Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493.211
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 42(1): 585-613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38424470

ABSTRACT

Alzheimer disease (AD) is the most common neurodegenerative disease, and with no efficient curative treatment available, its medical, social, and economic burdens are expected to dramatically increase. AD is historically characterized by amyloid ß (Aß) plaques and tau neurofibrillary tangles, but over the last 25 years chronic immune activation has been identified as an important factor contributing to AD pathogenesis. In this article, we review recent and important advances in our understanding of the significance of immune activation in the development of AD. We describe how brain-resident macrophages, the microglia, are able to detect Aß species and be activated, as well as the consequences of activated microglia in AD pathogenesis. We discuss transcriptional changes of microglia in AD, their unique heterogeneity in humans, and emerging strategies to study human microglia. Finally, we expose, beyond Aß and microglia, the role of peripheral signals and different cell types in immune activation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Microglia , Alzheimer Disease/immunology , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Humans , Animals , Microglia/immunology , Microglia/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/immunology , Brain/immunology , Brain/metabolism , Brain/pathology , Macrophages/immunology , Macrophages/metabolism
2.
Annu Rev Immunol ; 42(1): 207-233, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38211945

ABSTRACT

The immune system and the kidneys are closely related. Immune components mediate acute kidney disease and are crucial to the progression of chronic kidney disease. Beyond its pathogenic functions, the immune system supports immunological homeostasis in healthy kidneys. The kidneys help maintain immune equilibrium by removing metabolic waste products and toxins, thereby limiting local and systemic inflammation. In this review, we describe the close relationship between the immune system and the kidneys. We discuss how the imbalance in the immune response can be deleterious to the kidneys and how immunomodulation can be important in preventing end-stage renal disease. In addition, recent tools such as in silico platforms and kidney organoids can help unveil the relationship between immune cells and kidney homeostasis.


Subject(s)
Kidney Diseases , Humans , Animals , Kidney Diseases/immunology , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney/immunology , Kidney/metabolism , Homeostasis , Immunomodulation , Disease Susceptibility
3.
Annu Rev Immunol ; 41: 343-373, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36750314

ABSTRACT

A large body of evidence generated in the last two and a half years addresses the roles of T cells in SARS-CoV-2 infection and following vaccination. Infection or vaccination induces multi-epitope CD4 and CD8 T cell responses with polyfunctionality. Early T cell responses have been associated with mild COVID-19 outcomes. In concert with animal model data, these results suggest that while antibody responses are key to prevent infection, T cell responses may also play valuable roles in reducing disease severity and controlling infection. T cell memory after vaccination is sustained for at least six months. While neutralizing antibody responses are impacted by SARS-CoV-2 variants, most CD4 and CD8 T cell responses are preserved. This review highlights the extensive progress made, and the data and knowledge gaps that remain, in our understanding of T cell responses to SARS-CoV-2 and COVID-19 vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , COVID-19 Vaccines , CD8-Positive T-Lymphocytes , Antibodies, Viral
4.
Annu Rev Immunol ; 41: 207-228, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36696569

ABSTRACT

The epithelial tissues that line our body, such as the skin and gut, have remarkable regenerative prowess and continually renew throughout our lifetimes. Owing to their barrier function, these tissues have also evolved sophisticated repair mechanisms to swiftly heal and limit the penetration of harmful agents following injury. Researchers now appreciate that epithelial regeneration and repair are not autonomous processes but rely on a dynamic cross talk with immunity. A wealth of clinical and experimental data point to the functional coupling of reparative and inflammatory responses as two sides of the same coin. Here we bring to the fore the immunological signals that underlie homeostatic epithelial regeneration and restitution following damage. We review our current understanding of how immune cells contribute to distinct phases of repair. When unchecked, immune-mediated repair programs are co-opted to fuel epithelial pathologies such as cancer, psoriasis, and inflammatory bowel diseases. Thus, understanding the reparative functions of immunity may advance therapeutic innovation in regenerative medicine and epithelial inflammatory diseases.


Subject(s)
Inflammatory Bowel Diseases , Skin , Humans , Animals , Epithelium , Regeneration/physiology
5.
Annu Rev Immunol ; 41: 431-452, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36750318

ABSTRACT

The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.


Subject(s)
Neuroinflammatory Diseases , Neuroprotection , Humans , Animals , Brain , Complement System Proteins , Neuronal Plasticity/physiology , Microglia/physiology
6.
Annu Rev Immunol ; 39: 19-49, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33428454

ABSTRACT

Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.


Subject(s)
Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Animals , Graft vs Host Disease/etiology , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Transplantation Conditioning , Transplantation, Homologous
7.
Annu Rev Immunol ; 38: 99-121, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340574

ABSTRACT

B cells are traditionally known for their ability to produce antibodies in the context of adaptive immune responses. However, over the last decade B cells have been increasingly recognized as modulators of both adaptive and innate immune responses, as well as players in an important role in the pathogenesis of a variety of human diseases. Here, after briefly summarizing our current understanding of B cell biology, we present a systematic review of the literature from both animal models and human studies that highlight the important role that B lymphocytes play in cardiac and vascular disease. While many aspects of B cell biology in the vasculature and, to an even greater extent, in the heart remain unclear, B cells are emerging as key regulators of cardiovascular adaptation to injury.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Disease Susceptibility , Adaptive Immunity , Animals , Cardiovascular Diseases/diagnosis , Cytokines/metabolism , Humans , Immunity, Innate , Inflammation Mediators/metabolism
8.
Annu Rev Immunol ; 38: 541-566, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32017635

ABSTRACT

Naturally occurring CD4+ regulatory T cells (Tregs), which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a functionally distinct T cell subpopulation actively engaged in the maintenance of immunological self-tolerance and homeostasis. Recent studies have facilitated our understanding of the cellular and molecular basis of their generation, function, phenotypic and functional stability, and adaptability. It is under investigation in humans how functional or numerical Treg anomalies, whether genetically determined or environmentally induced, contribute to immunological diseases such as autoimmune diseases. Also being addressed is how Tregs can be targeted to control physiological and pathological immune responses, for example, by depleting them to enhance tumor immunity or by expanding them to treat immunological diseases. This review discusses our current understanding of Treg immunobiology in normal and disease states, with a perspective on the realization of Treg-targeting therapies in the clinic.


Subject(s)
Disease Susceptibility , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Autoimmune Diseases/therapy , Autoimmunity , Biomarkers , Disease Management , Humans , Lymphocyte Activation/immunology , Molecular Targeted Therapy , Self Tolerance/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
9.
Annu Rev Immunol ; 38: 365-395, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31986070

ABSTRACT

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.


Subject(s)
Disease Susceptibility , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism , Immunomodulation , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Signal Transduction , Animals , Biomarkers , Humans , Immune System/immunology , Immune System/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism
10.
Annu Rev Immunol ; 37: 405-437, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30673535

ABSTRACT

Pathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.


Subject(s)
Disease Resistance/immunology , Immunity, Innate , Infections/immunology , Microbiota/immunology , Animals , Host-Pathogen Interactions , Humans , Immune Tolerance , Immunomodulation
11.
Annu Rev Immunol ; 37: 599-624, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026411

ABSTRACT

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/microbiology , Gastrointestinal Microbiome/immunology , Inflammation/microbiology , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/microbiology , Animals , Autoimmunity , Diabetes Mellitus, Type 1/immunology , Homeostasis , Humans , Immune Tolerance , Immunomodulation , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology
12.
Annu Rev Immunol ; 36: 73-101, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29144836

ABSTRACT

The cellular degradative pathway of autophagy has a fundamental role in immunity. Here, we review the function of autophagy and autophagy proteins in inflammation. We discuss how the autophagy machinery controls the burden of infectious agents while simultaneously limiting inflammatory pathologies, which often involves processes that are distinct from conventional autophagy. Among the newly emerging processes we describe are LC3-associated phagocytosis and targeting by autophagy proteins, both of which require many of the same proteins that mediate conventional autophagy. We also discuss how autophagy contributes to differentiation of myeloid and lymphoid cell types, coordinates multicellular immunity, and facilitates memory responses. Together, these functions establish an intimate link between autophagy, mucosal immunity, and chronic inflammatory diseases. Finally, we offer our perspective on current challenges and barriers to translation.


Subject(s)
Autophagy , Disease Susceptibility , Inflammation/etiology , Animals , Biomarkers , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Immunomodulation , Inflammation/diagnosis , Inflammation/metabolism , Signal Transduction
13.
Annu Rev Immunol ; 36: 755-781, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677472

ABSTRACT

Inflammatory bowel disease (IBD) defines a spectrum of complex disorders. Understanding how environmental risk factors, alterations of the intestinal microbiota, and polygenetic and epigenetic susceptibility impact on immune pathways is key for developing targeted therapies. Mechanistic understanding of polygenic IBD is complemented by Mendelian disorders that present with IBD, pharmacological interventions that cause colitis, autoimmunity, and multiple animal models. Collectively, this multifactorial pathogenesis supports a concept of immune checkpoints that control microbial-host interactions in the gut by modulating innate and adaptive immunity, as well as epithelial and mesenchymal cell responses. In addition to classical immunosuppressive strategies, we discuss how resetting the microbiota and restoring innate immune responses, in particular autophagy and epithelial barrier function, might be key for maintaining remission or preventing IBD. Targeting checkpoints in genetically stratified subgroups of patients with Mendelian disorder-associated IBD increasingly directs treatment strategies as part of personalized medicine.


Subject(s)
Disease Susceptibility/immunology , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/therapy , Animals , Biomarkers , Chronic Disease , Disease Management , Disease Models, Animal , Drug-Related Side Effects and Adverse Reactions , Dysbiosis , Gastrointestinal Microbiome , Genetic Predisposition to Disease , Humans , Inflammatory Bowel Diseases/prevention & control , Molecular Targeted Therapy , Translational Research, Biomedical
14.
Annu Rev Immunol ; 35: 501-532, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28226227

ABSTRACT

Respiratory syncytial virus (RSV) is an exceptional mucosal pathogen. It specializes in infection of the ciliated respiratory epithelium, causing disease of variable severity with little or no direct systemic effects. It infects virtually all children by the age of three years and then repeatedly infects throughout life; this it does despite relatively slight variations in antigenicity, apparently by inducing selective immunological amnesia. Inappropriate or dysregulated responses to RSV can be pathogenic, causing disease-enhancing inflammation that contributes to short- and long-term effects. In addition, RSV's importance as a largely unrecognized pathogen of debilitated older people is increasingly evident. Vaccines that induce nonpathogenic protective immunity may soon be available, and it is possible that different vaccines will be optimal for infants; older children; young to middle-age adults (including pregnant women); and elderly persons. At the dawn of RSV vaccination, it is timely to review what is known (and unknown) about immune responses to this fascinating virus.


Subject(s)
Respiratory Mucosa/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , Viral Vaccines/immunology , Adult , Aged , Animals , Child , Humans , Immune Evasion , Immunomodulation , Respiratory Mucosa/virology
15.
Cell ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38876107

ABSTRACT

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.

16.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38569543

ABSTRACT

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Subject(s)
Bacteria , Cardiovascular Diseases , Cholesterol , Gastrointestinal Microbiome , Humans , Bacteria/metabolism , Cardiovascular Diseases/metabolism , Cholesterol/analysis , Cholesterol/blood , Cholesterol/metabolism , Feces/chemistry , Longitudinal Studies , Metabolome , Metabolomics , RNA, Ribosomal, 16S/metabolism
17.
Cell ; 187(2): 390-408.e23, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38157855

ABSTRACT

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.


Subject(s)
Pulmonary Alveolar Proteinosis , Receptors, CCR2 , Child , Humans , Lung/metabolism , Macrophages, Alveolar/metabolism , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/diagnosis , Receptors, CCR2/deficiency , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Reinfection/metabolism
18.
Cell ; 187(8): 1907-1921.e16, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38552624

ABSTRACT

Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices. Within the helices, O-linked glycosylation of the hydroxyproline residues and O-galactosylation of interspersed serine residues create a carbohydrate casing. Analysis of the associated glycans reveals how the pattern of hydroxyproline repetition determines the type and extent of glycosylation. MST3 possesses a PKD2-like transmembrane domain that forms a heteromeric polycystin-like cation channel with PKD2 and SIP, explaining how mastigonemes are tethered to ciliary membranes.


Subject(s)
Chlamydomonas reinhardtii , Cilia , Glycoproteins , Cilia/chemistry , Glycoproteins/chemistry , Glycosylation , Hydroxyproline/chemistry , Plants/metabolism , Chlamydomonas reinhardtii/chemistry
19.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670072

ABSTRACT

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Subject(s)
Neurons , Animals , Mice , Rats , Neurons/metabolism , Neurons/cytology , Neurons/physiology , Blastocyst/metabolism , Blastocyst/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Brain/cytology , Brain/physiology , Female , Hippocampus/cytology , Hippocampus/physiology , Species Specificity , Mice, Inbred C57BL , Male
20.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428395

ABSTRACT

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Subject(s)
Bacteria , Gastrointestinal Tract , Metagenome , Plasmids , Humans , Bacteria/genetics , Bacteroidetes/genetics , Feces/microbiology , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL