Spleen/cytology , Spleen/immunology , Spleen/metabolism , Ubiquitination
10.
J Cell Sci ; 133(15)2020 08 14.
Article in English | MEDLINE | ID: mdl-32661086

ABSTRACT

The pluripotency-associated transcriptional network is regulated by a core circuitry of transcription factors. The PR domain-containing protein PRDM14 maintains pluripotency by activating and repressing transcription in a target gene-dependent manner. However, the mechanisms underlying dichotomic switching of PRDM14-mediated transcriptional control remain elusive. Here, we identified C-terminal binding protein 1 and 2 (CtBP1 and CtBP2; generically referred to as CtBP1/2) as components of the PRDM14-mediated repressive complex. CtBP1/2 binding to PRDM14 depends on CBFA2T2, a core component of the PRDM14 complex. The loss of Ctbp1/2 impaired the PRDM14-mediated transcriptional repression required for pluripotency maintenance and transition from primed to naïve pluripotency. Furthermore, CtBP1/2 interacted with the PRC2 complexes, and the loss of Ctbp1/2 impaired Polycomb repressive complex 2 (PRC2) and H3K27me3 enrichment at target genes after Prdm14 induction. These results provide evidence that the target gene-dependent transcriptional activity of PRDM14 is regulated by partner switching to ensure the transition from primed to naïve pluripotency.This article has an associated First Person interview with the first author of the paper.


Subject(s)
DNA-Binding Proteins , Polycomb Repressive Complex 2 , Alcohol Oxidoreductases/genetics , Co-Repressor Proteins , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Humans , Polycomb Repressive Complex 2/metabolism , RNA-Binding Proteins , Transcription Factors
11.
Genes Chromosomes Cancer ; 60(9): 640-646, 2021 09.
Article in English | MEDLINE | ID: mdl-34041825

ABSTRACT

Gastroblastomas are rare tumors with a biphasic epithelioid/spindle cell morphology that typically present in early adulthood and have recurrent MALAT1-GLI1 fusions. We describe an adolescent patient with Wiskott-Aldrich syndrome who presented with a large submucosal gastric tumor with biphasic morphology. Despite histologic features consistent with gastroblastoma, a MALAT1-GLI1 fusion was not found in this patient's tumor; instead, comprehensive molecular profiling identified a novel EWSR1-CTBP1 fusion and no other significant genetic alterations. The tumor also overexpressed NOTCH and FGFR by RNA profiling. The novel fusion and expression profile suggest a role for epithelial-mesenchymal transition in this tumor, with potential implications for the pathogenesis of biphasic gastric tumors such as gastroblastoma.


Subject(s)
Alcohol Oxidoreductases/genetics , Carcinoma/genetics , DNA-Binding Proteins/genetics , Oncogene Proteins, Fusion/genetics , RNA-Binding Protein EWS/genetics , Stomach Neoplasms/genetics , Adolescent , Age of Onset , Carcinoma/pathology , Humans , Male , Stomach Neoplasms/pathology
12.
J Cell Physiol ; 236(1): 427-439, 2021 01.
Article in English | MEDLINE | ID: mdl-32583425

ABSTRACT

Increasing evidence suggests that long noncoding RNAs (lncRNAs) are pivotal regulators in oncogenesis. However, the role of numerous lncRNAs has never been unmasked in clear cell renal cell carcinoma (ccRCC). Presently, we investigated the function of long intergenic nonprotein coding RNA 1426 (LINC01426) in ccRCC, as The Cancer Genome Atlas data indicated that LINC01426 was highly expressed in ccRCC tissues and its overexpression was correlated with disappointing prognosis. First, we verified that LINC01426 was indeed upregulated in ccRCC cell lines and its depletion restrained ccRCC cell proliferation and migration. Besides, we proved that LINC01426 facilitated ccRCC tumorigenesis via forkhead box M1 (FOXM1). Moreover, it was revealed that miR-423-5p was downregulated and directly targeted FOXM1 in ccRCC, and that LINC01426 positively regulated FOXM1 via its inhibition on miR-423-5p. Notably, we also uncovered that miR-423-5p was transcriptionally silenced by CTBP1 and HDAC2. Of importance, LINC01426 was certified to distribute both in the cytoplasm and the nucleus of ccRCC cells, and it increased CTBP1 expression through recruiting insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) in cytoplasm whereas interacted with CTBP1 protein to improve the transcriptional repression on miR-423-5p in nucleus. Jointly, our observations unveiled that LINC01426 aggravates ccRCC progression via IGF2BP1/CTBP1/HDAC2/miR-423-5p/FOXM1 axis, highlighting LINC01426 as a novel promising target for ccRCC treatment.


