Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Toxicol Appl Pharmacol ; 377: 114626, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31201821

ABSTRACT

Microcystin-LR (MC-LR) is a type of cyclic heptapeptide toxin produced by cyanobacteria during bloom events. MC-LR-induced cell death is critically involved in its potent specific hepatotoxicity. Many studies have demonstrated that prototypical apoptosis as a form of programmed cell death after MC-LR is associated with liver injury. However, whether another form of programmed cell death exists and the underlying mechanism have not been reported. Here, we demonstrate that MC-LR can induce necroptosis via ROS overactivation in primary mouse hepatocytes. Various potential pathways of programmed cell death induced by MC-LR were evaluated by annexin V/PI dual staining for flow cytometric analysis, image-based PI staining analysis and western blot analysis. Cell viability was determined by the CCK8 assay. Rupture of the plasma membrane was indicated by lactate dehydrogenase release. ROS was evaluated with the carboxy-H2DCFDA fluorescent probe. It was found that in MC-LR-treated cells, as the plasma membrane was damaged, annexin V/PI-stained double-positive cells were significantly induced and PI-stained nuclei were more diffuse. Western blot analysis showed that MC-LR treatment significantly upregulated the expression of necroptotic and apoptotic proteins. Mechanistically, MC-LR induced ROS overproduction by dysregulating the expression and activity of the pro-oxidants SOD1, MAOA, and NOX4 and the antioxidant GPX1. These results indicate the presence of a novel mechanism for MC-LR-mediated liver injury and present a novel target in the treatment of MC-LR-exposed patients.


Subject(s)
Hepatocytes/drug effects , Microcystins/toxicity , Necroptosis/drug effects , Reactive Oxygen Species/metabolism , Animals , Antioxidants/metabolism , Apoptosis Regulatory Proteins/biosynthesis , Cell Membrane/drug effects , Eutrophication , Hepatocytes/metabolism , L-Lactate Dehydrogenase/metabolism , Male , Marine Toxins , Mice , Mice, Inbred C57BL , Oxidants/metabolism , Primary Cell Culture , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL