Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 317
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 36: 19-42, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29144837

ABSTRACT

Adaptive immunity in jawless fishes is based on antigen recognition by three types of variable lymphocyte receptors (VLRs) composed of variable leucine-rich repeats, which are differentially expressed by two T-like lymphocyte lineages and one B-like lymphocyte lineage. The T-like cells express either VLRAs or VLRCs of yet undefined antigen specificity, whereas the VLRB antibodies secreted by B-like cells bind proteinaceous and carbohydrate antigens. The incomplete VLR germline genes are assembled into functional units by a gene conversion-like mechanism that employs flanking variable leucine-rich repeat sequences as templates in association with lineage-specific expression of cytidine deaminases. B-like cells develop in the hematopoietic typhlosole and kidneys, whereas T-like cells develop in the thymoid, a thymus-equivalent region at the gill fold tips. Thus, the dichotomy between T-like and B-like cells and the presence of dedicated lymphopoietic tissues emerge as ancestral vertebrate features, whereas the somatic diversification of structurally distinct antigen receptor genes evolved independently in jawless and jawed vertebrates.


Subject(s)
Adaptive Immunity , Biological Evolution , Vertebrates/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Lineage , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Humans , Immunity, Innate , Multigene Family , Receptors, Antigen, B-Cell/chemistry , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Structure-Activity Relationship , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vertebrates/metabolism
2.
Annu Rev Genet ; 56: 229-252, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36028227

ABSTRACT

The initiation, progression, and relapse of cancers often result from mutations occurring within somatic cells. Consequently, processes that elevate mutation rates accelerate carcinogenesis and hinder the development of long-lasting therapeutics. Recent sequencing of human cancer genomes has identified patterns of mutations, termed mutation signatures, many of which correspond to specific environmentally induced and endogenous mutation processes. Some of the most frequently observed mutation signatures are caused by dysregulated activity of APOBECs, which deaminate cytidines in single-stranded DNA at specific sequence motifs causing C-to-T and C-to-G substitutions. In humans, APOBEC-generated genetic heterogeneity in tumor cells contributes to carcinogenesis, metastasis, and resistance to therapeutics. Here, we review the current understanding of APOBECs' role in cancer mutagenesis and impact on disease and the biological processes that influence APOBEC mutagenic capacity.


Subject(s)
Neoplasms , Humans , Mutagenesis/genetics , Neoplasms/genetics , Cell Nucleus , Mutation , Carcinogenesis/genetics
3.
Immunity ; 53(5): 952-970.e11, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33098766

ABSTRACT

Precise targeting of activation-induced cytidine deaminase (AID) to immunoglobulin (Ig) loci promotes antibody class switch recombination (CSR) and somatic hypermutation (SHM), whereas AID targeting of non-Ig loci can generate oncogenic DNA lesions. Here, we examined the contribution of G-quadruplex (G4) nucleic acid structures to AID targeting in vivo. Mice bearing a mutation in Aicda (AIDG133V) that disrupts AID-G4 binding modeled the pathology of hyper-IgM syndrome patients with an orthologous mutation, lacked CSR and SHM, and had broad defects in genome-wide AIDG133V chromatin localization. Genome-wide analyses also revealed that wild-type AID localized to MHCII genes, and AID expression correlated with decreased MHCII expression in germinal center B cells and diffuse large B cell lymphoma. Our findings indicate a crucial role for G4 binding in AID targeting and suggest that AID activity may extend beyond Ig loci to regulate the expression of genes relevant to the physiology and pathology of activated B cells.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , G-Quadruplexes , Hyper-IgM Immunodeficiency Syndrome/etiology , Hyper-IgM Immunodeficiency Syndrome/metabolism , Mutation , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Computational Biology/methods , Disease Models, Animal , Disease Susceptibility , Enzyme Activation , Fluorescent Antibody Technique , Gene Expression Profiling , Genome-Wide Association Study , Germinal Center/immunology , Germinal Center/metabolism , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Hyper-IgM Immunodeficiency Syndrome/diagnosis , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Immunophenotyping , Lymphocyte Activation/genetics , Lymphoma, Large B-Cell, Diffuse/etiology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Transgenic
4.
EMBO J ; 43(15): 3240-3255, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886582

ABSTRACT

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cytidine Deaminase , DNA Damage , DNA Replication , Humans , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Genomic Instability , Cell Line, Tumor , Proteins
5.
Trends Immunol ; 45(3): 167-176, 2024 03.
Article in English | MEDLINE | ID: mdl-38402044

ABSTRACT

Antibody-coding genes accumulate somatic mutations to achieve antibody affinity maturation. Genetic dissection using various mouse models has shown that intrinsic hypermutations occur preferentially and are predisposed in the DNA region encoding antigen-contacting residues. The molecular basis of nonrandom/preferential mutations is a long-sought question in the field. Here, we summarize recent findings on how single-strand (ss)DNA flexibility facilitates activation-induced cytidine deaminase (AID) activity and fine-tunes the mutation rates at a mesoscale within the antibody variable domain exon. We propose that antibody coding sequences are selected based on mutability during the evolution of adaptive immunity and that DNA mechanics play a noncoding role in the genome. The mechanics code may also determine other cellular DNA metabolism processes, which awaits future investigation.


Subject(s)
Genes, Immunoglobulin , Somatic Hypermutation, Immunoglobulin , Animals , Mice , Somatic Hypermutation, Immunoglobulin/genetics , Mutation , DNA , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism
6.
EMBO J ; 41(11): e109324, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35471583

ABSTRACT

In activated B cells, activation-induced cytidine deaminase (AID) generates programmed DNA lesions required for antibody class switch recombination (CSR), which may also threaten genome integrity. AID dynamically shuttles between cytoplasm and nucleus, and the majority stays in the cytoplasm due to active nuclear export mediated by its C-terminal peptide. In immunodeficient-patient cells expressing mutant AID lacking its C-terminus, a catalytically active AID-delC protein accumulates in the nucleus but nevertheless fails to support CSR. To resolve this apparent paradox, we dissected the function of AID-delC proteins in the CSR process and found that they cannot efficiently target antibody genes. We demonstrate that AID-delC proteins form condensates both in vivo and in vitro, dependent on its N-terminus and on a surface arginine-rich patch. Co-expression of AID-delC and wild-type AID leads to an unbalanced nuclear AID-delC/AID ratio, with AID-delC proteins able to trap wild-type AID in condensates, resulting in a dominant-negative phenotype that could contribute to immunodeficiency. The co-condensation model of mutant and wild-type proteins could be an alternative explanation for the dominant-negative effect in genetic disorders.


Subject(s)
Cytidine Deaminase , Immunoglobulin Class Switching , B-Lymphocytes , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA/metabolism , Humans , Immunoglobulin Class Switching/genetics
7.
Trends Immunol ; 44(5): 372-383, 2023 05.
Article in English | MEDLINE | ID: mdl-36941153

ABSTRACT

Genetic conflicts shape the genomes of prokaryotic and eukaryotic organisms. Here, we argue that some of the key evolutionary novelties of adaptive immune systems of vertebrates are descendants of prokaryotic toxin-antitoxin (TA) systems. Cytidine deaminases and RAG recombinase have evolved from genotoxic enzymes to programmable editors of host genomes, supporting the astounding discriminatory capability of variable lymphocyte receptors of jawless vertebrates, as well as immunoglobulins and T cell receptors of jawed vertebrates. The evolutionarily recent lymphoid lineage is uniquely sensitive to mutations of the DNA maintenance methylase, which is an orphaned distant relative of prokaryotic restriction-modification systems. We discuss how the emergence of adaptive immunity gave rise to higher order genetic conflicts between genetic parasites and their vertebrate host.


Subject(s)
Adaptive Immunity , Vertebrates , Humans , Animals , Vertebrates/genetics , Adaptive Immunity/genetics , Lymphocytes , Receptors, Antigen, T-Cell/genetics , Immune System , Evolution, Molecular
8.
Mol Cell ; 70(4): 650-662.e8, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29731414

ABSTRACT

Class switch recombination (CSR) at the immunoglobulin heavy-chain (IgH) locus is associated with the formation of R-loop structures over switch (S) regions. While these often occur co-transcriptionally between nascent RNA and template DNA, we now show that they also form as part of a post-transcriptional mechanism targeting AID to IgH S-regions. This depends on the RNA helicase DDX1 that is also required for CSR in vivo. DDX1 binds to G-quadruplex (G4) structures present in intronic switch transcripts and converts them into S-region R-loops. This in turn targets the cytidine deaminase enzyme AID to S-regions so promoting CSR. Notably R-loop levels over S-regions are diminished by chemical stabilization of G4 RNA or by the expression of a DDX1 ATPase-deficient mutant that acts as a dominant-negative protein to reduce CSR efficiency. In effect, we provide evidence for how S-region transcripts interconvert between G4 and R-loop structures to promote CSR in the IgH locus.


Subject(s)
Adenosine Triphosphatases/metabolism , DEAD-box RNA Helicases/physiology , G-Quadruplexes , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Switch Region/genetics , RNA/chemistry , Adenosine Triphosphatases/genetics , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA Replication , Immunoglobulin Class Switching , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA/genetics , Recombination, Genetic
9.
J Biol Chem ; 300(4): 107171, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492776

ABSTRACT

Gemcitabine-based chemotherapy is a cornerstone of standard care for gallbladder cancer (GBC) treatment. Still, drug resistance remains a significant challenge, influenced by factors such as tumor-associated microbiota impacting drug concentrations within tumors. Enterococcus faecium, a member of tumor-associated microbiota, was notably enriched in the GBC patient cluster. In this study, we investigated the biochemical characteristics, catalytic activity, and kinetics of the cytidine deaminase of E. faecium (EfCDA). EfCDA showed the ability to convert gemcitabine to its metabolite 2',2'-difluorodeoxyuridine. Both EfCDA and E. faecium can induce gemcitabine resistance in GBC cells. Moreover, we determined the crystal structure of EfCDA, in its apo form and in complex with 2', 2'-difluorodeoxyuridine at high resolution. Mutation of key residues abolished the catalytic activity of EfCDA and reduced the gemcitabine resistance in GBC cells. Our findings provide structural insights into the molecular basis for recognizing gemcitabine metabolite by a bacteria CDA protein and may provide potential strategies to combat cancer drug resistance and improve the efficacy of gemcitabine-based chemotherapy in GBC treatment.


Subject(s)
Antimetabolites, Antineoplastic , Cytidine Deaminase , Deoxycytidine , Drug Resistance, Neoplasm , Enterococcus faecium , Gallbladder Neoplasms , Gemcitabine , Humans , Antimetabolites, Antineoplastic/metabolism , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Cell Line, Tumor , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/metabolism , Deoxycytidine/chemistry , Enterococcus faecium/enzymology , Enterococcus faecium/genetics , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/microbiology , Gemcitabine/metabolism , Gemcitabine/pharmacology , Gemcitabine/therapeutic use
10.
J Biol Chem ; 300(6): 107410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796062

ABSTRACT

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics. The assay also offers a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.


Subject(s)
Cytidine Deaminase , DNA , Humans , Deamination , Cytidine Deaminase/metabolism , DNA/metabolism , DNA/chemistry , Kinetics , APOBEC Deaminases/metabolism , Enzyme Inhibitors/pharmacology
11.
Plant J ; 119(2): 895-915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753873

ABSTRACT

Plant mitochondrial and chloroplast transcripts are subject to numerous events of specific cytidine-to-uridine (C-to-U) RNA editing to correct genetic information. Key protein factors for this process are specific RNA-binding pentatricopeptide repeat (PPR) proteins, which are encoded in the nucleus and post-translationally imported into the two endosymbiotic organelles. Despite hundreds of C-to-U editing sites in the plant organelles, no comparable editing has been found for nucleo-cytosolic mRNAs raising the question why plant RNA editing is restricted to chloroplasts and mitochondria. Here, we addressed this issue in the model moss Physcomitrium patens, where all PPR-type RNA editing factors comprise specific RNA-binding and cytidine deamination functionalities in single proteins. To explore whether organelle-type RNA editing can principally also take place in the plant cytosol, we expressed PPR56, PPR65 and PPR78, three editing factors recently shown to also function in a bacterial setup, together with cytosolic co-transcribed native targets in Physcomitrium. While we obtained unsatisfying results upon their constitutive expression, we found strong cytosolic RNA editing under hormone-inducible expression. Moreover, RNA-Seq analyses revealed varying numbers of up to more than 900 off-targets in other cytosolic transcripts. We conclude that PPR-mediated C-to-U RNA editing is not per se incompatible with the plant cytosol but that its limited target specificity has restricted its occurrence to the much less complex transcriptomes of mitochondria and chloroplast in the course of evolution.


Subject(s)
Bryopsida , Chloroplasts , Cytosol , Mitochondria , RNA Editing , RNA, Plant , Chloroplasts/metabolism , Chloroplasts/genetics , Cytosol/metabolism , Bryopsida/genetics , Bryopsida/metabolism , Mitochondria/metabolism , Mitochondria/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cytidine/metabolism , Cytidine/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Uridine/metabolism , Uridine/genetics
12.
Mol Cell ; 67(3): 361-373.e4, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28757211

ABSTRACT

Activation-induced cytidine deaminase (AID) initiates both class switch recombination (CSR) and somatic hypermutation (SHM) in antibody diversification. Mechanisms of AID targeting and catalysis remain elusive despite its critical immunological roles and off-target effects in tumorigenesis. Here, we produced active human AID and revealed its preferred recognition and deamination of structured substrates. G-quadruplex (G4)-containing substrates mimicking the mammalian immunoglobulin switch regions are particularly good AID substrates in vitro. By solving crystal structures of maltose binding protein (MBP)-fused AID alone and in complex with deoxycytidine monophosphate, we surprisingly identify a bifurcated substrate-binding surface that explains structured substrate recognition by capturing two adjacent single-stranded overhangs simultaneously. Moreover, G4 substrates induce cooperative AID oligomerization. Structure-based mutations that disrupt bifurcated substrate recognition or oligomerization both compromise CSR in splenic B cells. Collectively, our data implicate intrinsic preference of AID for structured substrates and uncover the importance of G4 recognition and oligomerization of AID in CSR.


Subject(s)
Cytidine Deaminase/metabolism , DNA/metabolism , Immunoglobulin Class Switching , Immunoglobulin Switch Region , Recombination, Genetic , APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , Animals , Antibody Diversity , B-Lymphocytes/enzymology , B-Lymphocytes/immunology , Cytidine Deaminase/chemistry , Cytidine Deaminase/genetics , DNA/chemistry , DNA/genetics , Humans , Mice , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Spleen/enzymology , Spleen/immunology , Structure-Activity Relationship , Substrate Specificity
13.
BMC Biol ; 22(1): 151, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977974

ABSTRACT

BACKGROUND: RNA-DNA hybrids or R-loops are associated with deleterious genomic instability and protective immunoglobulin class switch recombination (CSR). However, the underlying phenomenon regulating the two contrasting functions of R-loops is unknown. Notably, the underlying mechanism that protects R-loops from classic RNase H-mediated digestion thereby promoting persistence of CSR-associated R-loops during CSR remains elusive. RESULTS: Here, we report that during CSR, R-loops formed at the immunoglobulin heavy (IgH) chain are modified by ribose 2'-O-methylation (2'-OMe). Moreover, we find that 2'-O-methyltransferase fibrillarin (FBL) interacts with activation-induced cytidine deaminase (AID) associated snoRNA aSNORD1C to facilitate the 2'-OMe. Moreover, deleting AID C-terminal tail impairs its association with aSNORD1C and FBL. Disrupting FBL, AID or aSNORD1C expression severely impairs 2'-OMe, R-loop stability and CSR. Surprisingly, FBL, AID's interaction partner and aSNORD1C promoted AID targeting to the IgH locus. CONCLUSION: Taken together, our results suggest that 2'-OMe stabilizes IgH-associated R-loops to enable productive CSR. These results would shed light on AID-mediated CSR and explain the mechanism of R-loop-associated genomic instability.


Subject(s)
Cytidine Deaminase , Immunoglobulin Class Switching , R-Loop Structures , Immunoglobulin Class Switching/genetics , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/chemistry , Animals , Mice , Methylation , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Recombination, Genetic , RNA/metabolism , RNA/genetics
14.
J Biol Chem ; 299(12): 105431, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926284

ABSTRACT

t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.


Subject(s)
Burkitt Lymphoma , G-Quadruplexes , Humans , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , DNA , Genes, myc , R-Loop Structures , Translocation, Genetic
15.
Plant J ; 116(3): 840-854, 2023 11.
Article in English | MEDLINE | ID: mdl-37565789

ABSTRACT

The protein factors for the specific C-to-U RNA editing events in plant mitochondria and chloroplasts possess unique arrays of RNA-binding pentatricopeptide repeats (PPRs) linked to carboxy-terminal cytidine deaminase DYW domains via the extension motifs E1 and E2. The E1 and E2 motifs have distant similarities to tetratricopeptide repeats known to mediate protein-protein interactions but their precise function is unclear. Here, we investigate the tolerance of PPR56 and PPR65, two functionally characterized RNA editing factors of the moss Physcomitrium patens, for the creation of chimeras by variably replacing their C-terminal protein regions. Making use of a heterologous RNA editing assay system in Escherichia coli we find that heterologous DYW domains can strongly restrict or widen the spectrum of off-targets in the bacterial transcriptome for PPR56. Surprisingly, our data suggest that these changes are not only caused by the preference of a given heterologous DYW domain for the immediate sequence environment of the cytidine to be edited but also by a long-range impact on the nucleotide selectivity of the upstream PPRs.


Subject(s)
Plant Proteins , RNA Editing , RNA, Plant/metabolism , Plant Proteins/metabolism , RNA Editing/genetics , Cytidine Deaminase/chemistry , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Chloroplasts/metabolism
16.
Immunity ; 43(5): 884-95, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26546282

ABSTRACT

Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.


Subject(s)
Central Tolerance/genetics , Central Tolerance/immunology , Cytidine Deaminase/genetics , Lymphocyte Activation/immunology , Precursor Cells, B-Lymphoid/immunology , Adolescent , Adult , Aged , Animals , Apoptosis/genetics , Apoptosis/immunology , Case-Control Studies , Child , Child, Preschool , DNA-Binding Proteins/genetics , Female , Genes, Immunoglobulin/genetics , Genes, Immunoglobulin/immunology , Humans , Lymphocyte Activation/genetics , Male , Mice , Middle Aged , Nuclear Proteins/genetics , Recombination, Genetic/genetics , Recombination, Genetic/immunology , Somatic Hypermutation, Immunoglobulin/genetics , Somatic Hypermutation, Immunoglobulin/immunology , Young Adult
17.
J Infect Dis ; 228(10): 1421-1429, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37224627

ABSTRACT

BACKGROUND: On May 6, 2022, a powerful outbreak of monkeypox virus (MPXV) had been reported outside of Africa, with many continuing new cases being reported around the world. Analysis of mutations among the 2 different lineages present in the 2021 and 2022 outbreaks revealed the presence of G->A mutations occurring in the 5'GpA context, indicative of APOBEC3 cytidine deaminase activity. METHODS: By using a sensitive polymerase chain reaction (differential DNA denaturation PCR) method allowing differential amplification of AT-rich DNA, we analyzed the level of APOBEC3-induced MPXV editing in infected cells and in patients. RESULTS: We demonstrate that G->A hypermutated MPXV genomes can be recovered experimentally from APOBEC3 transfection followed by MPXV infection. Here, among the 7 human APOBEC3 cytidine deaminases (A3A-A3C, A3DE, A3F-A3H), only APOBEC3F was capable of extensively deaminating cytidine residues in MPXV genomes. Hyperedited genomes were also recovered in ∼42% of analyzed patients. Moreover, we demonstrate that substantial repair of these mutations occurs. Upon selection, corrected G->A mutations escaping drift loss contribute to the MPXV evolution observed in the current epidemic. CONCLUSIONS: Stochastic or transient overexpression of the APOBEC3F gene exposes the MPXV genome to a broad spectrum of mutations that may be modeling the mutational landscape after multiple cycles of viral replication.


Subject(s)
Cytidine Deaminase , Monkeypox virus , Humans , Monkeypox virus/genetics , Cytidine Deaminase/genetics , Mutation , Disease Outbreaks , Cytidine , Cytosine Deaminase/chemistry , Cytosine Deaminase/genetics
18.
J Infect Dis ; 227(9): 1068-1072, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36461940

ABSTRACT

Molnupiravir is an antiviral agent recently used for treating coronavirus disease 2019 (COVID-19). Here, we demonstrate that N4-hydroxycytidine (NHC), a molnupiravir metabolite, treated with cytidine deaminase (CDA) induced Cu(II)-mediated oxidative DNA damage in isolated DNA. A colorimetric assay revealed hydroxylamine generation from CDA-treated NHC. The site specificity of DNA damage also suggested involvement of hydroxylamine in the damage. Furthermore, Cu(I) and H2O2 play an important role in the DNA damage. We propose oxidative DNA damage via CDA-mediated metabolism as a possible mutagenic mechanism of NHC, highlighting the need for careful risk assessment of molnupiravir use in therapies for viral diseases, including COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2 , Hydrogen Peroxide , Hydroxylamines/pharmacology , Oxidative Stress , DNA Damage
19.
Beilstein J Org Chem ; 20: 1088-1098, 2024.
Article in English | MEDLINE | ID: mdl-38774272

ABSTRACT

Nucleoside and polynucleotide cytidine deaminases (CDAs), such as CDA and APOBEC3, share a similar mechanism of cytosine to uracil conversion. In 1984, phosphapyrimidine riboside was characterised as the most potent inhibitor of human CDA, but the quick degradation in water limited the applicability as a potential therapeutic. To improve stability in water, we synthesised derivatives of phosphapyrimidine nucleoside having a CH2 group instead of the N3 atom in the nucleobase. A charge-neutral phosphinamide and a negatively charged phosphinic acid derivative had excellent stability in water at pH 7.4, but only the charge-neutral compound inhibited human CDA, similar to previously described 2'-deoxyzebularine (Ki = 8.0 ± 1.9 and 10.7 ± 0.5 µM, respectively). However, under basic conditions, the charge-neutral phosphinamide was unstable, which prevented the incorporation into DNA using conventional DNA chemistry. In contrast, the negatively charged phosphinic acid derivative was incorporated into DNA instead of the target 2'-deoxycytidine using an automated DNA synthesiser, but no inhibition of APOBEC3A was observed for modified DNAs. Although this shows that the negative charge is poorly accommodated in the active site of CDA and APOBEC3, the synthetic route reported here provides opportunities for the synthesis of other derivatives of phosphapyrimidine riboside for potential development of more potent CDA and APOBEC3 inhibitors.

20.
Br J Haematol ; 203(4): 625-636, 2023 11.
Article in English | MEDLINE | ID: mdl-37691342

ABSTRACT

Azacitidine (Aza) is a mainstay of treatment for patients with acute myeloid leukaemia (AML) ineligible for induction chemotherapy and other high-risk myelodysplastic syndromes (MDS). Only half of patients respond, and almost all will eventually relapse. There are no predictive markers of response to Aza. Aza is detoxified in the liver by cytidine deaminase (CDA). Here, we investigated the association between CDA phenotype, toxicity and efficacy of Aza in real-world adult patients. Median overall survival (OS) was 15 months and 13 months in AML and high-risk MDS patients respectively. In addition, our data suggest that delaying Aza treatment was not associated with lack of efficacy and should not be considered a signal to switch to an alternative treatment. Half of the patients had deficient CDA activity (i.e. <2 UA/mg), with a lower proportion of deficient patients in MDS patients (34%) compared to AML patients (67%). In MDS patients, CDA deficiency correlated with longer landmark OS (14 vs. 8 months; p = 0.03), but not in AML patients. Taken together, our data suggest that CDA is an independent covariate and may therefore be a marker for predicting clinical outcome in MDS patients treated with Aza.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Adult , Humans , Azacitidine/therapeutic use , Antimetabolites, Antineoplastic/therapeutic use , Cytidine Deaminase/genetics , Myelodysplastic Syndromes/genetics , Neoplasm Recurrence, Local/drug therapy , Leukemia, Myeloid, Acute/genetics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL