Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 224, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376550

ABSTRACT

The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: •  The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. •  The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. •  Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.


Subject(s)
Autophagy , Glycoproteins , Animals , Cricetinae , CHO Cells , Cricetulus , Glycoproteins/genetics , Nucleotides , Sugars
2.
J Biotechnol ; 375: 12-16, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37634828

ABSTRACT

Increasing the screening efficiency and maintaining the N-terminal cleavage pattern are key factors in the development of an in vitro synthetic signal peptide screening system for high therapeutic protein production in Chinese hamster ovary (CHO) cells. This study improved the in vitro screening system of synthetic signal peptides in CHO cells for therapeutic protein production by modifying the expression vector. Incorporating a leaky stop codon with IgG transmembrane and cytoplasmic domains into the expression vector improved the proportion of high producers in establishing stable CHO cell pools. The selected signal peptides from stable CHO cell pools that were generated using degenerate codon-based oligonucleotides with a conserved polar carboxy-terminal domain in the native signal peptide showed similar N-terminal cleavage patterns to the native one. In addition, replacing native signal peptide with selected synthetic signal peptides did not influence the sialylated N-linked glycan formation and biological activity of therapeutic Fc-fusion glycoprotein in CHO cells. Thus, an in vitro synthetic signal peptide screening system can be used for therapeutic Fc-fusion glycoprotein production in CHO cells with an enhanced specific protein productivity while maintaining the N-terminal cleavage pattern similar to the native one.


Subject(s)
Oligonucleotides , Protein Sorting Signals , Animals , Cricetinae , Protein Sorting Signals/genetics , CHO Cells , Cricetulus
SELECTION OF CITATIONS
SEARCH DETAIL