Subject(s)
Alcohol Oxidoreductases/genetics , Carcinoma, Renal Cell/genetics , DNA-Binding Proteins/genetics , Forkhead Box Protein M1/genetics , Kidney Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , Animals , Apoptosis/genetics , Carcinogenesis/genetics , Cell Line , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Up-Regulation/genetics
13.
J Cell Mol Med ; 24(19): 11445-11456, 2020 10.
Article in English | MEDLINE | ID: mdl-32910558

ABSTRACT

The progression of lung cancer is majorly facilitated by TAMs (tumour-associated macrophages). However, how the TAMs infiltrate the NSCLC microenvironment and the associated biochemical are not fully elaborated. Research has revealed that changes in CtBP1 modulates innate immunity. Here, we investigated if CtBP1 facilitates infiltration of TAM and the subsequent progression of NSCLC. Immunohistochemical analysis was carried out in 96 NSCLC patients to estimate the clinicopathological importance of CtBP1 in the disease. CtBP1 overexpression and knockdown were carried out to assess the activity of CtBP1 in NSCLC cells. Elevated expression of CtBP1 correlated positively with TAMs infiltration into NSCLC tissues, induced EMT (epithelial-mesenchymal transition) in NSCLC cells and modulated the activated NF-κB signalling pathway leading to increase in CCL2 secretion from NSCLC cells, thus promoting TAM recruitment and polarization. TAM induction and polarization reduced significantly on exhausting p65 in NSCLC cells with CtBP1. Moreover, infiltration of TMAs was reduced remarkably on antagonist-mediated blocking of CCR2 and impeded the progression of NSCLC in a mouse model. These findings thus show a novel insight into the process of CtBP1-regulated TAM infiltration in NSCLC.


Subject(s)
Alcohol Oxidoreductases/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , DNA-Binding Proteins/metabolism , Disease Progression , Lung Neoplasms/pathology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Polarity/genetics , Cell Proliferation/genetics , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Multivariate Analysis , NF-kappa B/metabolism , Neoplasm Invasiveness , Prognosis , Survival Analysis , Up-Regulation/genetics
14.
Biochem Cell Biol ; 98(6): 661-668, 2020 12.
Article in English | MEDLINE | ID: mdl-33150795

ABSTRACT

Glioma is one of the most common and aggressive malignant primary brain tumors, with a poor 5-year survival rate. The long noncoding RNA (lncRNA) CTBP1-AS2 has been shown to be correlated with the prognosis of cancer, but the role of CTBP1-AS2 in glioma and its concrete mechanism is fully unknown. The clinical data and tissues of glioma patients were analyzed. Cell viability and migration assays were performed. Western blotting and qRT-PCR were adopted for investigation of target protein expressions. Double luciferase assay was used to investigate the interaction between different elements. The lncRNA CTBP1-AS2 had increased expression profiles in tumor tissues, which is associated with poor prognosis. In detail, CTBP1-AS2 knockdown decreased proliferation and migration phenotypes in both U87-MG and LN229 cells. Moreover, CTBP1-AS2 knockdown suppressed the key epithelial-mesenchymal transition (EMT) markers by downregulating Wnt7a-mediated signaling. Furthermore, miR-370-3p functioned as a link that could be absorbed by CTBP1-AS2, thus regulating Wnt7a expression. Lastly, the CTBP1-AS2-miR-370-3p-Wnt7a axis modulated EMT in glioma cells in vitro and in vivo. This study provides new insights that a novel lncRNA, CTBP1-AS2, regulates EMT of glioma by modulating the miR-370-3p-Wnt7a axis.


Subject(s)
Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Glioma/metabolism , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , RNA, Long Noncoding/metabolism , RNA, Neoplasm/metabolism , Wnt Proteins/metabolism , Cell Line, Tumor , Glioma/genetics , Glioma/pathology , Humans , MicroRNAs/genetics , Neoplasm Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Neoplasm/genetics , Wnt Proteins/genetics
15.
Biochem Biophys Res Commun ; 532(2): 308-314, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32868076

ABSTRACT

BACKGROUND: This study aimed to investigate the involvement of lncRNA CTBP1-AS2 in the progression of diabetic nephropathy (DN) by affecting high glucose (HG)-induced human glomerular mesangial cells (HGMCs). METHODS: HGMCs were selected for the establishment of cell injury induced by HG. The expression of CTBP1-AS2, miR-155-5p and FOXO1 was detected by real-time PCR and western blotting. The target association between miR-155-5p and CTBP1-AS2 or FOXO1 was confirmed by dual-luciferase reporter assays. Cell proliferation and oxidative stress were revealed by CCK-8 colorimetry, and the measurement of reactive oxygen species (ROS) and the activities of antioxidant enzymes. Extracellular matrix (ECM) protein accumulation and the production of inflammatory cytokines were investigated by western blotting and ELISA. RESULTS: The expression of CTBP1-AS2 was downregulated, and miR-155-5p was highly expressed in peripheral blood of DN patients and HG-treated HGMCs. Further investigation revealed that CTBP1-AS2 overexpression inhibited proliferation, oxidative stress, ECM accumulation and inflammatory response in HG-induced HGMCs. Mechanical analysis revealed that CTBP1-AS2 regulated FOXO1 expression via sponging miR-155-5p. Rescue experiments demonstrated that miR-155-5p overexpression or FOXO1 inhibition reversed the effects of CTBP1-AS2 in HG-stimulated HGMCs. CONCLUSION: Taken together, this study revealed CTBP1-AS2 attenuated HG-induced HGMC proliferation, oxidative stress, ECM accumulation, and inflammation through miR-155-5p/FOXO1 signaling.


Subject(s)
Diabetic Nephropathies/genetics , Glomerulonephritis/genetics , MicroRNAs/genetics , RNA, Long Noncoding/blood , Case-Control Studies , Cell Proliferation , Cells, Cultured , Diabetic Nephropathies/blood , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Regulatory Networks , Glomerulonephritis/pathology , Glucose/pharmacology , Humans , Mesangial Cells/drug effects , Mesangial Cells/pathology , Mesangial Cells/physiology , MicroRNAs/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , RNA, Long Noncoding/genetics , Reactive Oxygen Species/metabolism
16.
Biochem Biophys Res Commun ; 533(4): 779-785, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32988587

ABSTRACT

As reported in many research, LncRNA CTBP1 divergent transcript (CTBP1-AS2) remarkably affects the progression of several tumors. However, the precise role and function of CTBP1-AS2 in hepatocellular carcinoma (HCC) remained unknown. We found that CTBP1-AS2 expressions were increased in HCC samples and cells. After treatment with microwave ablation (MWA), CTBP1-AS2 was distinctly up-regulated in residual HCC tissues compared with HCC samples. CTBP1-AS2 was upregulated under the induction of the nuclear transcription factor SP1. As revealed by the clinical assays, high CTBP1-AS2 expression usually related to lymph node metastasis, clinical stage and weaker prognosis specific to HCC patients. Functionally, CTBP1-AS2 knockdown suppressed HCC cells in terms of the proliferation, migration, invasion, chemotherapy resistance as well as EMT progress, but promoted apoptosis. Mechanistically, CTBP1-AS2 was a sponge of miR-195-5p for elevating CEP55 expression, a target of miR-195-5p, and thereby exhibited its oncogenic roles in HCC progression. Overall, an emerging regulatory mechanism of SP1/CTBP1-AS2/miR-195-5p/CEP55 axis was reported in the paper, which possibly served as a new therapeutic HCC treatment target.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/physiology , Sp1 Transcription Factor/metabolism , Apoptosis , Carcinogenesis/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Neoplasm Invasiveness , Prognosis , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , Up-Regulation
17.
Cancer Cell Int ; 20: 343, 2020.
Article in English | MEDLINE | ID: mdl-32742190

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) play significant roles in tumorigenesis and can contribute to identification of novel therapeutic targets for cancers. This paper was aimed at exploring the role of CTBP1 divergent transcript (CTBP1-AS2) in cervical cancer (CC) progression. METHODS: qRT-PCR and western blot assays were used to detect relevant RNA and protein expressions. In vitro functional assays, including CCK8, EdU, TUNEL and transwell assays were applied to explore the functions of CTBP1-AS2 in CC cell proliferation, apoptosis and migration. In vivo animal study was utilized to investigate the role of CTBP1-AS2 in tumor growth. Luciferase reporter, RNA pull down and RIP assays were performed to determine the specific mechanical relationship between CTBP1-AS2, miR-3163 and ZNF217. RESULTS: CTBP1-AS2 was significantly overexpressed in CC cell lines. Knockdown of CTBP1-AS2 curbed cell proliferation, migration and invasion, while stimulated cell apoptosis in vitro. CTBP1-AS2 facilitated xenograft tumor growth in vivo. Cytoplasmic CTBP1-AS2 was found to be a miR-3163 sponge in CC cells. MiR-3163 inhibition abolished the anti-tumor effects of CTBP1-AS2 knockdown. Additionally, Zinc finger protein 217 (ZNF217) was identified as a direct target of miR-3163. CTBP1-AS2 acted as a miR-3163 sponge to elevate ZNF217 expression. ZNF217 up-regulation abrogated the tumor suppressing effects of CTBP1-AS2 knockdown. CONCLUSION: CTBP1-AS2 regulates CC progression via sponging miR-3163 to up-regulate ZNF217.

18.
Exp Mol Pathol ; 117: 104544, 2020 12.
Article in English | MEDLINE | ID: mdl-32976818

ABSTRACT

Long non-coding RNAs (lncRNAs) have been vastly investigated for their critical roles in the pathogenesis of breast cancer. Yet, the expression pattern and clinical significance of three lncRNAs namely CTBP1AS2, LINC-ROR and SPRY4-IT1 in breast cancer are not completely clarified. In the present investigation, we assessed expression of these lncRNAs in breast cancer tissues and paired non-cancerous specimens from the same patients using quantitative real time PCR. Notably, expression of CTBP1AS2, LINC-ROR and SPRY4-IT1 were upregulated in breast cancer tissues compared with non-cancerous tissues (ER = 17.62, P value<0.000; ER = 4.62, P value = 0.001 and ER = 3.47, P value = 0.005, respectively). Relative expression of LINC-ROR in tumoral tissues compared with non-tumoral tissues was associated with a history of hormone replacement therapy (P = 0.04). Expression levels of CTBP1AS2, LINC-ROR and SPRY4-IT1 were significantly correlated with each other in both tumoral and non-tumoral tissues. The strongest correlations were detected between CTBP1AS2/ LINC-ROR and CTBP1AS2/ SPRY4-IT1 pairs in non-tumoral tissues. CTBP1AS2 and SPRY4-IT1 had the best sensitivity (80%) and specificity (64%) values, respectively. Based on AUC values, the best diagnostic power belonged to CTBP1AS2. The current study potentiates CTBP1AS2, LINC-ROR and SPRY4-IT1 as putative contributors in the pathogenesis of breast cancer and suggests these lncRNAs as candidates for functional analysis in this kind of cancer.


Subject(s)
Breast Neoplasms/genetics , RNA, Long Noncoding/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged
19.
Mol Biol Rep ; 47(10): 8293-8300, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32979164

ABSTRACT

Aberrantly high expression of EVI1 in acute myeloid leukaemia (AML) is associated with poor prognosis. For targeted treatment of EVI1 overexpressing AML a more detailed understanding of aspects of spatiotemporal interaction dynamics of the EVI1 protein is important. EVI1 overexpressing SB1690CB AML cells were used for quantification and protein interaction studies of EVI1 and ΔEVI1. Cells were cell cycle-synchronised by mimosine and nocodazole treatment and expression of EVI1 and related proteins assessed by western blot, immunoprecipitation and immunofluorescence. EVI1 protein levels oscillate through the cell cycle, and EVI1 is degraded partly by the proteasome complex. Both EVI1 and ΔEVI1 interact with the co-repressor CtBP1 but dissociate from CtBP1 complexes during mitosis. Furthermore, a large fraction of EVI1, but not ΔEVI1 or CtBP1, resides in the nuclear matrix. In conclusion, EVI1- protein levels and EVI1-CtBP1 interaction dynamics vary though the cell cycle and differ between EVI1 and ΔEVI1. These data ad to the functional characterisation of the EVI1 protein in AML and will be important for the development of targeted therapeutic approaches for EVI1-driven AML.


Subject(s)
Alcohol Oxidoreductases/biosynthesis , Biological Clocks , Cell Cycle , DNA-Binding Proteins/biosynthesis , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/metabolism , MDS1 and EVI1 Complex Locus Protein/biosynthesis , Alcohol Oxidoreductases/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Humans , Leukemia, Myeloid, Acute/genetics , MDS1 and EVI1 Complex Locus Protein/genetics
20.
J Cell Physiol ; 234(12): 22365-22377, 2019 12.
Article in English | MEDLINE | ID: mdl-31074088

ABSTRACT

C-terminal binding protein 1 (CtBP1), a well-known transcriptional corepressor, functions as an oncogene in multiple cancer types, including osteosarcoma, by modulating the transcription of many tumor suppressors, such as cadherin 1 (CDH1), phosphatase and tensin homolog (PTEN), Bcl2-associated X (Bax), Bcl-2-interacting mediator (Bim), and cyclin-dependent kinase inhibitor 1A (CDKN1A). However, it is still unclear how CtBP1 regulates the expression of these downstream targets. Here, we identified that CtBP1 is overexpressed in osteosarcoma cells and found that CtBP1 directly interacts with the transcription factor forkhead box O3 (FOXO3a) and the histone acetyltransferase p300 in vivo and in vitro. Through microarray analysis, we found that CtBP1 negatively regulates FOXO3a levels. In contrast to the CtBP1 level, the FOXO3a expression level was found to be significantly reduced in osteosarcoma cells. Knockdown of CtBP1 or overexpression of FOXO3a in U2OS cells resulted in different gene expression patterns, and the former caused upregulation of CtBP1 downstream target genes such as CDH1, PTEN, Bax, Bim, and CDKN1A, whereas the latter caused upregulation of Bax and Bim, but not CDH1, PTEN, and CDKN1A. Further analysis indicated that the CtBP1-p300-FOXO3a transcriptional complex specifically binds to the promoters of Bax and Bim. Inhibition of CtBP1 by the constitutive expression of Pep1-E1AWT peptide in U2OS and OSA cells reversed oncogenic phenotypes, including colony formation, cellular proliferation, and migration, and limited tumor growth in vivo. Together our results demonstrated that the CtBP1-p300-FOXO3a transcriptional complex represses the expression of the apoptotic regulators Bax and Bim in human osteosarcoma cells and that targeting CtBP1-mediated transcriptional events might be a potential therapeutic strategy for the osteosarcoma treatment.


Subject(s)
Alcohol Oxidoreductases/metabolism , Apoptosis , Bcl-2-Like Protein 11/metabolism , DNA-Binding Proteins/metabolism , E1A-Associated p300 Protein/metabolism , Forkhead Box Protein O3/metabolism , Osteosarcoma/genetics , Transcription, Genetic , bcl-2-Associated X Protein/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Models, Biological , Osteosarcoma/pathology , Peptides/metabolism , Phenotype , Promoter Regions, Genetic/genetics , Protein Binding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL