Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.840
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 39: 279-311, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33544645

ABSTRACT

The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.


Subject(s)
Immunity, Innate , Inflammation , Animals , Epigenesis, Genetic , Humans , Immunity, Innate/genetics , Inflammation/genetics
2.
Annu Rev Immunol ; 38: 341-363, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31961750

ABSTRACT

Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.


Subject(s)
Hypoxia/immunology , Hypoxia/metabolism , Immunity, Innate , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Management , Disease Susceptibility , Energy Metabolism , Gene Expression Regulation , Host-Pathogen Interactions/immunology , Humans , Hypoxia/genetics , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism , Immunomodulation , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Signal Transduction
3.
Annu Rev Immunol ; 35: 149-176, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28125356

ABSTRACT

To monitor the health of cells, the immune system tasks antigen-presenting cells with gathering antigens from other cells and bringing them to CD8 T cells in the form of peptides bound to MHC-I molecules. Most cells would be unable to perform this function because they use their MHC-I molecules to exclusively present peptides derived from the cell's own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC-I through a process called cross-presentation. How this important task is accomplished, its role in health and disease, and its potential for exploitation are the subject of this review.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cross-Priming , Dendritic Cells/immunology , Animals , Antigens/immunology , Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Humans , Immunologic Surveillance , Lymphocyte Activation , Phagocytosis
4.
Annu Rev Immunol ; 34: 93-119, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26735697

ABSTRACT

The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow.


Subject(s)
Bone Marrow Cells/physiology , Dendritic Cells/physiology , Gene Expression Regulation , Immunity, Cellular , Animals , Cell Differentiation , Cell Lineage , Gene Expression Profiling , Gene Regulatory Networks , Humans , Immunity, Cellular/genetics , Mice , Transcriptional Activation
5.
Cell ; 184(19): 4953-4968.e16, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34492226

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.


Subject(s)
COVID-19/pathology , Interferons/metabolism , Respiratory System/virology , Severity of Illness Index , Age Factors , Aging/pathology , COVID-19/genetics , COVID-19/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Interferons/genetics , Leukocytes/pathology , Leukocytes/virology , Lung/pathology , Lung/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Viral Load
6.
Cell ; 182(4): 901-918.e18, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32668198

ABSTRACT

Chikungunya virus (CHIKV), an emerging alphavirus, has infected millions of people. However, the factors modulating disease outcome remain poorly understood. Here, we show in germ-free mice or in oral antibiotic-treated conventionally housed mice with depleted intestinal microbiomes that greater CHIKV infection and spread occurs within 1 day of virus inoculation. Alteration of the microbiome alters TLR7-MyD88 signaling in plasmacytoid dendritic cells (pDCs) and blunts systemic production of type I interferon (IFN). Consequently, circulating monocytes express fewer IFN-stimulated genes and become permissive for CHIKV infection. Reconstitution with a single bacterial species, Clostridium scindens, or its derived metabolite, the secondary bile acid deoxycholic acid, can restore pDC- and MyD88-dependent type I IFN responses to restrict systemic CHIKV infection and transmission back to vector mosquitoes. Thus, symbiotic intestinal bacteria modulate antiviral immunity and levels of circulating alphaviruses within hours of infection through a bile acid-pDC-IFN signaling axis, which affects viremia, dissemination, and potentially transmission.


Subject(s)
Bile Acids and Salts/metabolism , Chikungunya Fever/pathology , Gastrointestinal Microbiome , Interferon Type I/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Chikungunya Fever/immunology , Chikungunya Fever/veterinary , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Clostridiales/physiology , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/drug effects , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/cytology , Monocytes/immunology , Monocytes/metabolism , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , RNA, Viral/blood , STAT1 Transcription Factor/deficiency , Signal Transduction , Toll-Like Receptor 7/metabolism
7.
Cell ; 183(5): 1312-1324.e10, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33212011

ABSTRACT

Interferon (IFN)-Is are crucial mediators of antiviral immunity and homeostatic immune system regulation. However, the source of IFN-I signaling under homeostatic conditions is unclear. We discovered that commensal microbes regulate the IFN-I response through induction of IFN-ß by colonic DCs. Moreover, the mechanism by which a specific commensal microbe induces IFN-ß was identified. Outer membrane (OM)-associated glycolipids of gut commensal microbes belonging to the Bacteroidetes phylum induce expression of IFN-ß. Using Bacteroides fragilis and its OM-associated polysaccharide A, we determined that IFN-ß expression was induced via TLR4-TRIF signaling. Antiviral activity of this purified microbial molecule against infection with either vesicular stomatitis virus (VSV) or influenza was demonstrated to be dependent on the induction of IFN-ß. In a murine VSV infection model, commensal-induced IFN-ß regulated natural resistance to virus infection. Due to the physiological importance of IFN-Is, discovery of an IFN-ß-inducing microbial molecule represents a potential approach for the treatment of some human diseases.


Subject(s)
Immunity, Innate , Microbiota , Virus Diseases/microbiology , Animals , Bacteroides fragilis/physiology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Colon/pathology , Colon/virology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Female , Gene Expression Regulation/drug effects , Glycolipids/metabolism , Immunity, Innate/drug effects , Interferon-beta/blood , Interferon-beta/metabolism , Male , Mice, Inbred C57BL , Microbiota/drug effects , Polysaccharides, Bacterial/pharmacology , Toll-Like Receptor 4/metabolism , Vesiculovirus/physiology , Virus Diseases/genetics
8.
Cell ; 180(6): 1098-1114.e16, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32169218

ABSTRACT

The immunosuppressive tumor microenvironment (TME) is a major barrier to immunotherapy. Within solid tumors, why monocytes preferentially differentiate into immunosuppressive tumor-associated macrophages (TAMs) rather than immunostimulatory dendritic cells (DCs) remains unclear. Using multiple murine sarcoma models, we find that the TME induces tumor cells to produce retinoic acid (RA), which polarizes intratumoral monocyte differentiation toward TAMs and away from DCs via suppression of DC-promoting transcription factor Irf4. Genetic inhibition of RA production in tumor cells or pharmacologic inhibition of RA signaling within TME increases stimulatory monocyte-derived cells, enhances T cell-dependent anti-tumor immunity, and synergizes with immune checkpoint blockade. Furthermore, an RA-responsive gene signature in human monocytes correlates with an immunosuppressive TME in multiple human tumors. RA has been considered as an anti-cancer agent, whereas our work demonstrates its tumorigenic capability via myeloid-mediated immune suppression and provides proof of concept for targeting this pathway for tumor immunotherapy.


Subject(s)
Monocytes/immunology , Tretinoin/metabolism , Tumor Microenvironment/immunology , Animals , Carcinogenesis/pathology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Line, Tumor , Dendritic Cells/immunology , Humans , Immunosuppression Therapy/methods , Immunotherapy/methods , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism
9.
Cell ; 178(6): 1509-1525.e19, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31491389

ABSTRACT

Most tissue-resident macrophage (RTM) populations are seeded by waves of embryonic hematopoiesis and are self-maintained independently of a bone marrow contribution during adulthood. A proportion of RTMs, however, is constantly replaced by blood monocytes, and their functions compared to embryonic RTMs remain unclear. The kinetics and extent of the contribution of circulating monocytes to RTM replacement during homeostasis, inflammation, and disease are highly debated. Here, we identified Ms4a3 as a specific gene expressed by granulocyte-monocyte progenitors (GMPs) and subsequently generated Ms4a3TdT reporter, Ms4a3Cre, and Ms4a3CreERT2 fate-mapping models. These models traced efficiently monocytes and granulocytes, but no lymphocytes or tissue dendritic cells. Using these models, we precisely quantified the contribution of monocytes to the RTM pool during homeostasis and inflammation. The unambiguous identification of monocyte-derived cells will permit future studies of their function under any condition.


Subject(s)
Cell Cycle Proteins/genetics , Gene Expression , Granulocyte-Macrophage Progenitor Cells/metabolism , Granulocytes/metabolism , Macrophages/metabolism , Membrane Proteins/genetics , Monocytes/metabolism , Animals , Granulocyte-Macrophage Progenitor Cells/cytology , Granulocytes/cytology , Hematopoiesis/physiology , Homeostasis/physiology , Inflammation/metabolism , Macrophages/cytology , Mice , Monocytes/cytology
10.
Immunity ; 57(7): 1482-1496.e8, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38697119

ABSTRACT

Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.


Subject(s)
Endoribonucleases , Toll-Like Receptor 7 , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Humans , Endoribonucleases/metabolism , Ligands , Phospholipase D/metabolism , Phospholipase D/genetics , RNA/metabolism , HEK293 Cells , Lysosomes/metabolism , Animals , Exonucleases/metabolism , Mice , Binding Sites
11.
Immunity ; 56(6): 1220-1238.e7, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37130522

ABSTRACT

Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.


Subject(s)
M Cells , Peyer's Patches , Intestines , Intestine, Small , Cell Differentiation , Intestinal Mucosa
12.
Immunity ; 55(6): 982-997.e8, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35617964

ABSTRACT

Antigen cross-presentation, wherein dendritic cells (DCs) present exogenous antigen on major histocompatibility class I (MHC-I) molecules, is considered the primary mechanism by which DCs initiate tumor-specific CD8+ T cell responses. Here, we demonstrate that MHC-I cross-dressing, an antigen presentation pathway in which DCs acquire and display intact tumor-derived peptide:MHC-I molecules, is also important in orchestrating anti-tumor immunity. Cancer cell MHC-I expression was required for optimal CD8+ T cell activation in two subcutaneous tumor models. In vivo acquisition of tumor-derived peptide:MHC-I molecules by DCs was sufficient to induce antigen-specific CD8+ T cell priming. Transfer of tumor-derived human leukocyte antigen (HLA) molecules to myeloid cells was detected in vitro and in human tumor xenografts. In conclusion, MHC-I cross-dressing is crucial for anti-tumor CD8+ T cell priming by DCs. In addition to quantitatively enhancing tumor antigen presentation, MHC cross-dressing might also enable DCs to more faithfully and efficiently mirror the cancer cell peptidome.


Subject(s)
Dendritic Cells , Neoplasms , Antigen Presentation , Antigens, Neoplasm , Bandages , CD8-Positive T-Lymphocytes , Cross-Priming , Histocompatibility Antigens Class I , Humans , Major Histocompatibility Complex , Neoplasms/metabolism , Peptides
13.
Immunity ; 55(4): 606-622.e6, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35358427

ABSTRACT

Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.


Subject(s)
Endothelial Cells , Endothelial Cells/metabolism , Lymph Nodes , Sequence Analysis, RNA , Single-Cell Analysis , Stromal Cells , Transcription Factors/metabolism
14.
Immunity ; 55(11): 1993-2005, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351374

ABSTRACT

The lipid nanoparticle (LNP)-encapsulated, nucleoside-modified mRNA platform has been used to generate safe and effective vaccines in record time against COVID-19. Here, we review the current understanding of the manner whereby mRNA vaccines induce innate immune activation and how this contributes to protective immunity. We discuss innate immune sensing of mRNA vaccines at the cellular and intracellular levels and consider the contribution of both the mRNA and the LNP components to their immunogenicity. A key message that is emerging from recent observations is that the LNP carrier acts as a powerful adjuvant for this novel vaccine platform. In this context, we highlight important gaps in understanding and discuss how new insight into the mechanisms underlying the effectiveness of mRNA-LNP vaccines may enable tailoring mRNA and carrier molecules to develop vaccines with greater effectiveness and milder adverse events in the future.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Vaccines, Synthetic , RNA, Messenger/genetics , Immunity, Innate , mRNA Vaccines
15.
Immunity ; 55(8): 1431-1447.e11, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35830859

ABSTRACT

Conventional dendritic cells (cDCs) consist of two major functionally and phenotypically distinct subsets, cDC1 and cDC2, whose development is dependent on distinct sets of transcription factors. Interferon regulatory factor 8 (IRF8) is required at multiple stages of cDC1 development, but its role in committed cDC1 remains unclear. Here, we used Xcr1-cre to delete Irf8 in committed cDC1 and demonstrate that Irf8 is required for maintaining the identity of cDC1. In the absence of Irf8, committed cDC1 acquired the transcriptional, functional, and chromatin accessibility properties of cDC2. This conversion was independent of Irf4 and was associated with the decreased accessibility of putative IRF8, Batf3, and composite AP-1-IRF (AICE)-binding elements, together with increased accessibility of cDC2-associated transcription-factor-binding elements. Thus, IRF8 expression by committed cDC1 is required for preventing their conversion into cDC2-like cells.


Subject(s)
Dendritic Cells , Interferon Regulatory Factors , Dendritic Cells/metabolism , Epigenesis, Genetic , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism
16.
Genes Dev ; 37(7-8): 291-302, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36990511

ABSTRACT

Individual elements within a superenhancer can act in a cooperative or temporal manner, but the underlying mechanisms remain obscure. We recently identified an Irf8 superenhancer, within which different elements act at distinct stages of type 1 classical dendritic cell (cDC1) development. The +41-kb Irf8 enhancer is required for pre-cDC1 specification, while the +32-kb Irf8 enhancer acts to support subsequent cDC1 maturation. Here, we found that compound heterozygous Δ32/Δ41 mice, lacking the +32- and +41-kb enhancers on different chromosomes, show normal pre-cDC1 specification but, surprisingly, completely lack mature cDC1 development, suggesting cis dependence of the +32-kb enhancer on the +41-kb enhancer. Transcription of the +32-kb Irf8 enhancer-associated long noncoding RNA (lncRNA) Gm39266 is also dependent on the +41-kb enhancer. However, cDC1 development in mice remained intact when Gm39266 transcripts were eliminated by CRISPR/Cas9-mediated deletion of lncRNA promoters and when transcription across the +32-kb enhancer was blocked by premature polyadenylation. We showed that chromatin accessibility and BATF3 binding at the +32-kb enhancer were dependent on a functional +41-kb enhancer located in cis Thus, the +41-kb Irf8 enhancer controls the subsequent activation of the +32-kb Irf8 enhancer in a manner that is independent of associated lncRNA transcription.


Subject(s)
RNA, Long Noncoding , Animals , Mice , Enhancer Elements, Genetic , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Promoter Regions, Genetic
17.
Immunity ; 54(11): 2547-2564.e7, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34715017

ABSTRACT

Cryptosporidium can cause severe diarrhea and morbidity, but many infections are asymptomatic. Here, we studied the immune response to a commensal strain of Cryptosporidium tyzzeri (Ct-STL) serendipitously discovered when conventional type 1 dendritic cell (cDC1)-deficient mice developed cryptosporidiosis. Ct-STL was vertically transmitted without negative health effects in wild-type mice. Yet, Ct-STL provoked profound changes in the intestinal immune system, including induction of an IFN-γ-producing Th1 response. TCR sequencing coupled with in vitro and in vivo analysis of common Th1 TCRs revealed that Ct-STL elicited a dominant antigen-specific Th1 response. In contrast, deficiency in cDC1s skewed the Ct-STL CD4 T cell response toward Th17 and regulatory T cells. Although Ct-STL predominantly colonized the small intestine, colon Th1 responses were enhanced and associated with protection against Citrobacter rodentium infection and exacerbation of dextran sodium sulfate and anti-IL10R-triggered colitis. Thus, Ct-STL represents a commensal pathobiont that elicits Th1-mediated intestinal homeostasis that may reflect asymptomatic human Cryptosporidium infection.


Subject(s)
Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , Cryptosporidium/immunology , Dendritic Cells/immunology , Host-Parasite Interactions/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Th1 Cells/immunology , Animals , Dendritic Cells/metabolism , Disease Models, Animal , Homeostasis , Intestinal Mucosa/metabolism , Mice , Microbiota , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/metabolism
18.
Immunity ; 54(6): 1338-1351.e9, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33862015

ABSTRACT

Despite advances in single-cell multi-omics, a single stem or progenitor cell can only be tested once. We developed clonal multi-omics, in which daughters of a clone act as surrogates of the founder, thereby allowing multiple independent assays per clone. With SIS-seq, clonal siblings in parallel "sister" assays are examined either for gene expression by RNA sequencing (RNA-seq) or for fate in culture. We identified, and then validated using CRISPR, genes that controlled fate bias for different dendritic cell (DC) subtypes. This included Bcor as a suppressor of plasmacytoid DC (pDC) and conventional DC type 2 (cDC2) numbers during Flt3 ligand-mediated emergency DC development. We then developed SIS-skew to examine development of wild-type and Bcor-deficient siblings of the same clone in parallel. We found Bcor restricted clonal expansion, especially for cDC2s, and suppressed clonal fate potential, especially for pDCs. Therefore, SIS-seq and SIS-skew can reveal the molecular and cellular mechanisms governing clonal fate.


Subject(s)
Dendritic Cells/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Female , Gene Expression/genetics , HEK293 Cells , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Stem Cells/metabolism
19.
Immunity ; 53(2): 353-370.e8, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32735845

ABSTRACT

The formation of mammalian dendritic cells (DCs) is controlled by multiple hematopoietic transcription factors, including IRF8. Loss of IRF8 exerts a differential effect on DC subsets, including plasmacytoid DCs (pDCs) and the classical DC lineages cDC1 and cDC2. In humans, cDC2-related subsets have been described including AXL+SIGLEC6+ pre-DC, DC2 and DC3. The origin of this heterogeneity is unknown. Using high-dimensional analysis, in vitro differentiation, and an allelic series of human IRF8 deficiency, we demonstrated that cDC2 (CD1c+DC) heterogeneity originates from two distinct pathways of development. The lymphoid-primed IRF8hi pathway, marked by CD123 and BTLA, carried pDC, cDC1, and DC2 trajectories, while the common myeloid IRF8lo pathway, expressing SIRPA, formed DC3s and monocytes. We traced distinct trajectories through the granulocyte-macrophage progenitor (GMP) compartment showing that AXL+SIGLEC6+ pre-DCs mapped exclusively to the DC2 pathway. In keeping with their lower requirement for IRF8, DC3s expand to replace DC2s in human partial IRF8 deficiency.


Subject(s)
Antigens, CD34/metabolism , Dendritic Cells/cytology , Hematopoiesis/physiology , Interferon Regulatory Factors/metabolism , Animals , Antigens, CD1/metabolism , Cell Line , Cell Lineage/immunology , Dendritic Cells/immunology , Glycoproteins/metabolism , Hematopoietic Stem Cells/cytology , Humans , Interleukin-3 Receptor alpha Subunit/metabolism , Lipopolysaccharide Receptors/metabolism , Mice , Receptors, Immunologic/metabolism
20.
Immunity ; 53(4): 864-877.e5, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32791036

ABSTRACT

The SARS-CoV-2 pandemic has resulted in millions of infections, yet the role of host immune responses in early COVID-19 pathogenesis remains unclear. By investigating 17 acute and 24 convalescent patients, we found that acute SARS-CoV-2 infection resulted in broad immune cell reduction including T, natural killer, monocyte, and dendritic cells (DCs). DCs were significantly reduced with functional impairment, and ratios of conventional DCs to plasmacytoid DCs were increased among acute severe patients. Besides lymphocytopenia, although neutralizing antibodies were rapidly and abundantly generated in patients, there were delayed receptor binding domain (RBD)- and nucleocapsid protein (NP)-specific T cell responses during the first 3 weeks after symptoms onset. Moreover, acute RBD- and NP-specific T cell responses included relatively more CD4 T cells than CD8 T cells. Our findings provided evidence that impaired DCs, together with timely inverted strong antibody but weak CD8 T cell responses, could contribute to acute COVID-19 pathogenesis and have implications for vaccine development.


Subject(s)
Betacoronavirus/pathogenicity , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Dendritic Cells/immunology , Diabetes Mellitus/immunology , Hypertension/immunology , Pneumonia, Viral/immunology , Adult , Aged , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Convalescence , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Dendritic Cells/pathology , Dendritic Cells/virology , Diabetes Complications , Diabetes Mellitus/diagnosis , Diabetes Mellitus/virology , Disease Progression , Female , Humans , Hypertension/complications , Hypertension/diagnosis , Hypertension/virology , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Killer Cells, Natural/virology , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Monocytes/immunology , Monocytes/pathology , Monocytes/virology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL