Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.369
Filter
Add more filters

Publication year range
1.
Cell ; 174(5): 1200-1215.e20, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30100187

ABSTRACT

Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.


Subject(s)
E2F1 Transcription Factor/metabolism , Membrane Glycoproteins/metabolism , Nuclear Pore/physiology , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Carcinogenesis , Cell Nucleus/metabolism , Cell Proliferation , GATA2 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Nuclear Envelope , Nuclear Pore Complex Proteins , Signal Transduction
2.
Mol Cell ; 82(18): 3333-3349.e9, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35981542

ABSTRACT

The interaction of RB with chromatin is key to understanding its molecular functions. Here, for first time, we identify the full spectrum of chromatin-bound RB. Rather than exclusively binding promoters, as is often described, RB targets three fundamentally different types of loci (promoters, enhancers, and insulators), which are largely distinguishable by the mutually exclusive presence of E2F1, c-Jun, and CTCF. While E2F/DP facilitates RB association with promoters, AP-1 recruits RB to enhancers. Although phosphorylation in CDK sites is often portrayed as releasing RB from chromatin, we show that the cell cycle redistributes RB so that it enriches at promoters in G1 and at non-promoter sites in cycling cells. RB-bound promoters include the classic E2F-targets and are similar between lineages, but RB-bound enhancers associate with different categories of genes and vary between cell types. Thus, RB has a well-preserved role controlling E2F in G1, and it targets cell-type-specific enhancers and CTCF sites when cells enter S-phase.


Subject(s)
Chromatin , Retinoblastoma Protein , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Promoter Regions, Genetic , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Transcription Factor AP-1/genetics
3.
Annu Rev Genet ; 55: 309-329, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34496610

ABSTRACT

Perfectly orchestrated periodic gene expression during cell cycle progression is essential for maintaining genome integrity and ensuring that cell proliferation can be stopped by environmental signals. Genetic and proteomic studies during the past two decades revealed remarkable evolutionary conservation of the key mechanisms that control cell cycle-regulated gene expression, including multisubunit DNA-binding DREAM complexes. DREAM complexes containing a retinoblastoma family member, an E2F transcription factor and its dimerization partner, and five proteins related to products of Caenorhabditis elegans multivulva (Muv) class B genes lin-9, lin-37, lin-52, lin-53, and lin-54 (comprising the MuvB core) have been described in diverse organisms, from worms to humans. This review summarizes the current knowledge of the structure, function, and regulation of DREAM complexes in different organisms, as well as the role of DREAM in human disease.


Subject(s)
Caenorhabditis elegans Proteins , Proteomics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle/genetics , Cell Cycle Checkpoints , Cell Cycle Proteins/genetics , Repressor Proteins/genetics
4.
Mol Cell ; 74(4): 758-770.e4, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30982746

ABSTRACT

The cyclin-dependent kinases Cdk4 and Cdk6 form complexes with D-type cyclins to drive cell proliferation. A well-known target of cyclin D-Cdk4,6 is the retinoblastoma protein Rb, which inhibits cell-cycle progression until its inactivation by phosphorylation. However, the role of Rb phosphorylation by cyclin D-Cdk4,6 in cell-cycle progression is unclear because Rb can be phosphorylated by other cyclin-Cdks, and cyclin D-Cdk4,6 has other targets involved in cell division. Here, we show that cyclin D-Cdk4,6 docks one side of an alpha-helix in the Rb C terminus, which is not recognized by cyclins E, A, and B. This helix-based docking mechanism is shared by the p107 and p130 Rb-family members across metazoans. Mutation of the Rb C-terminal helix prevents its phosphorylation, promotes G1 arrest, and enhances Rb's tumor suppressive function. Our work conclusively demonstrates that the cyclin D-Rb interaction drives cell division and expands the diversity of known cyclin-based protein docking mechanisms.


Subject(s)
Cell Proliferation/genetics , Cyclin D/genetics , Protein Interaction Maps/genetics , Retinoblastoma Protein/genetics , Cell Cycle/genetics , Crk-Associated Substrate Protein/genetics , Cyclin D/chemistry , Cyclin-Dependent Kinase 4/chemistry , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/chemistry , Cyclin-Dependent Kinase 6/genetics , Cyclins/genetics , G1 Phase/genetics , Humans , Molecular Docking Simulation , Phosphorylation/genetics , Protein Binding/genetics , Protein Conformation, alpha-Helical/genetics , Retinoblastoma Protein/chemistry , Retinoblastoma-Like Protein p107/genetics , S Phase/genetics
5.
Mol Cell ; 76(4): 562-573.e4, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31543423

ABSTRACT

Cells escape the need for mitogens at a restriction point several hours before entering S phase. The restriction point has been proposed to result from CDK4/6 initiating partial Rb phosphorylation to trigger a bistable switch whereby cyclin E-CDK2 and Rb mutually reinforce each other to induce Rb hyperphosphorylation. Here, using single-cell analysis, we unexpectedly found that cyclin E/A-CDK activity can only maintain Rb hyperphosphorylation starting at the onset of S phase and that CDK4/6 activity, but not cyclin E/A-CDK activity, is required to hyperphosphorylate Rb throughout G1 phase. Mitogen removal in G1 results in a gradual loss of CDK4/6 activity with a high likelihood of cells sustaining Rb hyperphosphorylation until S phase, at which point cyclin E/A-CDK activity takes over. Thus, it is short-term memory, or transient hysteresis, in CDK4/6 activity following mitogen removal that sustains Rb hyperphosphorylation, demonstrating a probabilistic rather than an irreversible molecular mechanism underlying the restriction point.


Subject(s)
Cell Proliferation , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Epithelial Cells/drug effects , G1 Phase Cell Cycle Checkpoints , Mitogens/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , Epithelial Cells/enzymology , Fibroblasts/drug effects , Fibroblasts/enzymology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Mice , Models, Biological , Phosphorylation , Retinoblastoma Binding Proteins/metabolism , Signal Transduction , Time Factors , Ubiquitin-Protein Ligases/metabolism
6.
Mol Cell ; 74(6): 1264-1277.e7, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31130363

ABSTRACT

E2F1, E2F2, and E2F3A, the three activators of the E2F family of transcription factors, are key regulators of the G1/S transition, promoting transcription of hundreds of genes critical for cell-cycle progression. We found that during late S and in G2, the degradation of all three activator E2Fs is controlled by cyclin F, the substrate receptor of 1 of 69 human SCF ubiquitin ligase complexes. E2F1, E2F2, and E2F3A interact with the cyclin box of cyclin F via their conserved N-terminal cyclin binding motifs. In the short term, E2F mutants unable to bind cyclin F remain stable throughout the cell cycle, induce unscheduled transcription in G2 and mitosis, and promote faster entry into the next S phase. However, in the long term, they impair cell fitness. We propose that by restricting E2F activity to the S phase, cyclin F controls one of the main and most critical transcriptional engines of the cell cycle.


Subject(s)
Cell Cycle/genetics , Cyclins/genetics , E2F1 Transcription Factor/genetics , E2F2 Transcription Factor/genetics , E2F3 Transcription Factor/genetics , SKP Cullin F-Box Protein Ligases/genetics , Transcription, Genetic , Cell Line, Tumor , Cyclins/metabolism , E2F1 Transcription Factor/metabolism , E2F2 Transcription Factor/metabolism , E2F3 Transcription Factor/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Regulation , Genetic Fitness , HEK293 Cells , HeLa Cells , Humans , Mutation , Osteoblasts/cytology , Osteoblasts/metabolism , Proteolysis , SKP Cullin F-Box Protein Ligases/metabolism , Signal Transduction , Ubiquitination
7.
Proc Natl Acad Sci U S A ; 121(41): e2414618121, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39361641

ABSTRACT

The transcription factor E2F1 serves as a regulator of the cell cycle and promotes cell proliferation. It is highly expressed in cancer tissues and contributes to their malignant transformation. Degradation by the ubiquitin-proteasome system may help to prevent such overexpression of E2F1 and thereby to suppress carcinogenesis. A detailed understanding of the mechanisms underlying E2F1 degradation may therefore inform the development of new cancer treatments. We here identified SCFFBXW7 as a ubiquitin ligase for E2F1 by comprehensive analysis. We found that phosphorylation of E2F1 at serine-403 promotes its binding to FBXW7 (F-box/WD repeat-containing protein 7) followed by its ubiquitination and degradation. Furthermore, calcineurin, a Ca2+/calmodulin-dependent serine-threonine phosphatase, was shown to stabilize E2F1 by mediating its dephosphorylation at serine-403 and thereby preventing FBXW7 binding. Treatment of cells with Ca2+ channel blockers resulted in downregulation of both E2F1 protein and the expression of E2F1 target genes, whereas treatment with the Ca2+ ionophore ionomycin induced upregulation of E2F1. Finally, the calcineurin inhibitor FK506 attenuated xenograft tumor growth in mice in association with downregulation of E2F1 in the tumor tissue. Impairment of the balance between the opposing actions of FBXW7 and calcineurin in the regulation of E2F1 abundance may therefore play an important role in carcinogenesis.


Subject(s)
Calcineurin , E2F1 Transcription Factor , F-Box-WD Repeat-Containing Protein 7 , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Calcineurin/metabolism , Calcineurin/genetics , Humans , Phosphorylation , Animals , Mice , Ubiquitination , Protein Binding , HEK293 Cells , Tacrolimus/pharmacology , Cell Line, Tumor , Protein Stability , Proteolysis
8.
Trends Biochem Sci ; 47(12): 1009-1022, 2022 12.
Article in English | MEDLINE | ID: mdl-35835684

ABSTRACT

Cell cycle-dependent gene transcription is tightly controlled by the retinoblastoma (RB):E2F and DREAM complexes, which repress all cell cycle genes during quiescence. Cyclin-dependent kinase (CDK) phosphorylation of RB and DREAM allows for the expression of two gene sets. The first set of genes, with peak expression in G1/S, is activated by E2F transcription factors (TFs) and is required for DNA synthesis. The second set, with maximum expression during G2/M, is required for mitosis and is coordinated by the MuvB complex, together with B-MYB and Forkhead box M1 (FOXM1). In this review, we summarize the key findings that established the distinct control mechanisms regulating G1/S and G2/M gene expression in mammals and discuss recent advances in the understanding of the temporal control of these genes.


Subject(s)
Cell Cycle Proteins , Repressor Proteins , Animals , Repressor Proteins/genetics , Cell Cycle/genetics , Cell Cycle Proteins/metabolism , Mitosis , Cyclin-Dependent Kinases/genetics , Gene Expression , Mammals
9.
Development ; 150(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37260146

ABSTRACT

The cell cycle depends on a sequence of steps that are triggered and terminated via the synthesis and degradation of phase-specific transcripts and proteins. Although much is known about how stage-specific transcription is activated, less is understood about how inappropriate gene expression is suppressed. Here, we demonstrate that Groucho, the Drosophila orthologue of TLE1 and other related human transcriptional corepressors, regulates normal cell cycle progression in vivo. We show that, although Groucho is expressed throughout the cell cycle, its activity is selectively inactivated by phosphorylation, except in S phase when it negatively regulates E2F1. Constitutive Groucho activity, as well as its depletion and the consequent derepression of e2f1, cause cell cycle phenotypes. Our results suggest that Cdk1 contributes to phase-specific phosphorylation of Groucho in vivo. We propose that Groucho and its orthologues play a role in the metazoan cell cycle that may explain the links between TLE corepressors and several types of human cancer.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Drosophila Proteins , E2F1 Transcription Factor , Repressor Proteins , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Cycle/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Drosophila/metabolism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , G2 Phase , Repressor Proteins/genetics , Repressor Proteins/metabolism , S Phase , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
10.
Immunity ; 47(1): 66-79.e5, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28723554

ABSTRACT

Hypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell-intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF-κB signaling and a transcription factor E2F1-dependent metabolic pathway by the cytokine RANKL. Downregulation of COMMD1 protein expression by hypoxia augmented RANKL-induced expression of inflammatory and E2F1 target genes and downstream osteoclastogenesis. E2F1 targets included glycolysis and metabolic genes including CKB that enabled cells to meet metabolic demands in challenging environments, as well as inflammatory cytokine-driven target genes. Expression quantitative trait locus analysis linked increased COMMD1 expression with decreased bone erosion in rheumatoid arthritis. Myeloid deletion of Commd1 resulted in increased osteoclastogenesis in arthritis and inflammatory osteolysis models. These results identify COMMD1 and an E2F-metabolic pathway as key regulators of osteoclastogenic responses under pathological inflammatory conditions and provide a mechanism by which hypoxia augments inflammation and bone destruction.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Arthritis, Rheumatoid/immunology , Macrophages/immunology , Osteogenesis/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Cells, Cultured , Disease Models, Animal , E2F1 Transcription Factor/metabolism , Female , Humans , Hypoxia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , NF-kappa B/metabolism , RNA, Small Interfering/genetics , Signal Transduction
11.
Bioessays ; 46(2): e2300125, 2024 02.
Article in English | MEDLINE | ID: mdl-38059789

ABSTRACT

DREAM complexes are transcriptional regulators that control the expression of hundreds to thousands of target genes involved in the cell cycle, quiescence, differentiation, and apoptosis. These complexes contain many subunits that can vary according to the considered target genes. Depending on their composition and the nature of the partners they recruit, DREAM complexes control gene expression through diverse mechanisms, including chromatin remodeling, transcription cofactor and factor recruitment at various genomic binding sites. This complexity is particularly high in mammals. Since the discovery of the first dREAM complex (drosophila Rb, E2F, and Myb) in Drosophila melanogaster, model organisms such as Caenorhabditis elegans, and plants allowed a deeper understanding of the processes regulated by DREAM-like complexes. Here, we review the conservation of these complexes. We discuss the contribution of model organisms to the study of DREAM-mediated transcriptional regulatory mechanisms and their relevance in characterizing novel activities of DREAM complexes.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation , Drosophila/genetics , Cell Cycle , Cell Cycle Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Mammals/metabolism , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism
12.
Proc Natl Acad Sci U S A ; 120(20): e2218229120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155905

ABSTRACT

Castration-resistant prostate cancer (CRPC) poses a major clinical challenge with the androgen receptor (AR) remaining to be a critical oncogenic player. Several lines of evidence indicate that AR induces a distinct transcriptional program after androgen deprivation in CRPCs. However, the mechanism triggering AR binding to a distinct set of genomic loci in CRPC and how it promotes CRPC development remain unclear. We demonstrate here that atypical ubiquitination of AR mediated by an E3 ubiquitin ligase TRAF4 plays an important role in this process. TRAF4 is highly expressed in CRPCs and promotes CRPC development. It mediates K27-linked ubiquitination at the C-terminal tail of AR and increases its association with the pioneer factor FOXA1. Consequently, AR binds to a distinct set of genomic loci enriched with FOXA1- and HOXB13-binding motifs to drive different transcriptional programs including an olfactory transduction pathway. Through the surprising upregulation of olfactory receptor gene transcription, TRAF4 increases intracellular cAMP levels and boosts E2F transcription factor activity to promote cell proliferation under androgen deprivation conditions. Altogether, these findings reveal a posttranslational mechanism driving AR-regulated transcriptional reprogramming to provide survival advantages for prostate cancer cells under castration conditions.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgens , Androgen Antagonists , TNF Receptor-Associated Factor 4/metabolism , Cell Line, Tumor , Ubiquitination , Gene Expression Regulation, Neoplastic
13.
Proc Natl Acad Sci U S A ; 120(15): e2220770120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37011211

ABSTRACT

The canonical role of the transcription factor E2F is to control the expression of cell cycle genes by binding to the E2F sites in their promoters. However, the list of putative E2F target genes is extensive and includes many metabolic genes, yet the significance of E2F in controlling the expression of these genes remains largely unknown. Here, we used the CRISPR/Cas9 technology to introduce point mutations in the E2F sites upstream of five endogenous metabolic genes in Drosophila melanogaster. We found that the impact of these mutations on both the recruitment of E2F and the expression of the target genes varied, with the glycolytic gene, Phosphoglycerate kinase (Pgk), being mostly affected. The loss of E2F regulation on the Pgk gene led to a decrease in glycolytic flux, tricarboxylic acid cycle intermediates levels, adenosine triphosphate (ATP) content, and an abnormal mitochondrial morphology. Remarkably, chromatin accessibility was significantly reduced at multiple genomic regions in PgkΔE2F mutants. These regions contained hundreds of genes, including metabolic genes that were downregulated in PgkΔE2F mutants. Moreover, PgkΔE2F animals had shortened life span and exhibited defects in high-energy consuming organs, such as ovaries and muscles. Collectively, our results illustrate how the pleiotropic effects on metabolism, gene expression, and development in the PgkΔE2F animals underscore the importance of E2F regulation on a single E2F target, Pgk.


Subject(s)
Drosophila Proteins , Drosophila , E2F Transcription Factors , Phosphoglycerate Kinase , Animals , Chromatin , Drosophila/genetics , E2F Transcription Factors/genetics , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism , Promoter Regions, Genetic , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
14.
Genes Dev ; 32(11-12): 742-762, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29884649

ABSTRACT

Changes in DNA methylation are among the best-documented epigenetic alterations accompanying organismal aging. However, whether and how altered DNA methylation is causally involved in aging have remained elusive. GADD45α (growth arrest and DNA damage protein 45A) and ING1 (inhibitor of growth family member 1) are adapter proteins for site-specific demethylation by TET (ten-eleven translocation) methylcytosine dioxygenases. Here we show that Gadd45a/Ing1 double-knockout mice display segmental progeria and phenocopy impaired energy homeostasis and lipodystrophy characteristic of Cebp (CCAAT/enhancer-binding protein) mutants. Correspondingly, GADD45α occupies C/EBPß/δ-dependent superenhancers and, cooperatively with ING1, promotes local DNA demethylation via long-range chromatin loops to permit C/EBPß recruitment. The results indicate that enhancer methylation can affect aging and imply that C/EBP proteins play an unexpected role in this process. Our study suggests a causal nexus between DNA demethylation, metabolism, and organismal aging.


Subject(s)
Aging, Premature/genetics , Aging/genetics , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Demethylation , Inhibitor of Growth Protein 1/metabolism , Nuclear Proteins/metabolism , Animals , Cell Cycle Proteins/genetics , Cells, Cultured , Homeostasis/genetics , Inhibitor of Growth Protein 1/genetics , Lipodystrophy/genetics , Mice , Mice, Knockout , Nuclear Proteins/genetics
15.
Genes Cells ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39357875

ABSTRACT

Regular exercise is believed to suppress cancer progression. However, the precise molecular mechanisms by which exercise prevents cancer development remain unclear. In this study, using a steatosis-associated liver cancer mouse model, we found that regular exercise at a speed of 18 m/min for 20 min daily suppressed liver cancer development. To explore the underlying mechanisms, we examined the gene expression profiles in the livers of the exercise and non-exercise groups. The expressions of circadian genes, such as Per1 and Cry2, were upregulated in the exercise group. As circadian rhythm disruption is known to cause various diseases, including cancer, improving circadian rhythm through exercise could contribute to cancer prevention. We further found that the expression of a series of E2F1 and c-Myc target genes that directly affect the proliferation of cancer cells was downregulated in the exercise group. However, the expression of E2F1 and c-Myc was transcriptionally unchanged but degraded at the post-translational level by exercise. Cry2, which is regulated by the Skp1-Cul1-FBXL3 (SCFFBXL3) ubiquitin ligase complex by binding to FBXL3, can form a complex with E2F1 and c-Myc, which we think is the mechanism to degrade them. Our study revealed a previously unknown mechanism by which exercise prevents cancer development.

16.
J Virol ; 98(10): e0099524, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39291960

ABSTRACT

Epstein-Barr virus (EBV) co-infections with human papillomavirus (HPV) have been observed in oropharyngeal squamous cell carcinoma. Modeling EBV/HPV co-infection in organotypic epithelial raft cultures revealed that HPV16 E7 inhibited EBV productive replication through the facilitated degradation of the retinoblastoma protein pRb/p105. To further understand how pRb is required for EBV productive replication, we generated CRISPR-Cas9 pRb knockout (KO) normal oral keratinocytes (NOKs) in the context of wild-type and mutant K120E p53. EBV replication was examined in organotypic rafts as a physiological correlate for epithelial differentiation. In pRb KO rafts, EBV DNA copy number was statistically decreased compared to vector controls, regardless of p53 context. Loss of pRb did not affect EBV binding or internalization of calcium-treated NOKs or early infection of rafts. Rather, the block in EBV replication correlated with impaired immediate early gene expression. An EBV infection time course in rafts with mutant p53 demonstrated that pRb-positive basal cells were initially infected with delayed replication occurring in differentiated layers. Loss of pRb showed increased S-phase progression makers and elevated activator E2F activity in raft tissues. Complementation with a panel of pRb/E2F binding mutants showed that wild type or pRb∆685 mutant capable of E2F binding reduced S-phase marker gene expression, rescued EBV DNA replication, and restored BZLF1 expression in pRb KO rafts. However, pRb KO complemented with pRb661W mutant, unable to bind E2Fs, failed to rescue EBV replication in raft culture. These findings suggest that EBV productive replication in differentiated epithelium requires pRb inhibition of activator E2Fs to restrict S-phase progression.IMPORTANCEA subset of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma is co-positive for Epstein-Barr virus (EBV). Potential oncogenic viral interactions revealed that HPV16 E7 inhibited productive EBV replication within the differentiated epithelium. As E7 mediates the degradation of pRb, we aimed to establish how pRb is involved in EBV replication. In the context of differentiated epithelium using organotypic raft culture, we evaluated how the loss of pRb affects EBV lytic replication to better comprehend EBV contributions to carcinogenesis. In this study, ablation of pRb interfered with EBV replication at the level of immediate early gene expression. Loss of pRb increased activator E2Fs and associated S-phase gene expression throughout the differentiated epithelium. Complementation studies showed that wild type and pRb mutant capable of binding to E2F rescued EBV replication, while pRb mutant lacking E2F binding did not. Altogether, these studies support that in differentiated tissues, HPV16 E7-mediated degradation of pRb inhibits EBV replication through unregulated E2F activity.


Subject(s)
E2F Transcription Factors , Herpesvirus 4, Human , Keratinocytes , Retinoblastoma Protein , Virus Replication , Herpesvirus 4, Human/physiology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Humans , Keratinocytes/virology , Keratinocytes/metabolism , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , E2F Transcription Factors/metabolism , E2F Transcription Factors/genetics , Cell Differentiation , Papillomavirus E7 Proteins/metabolism , Papillomavirus E7 Proteins/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Epithelial Cells/virology , Epithelial Cells/metabolism , Papillomavirus Infections/virology , Papillomavirus Infections/metabolism , Papillomavirus Infections/genetics , Human papillomavirus 16/physiology , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism
17.
J Virol ; 98(6): e0042324, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38771044

ABSTRACT

Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE: Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.


Subject(s)
Cell Cycle , E2F2 Transcription Factor , Gene Expression Regulation, Viral , Herpesvirus 1, Bovine , Immediate-Early Proteins , Promoter Regions, Genetic , Receptors, Glucocorticoid , Transcriptional Activation , Animals , Cattle , Mice , Binding Sites , Cell Line , Dexamethasone/pharmacology , E2F2 Transcription Factor/metabolism , Gene Expression Regulation, Viral/drug effects , Gene Expression Regulation, Viral/genetics , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , Herpesviridae Infections/veterinary , Herpesviridae Infections/genetics , Herpesvirus 1, Bovine/genetics , Herpesvirus 1, Bovine/physiology , Immediate-Early Proteins/genetics , Neurons/virology , Receptors, Glucocorticoid/metabolism , Response Elements/genetics , Sp1 Transcription Factor/metabolism , Trans-Activators/metabolism , Trigeminal Ganglion/cytology , Trigeminal Ganglion/virology , Virus Activation , Virus Latency
18.
FASEB J ; 38(8): e23631, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38661062

ABSTRACT

Recurrent miscarriage (RM) is related to the dysfunction of extravillous trophoblast cells (EVTs), but the comprehensive mechanisms remain largely unexplored. We analyzed single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing and microarray datasets obtained from Gene Expression Omnibus (GEO) database to explore the hub genes in the mechanisms of RM. We identified 1724 differentially expressed genes (DEGs) in EVTs from the RM, and they were all expressed along the trajectory of EVTs. These DEGs were associated with hypoxia and glucose metabolism. Single-cell Regulatory Network Inference and Clustering (SCENIC) analysis revealed that E2F transcription factor (E2F) 8 (E2F8) was a key transcription factor for these DEGs. And the expression of ENO1 can be positively regulated by E2F8 via RNA sequencing analysis. Subsequently, we performed immunofluorescence assay (IF), plasmid transfection, western blotting, chromatin immunoprecipitation (ChIP), real-time quantitative polymerase chain reaction (qRT-PCR), and transwell assays for validation experiments. We found that the expression of alpha-Enolase 1 (ENO1) was lower in the placentas of RM. Importantly, E2F8 can transcriptionally regulate the expression of ENO1 to promote the invasion of trophoblast cells by inhibiting secreted frizzled-related protein 1/4 (SFRP1/4) to activate Wnt signaling pathway. Our results suggest that ENO1 can promote trophoblast invasion via an E2F8-dependent manner, highlighting a potential novel target for the physiological mechanisms of RM.


Subject(s)
Abortion, Habitual , DNA-Binding Proteins , Repressor Proteins , Trophoblasts , Adult , Female , Humans , Pregnancy , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Abortion, Habitual/pathology , Cell Movement , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Phosphopyruvate Hydratase/metabolism , Phosphopyruvate Hydratase/genetics , Trophoblasts/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Repressor Proteins/metabolism
19.
J Pathol ; 264(1): 68-79, 2024 09.
Article in English | MEDLINE | ID: mdl-39022843

ABSTRACT

Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
E2F1 Transcription Factor , Epithelial-Mesenchymal Transition , Histone Demethylases , Prostatic Neoplasms , Snail Family Transcription Factors , Transcription Factors , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/enzymology , Animals , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Mice , Histone Demethylases/metabolism , Histone Demethylases/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Mice, Knockout , Signal Transduction , Neoplasm Metastasis , Mice, Transgenic , Cell Movement
20.
Exp Cell Res ; 435(2): 113931, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38253280

ABSTRACT

The mortality rate linked with nephrotic syndrome (NS) is quite high. The renal tubular injury influences the response of NS patients to steroid treatment. KN motif and ankyrin repeat domains 2 (KANK2) regulates actin polymerization, which is required for renal tubular cells to maintain their function. In this study, we found that the levels of KANK2 in patients with NS were considerably lower than those in healthy controls, especially in NS patients with acute kidney injury (AKI). To get a deeper understanding of the KANK2 transcriptional control mechanism, the core promoter region of the KANK2 gene was identified. KANK2 was further found to be positively regulated by E2F Transcription Factor 1 (E2F1), Transcription Factor AP-2 Gamma (TFAP2C), and Nuclear Respiratory Factor 1 (NRF1), both at mRNA and protein levels. Knocking down E2F1, TFAP2C, or NRF1 deformed the cytoskeleton of renal tubular cells and reduced F-actin content. EMSA and ChIP assays confirmed that all three transcription factors could bind to the upstream promoter transcription site of KANK2 to transactivate KANK2 in renal tubular epithelial cells. Our study suggests that E2F1, TFAP2C, and NRF1 play essential roles in regulating the KANK2 transcription, therefore shedding fresh light on the development of putative therapeutic options for the treatment of NS patients.


Subject(s)
Nephrotic Syndrome , Nuclear Respiratory Factor 1 , Humans , Nuclear Respiratory Factor 1/metabolism , Nephrotic Syndrome/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Promoter Regions, Genetic/genetics , E2F1 Transcription Factor/genetics , Transcription Factor AP-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL