Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.177
Filter
Add more filters

Publication year range
1.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38980277

ABSTRACT

Many animals share a lifelong capacity to adapt their growth rates and body sizes to changing environmental food supplies. However, the cellular and molecular basis underlying this plasticity remains only poorly understood. We therefore studied how the sea anemones Nematostella vectensis and Aiptasia (Exaiptasia pallida) respond to feeding and starvation. Combining quantifications of body size and cell numbers with mathematical modelling, we observed that growth and shrinkage rates in Nematostella are exponential, stereotypic and accompanied by dramatic changes in cell numbers. Notably, shrinkage rates, but not growth rates, are independent of body size. In the facultatively symbiotic Aiptasia, we show that growth and cell proliferation rates are dependent on the symbiotic state. On a cellular level, we found that >7% of all cells in Nematostella juveniles reversibly shift between S/G2/M and G1/G0 cell cycle phases when fed or starved, respectively. Furthermore, we demonstrate that polyp growth and cell proliferation are dependent on TOR signalling during feeding. Altogether, we provide a benchmark and resource for further investigating the nutritional regulation of body plasticity on multiple scales using the genetic toolkit available for Nematostella.


Subject(s)
Body Size , Cell Proliferation , Sea Anemones , Animals , Sea Anemones/cytology , Sea Anemones/physiology , Cell Cycle/physiology , Feeding Behavior/physiology , Signal Transduction , Symbiosis , TOR Serine-Threonine Kinases/metabolism
2.
Proc Natl Acad Sci U S A ; 121(22): e2317264121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781211

ABSTRACT

The phagotrophic flagellates described as "typical excavates" have been hypothesized to be morphologically similar to the Last Eukaryotic Common Ancestor and understanding the functional ecology of excavates may therefore help shed light on the ecology of these early eukaryotes. Typical excavates are characterized by a posterior flagellum equipped with a vane that beats in a ventral groove. Here, we combined flow visualization and observations of prey capture in representatives of the three clades of excavates with computational fluid dynamic modeling, to understand the functional significance of this cell architecture. We record substantial differences amongst species in the orientation of the vane and the beat plane of the posterior flagellum. Clearance rate magnitudes estimated from flow visualization and modeling are both like that of other similarly sized flagellates. The interaction between a vaned flagellum beating in a confinement is modeled to produce a very efficient feeding current at low energy costs, irrespective of the beat plane and vane orientation and of all other morphological variations. Given this predicted uniformity of function, we suggest that the foraging systems of typical excavates studied here may be good proxies to understand those potentially used by our distant ancestors more than 1 billion years ago.


Subject(s)
Flagella , Flagella/physiology , Animals , Eukaryota/physiology , Models, Biological , Biological Evolution , Hydrodynamics
3.
Bioessays ; 46(5): e2300241, 2024 May.
Article in English | MEDLINE | ID: mdl-38537113

ABSTRACT

Decaying wood, while an abundant and stable resource, presents considerable nutritional challenges due to its structural rigidity, chemical recalcitrance, and low nitrogen content. Despite these challenges, certain insect lineages have successfully evolved saproxylophagy (consuming and deriving sustenance from decaying wood), impacting nutrient recycling in ecosystems and carbon sequestration dynamics. This study explores the uneven phylogenetic distribution of saproxylophagy across insects and delves into the evolutionary origins of this trait in disparate insect orders. Employing a comprehensive analysis of gut microbiome data, from both saproxylophagous insects and their non-saproxylophagous relatives, including new data from unexplored wood-feeding insects, this Hypothesis paper discusses the broader phylogenetic context and potential adaptations necessary for this dietary specialization. The study proposes the "Detritivore-First Hypothesis," suggesting an evolutionary pathway to saproxylophagy through detritivory, and highlights the critical role of symbiotic gut microbiomes in the digestion of decaying wood.


Subject(s)
Biological Evolution , Gastrointestinal Microbiome , Insecta , Wood , Animals , Feeding Behavior/physiology , Insecta/classification , Insecta/microbiology , Insecta/physiology , Mastication , Phylogeny
4.
J Neurosci ; 44(30)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38897723

ABSTRACT

Light plays an essential role in a variety of physiological processes, including vision, mood, and glucose homeostasis. However, the intricate relationship between light and an animal's feeding behavior has remained elusive. Here, we found that light exposure suppresses food intake, whereas darkness amplifies it in male mice. Interestingly, this phenomenon extends its reach to diurnal male Nile grass rats and healthy humans. We further show that lateral habenula (LHb) neurons in mice respond to light exposure, which in turn activates 5-HT neurons in the dorsal Raphe nucleus (DRN). Activation of the LHb→5-HTDRN circuit in mice blunts darkness-induced hyperphagia, while inhibition of the circuit prevents light-induced anorexia. Together, we discovered a light-responsive neural circuit that relays the environmental light signals to regulate feeding behavior in mice.


Subject(s)
Feeding Behavior , Habenula , Light , Animals , Male , Mice , Habenula/physiology , Feeding Behavior/physiology , Dorsal Raphe Nucleus/physiology , Humans , Mice, Inbred C57BL , Eating/physiology , Neural Pathways/physiology , Rats , Serotonergic Neurons/physiology , Nerve Net/physiology , Darkness
5.
Plant J ; 119(2): 879-894, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923085

ABSTRACT

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Gossypium/genetics , Gossypium/parasitology , Gossypium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Animals , Gibberellins/metabolism , Gossypol/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Disease Resistance/genetics , Plant Diseases/parasitology , Plant Diseases/immunology , Moths/physiology , Larva/growth & development
6.
BMC Biol ; 22(1): 22, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38281940

ABSTRACT

BACKGROUND: Hematophagous mosquitoes transmit many pathogens that cause human diseases. Pathogen acquisition and transmission occur when female mosquitoes blood feed to acquire nutrients for reproduction. The midgut epithelium of mosquitoes serves as the point of entry for transmissible viruses and parasites. RESULTS: We studied midgut epithelial dynamics in five major mosquito vector species by quantifying PH3-positive cells (indicative of mitotic proliferation), the incorporation of nucleotide analogs (indicative of DNA synthesis accompanying proliferation and/or endoreplication), and the ploidy (by flow cytometry) of cell populations in the posterior midgut epithelium of adult females. Our results show that the epithelial dynamics of post-emergence maturation and of mature sugar-fed guts were similar in members of the Aedes, Culex, and Anopheles genera. In the first three days post-emergence, ~ 20% of cells in the posterior midgut region of interest incorporated nucleotide analogs, concurrent with both proliferative activity and a broad shift toward higher ploidy. In mature mosquitoes maintained on sugar, an average of 3.5% of cells in the posterior midgut region of interest incorporated nucleotide analogs from five to eight days post-emergence, with a consistent presence of mitotic cells indicating constant cell turnover. Oral bacterial infection triggered a sharp increase in mitosis and nucleotide analog incorporation, suggesting that the mosquito midgut undergoes accelerated cellular turnover in response to damage. Finally, blood feeding resulted in an increase in cell proliferation, but the nature and intensity of the response varied by mosquito species and by blood source (human, bovine, avian or artificial). In An. gambiae, enterocytes appeared to reenter the cell cycle to increase ploidy after consuming blood from all sources except avian. CONCLUSIONS: We saw that epithelial proliferation, differentiation, and endoreplication reshape the blood-fed gut to increase ploidy, possibly to facilitate increased metabolic activity. Our results highlight the plasticity of the midgut epithelium in mosquitoes' physiological responses to distinct challenges.


Subject(s)
Aedes , Anopheles , Animals , Female , Cattle , Humans , Endoreduplication , Epithelium , Cell Proliferation , Sugars , Nucleotides
7.
Nano Lett ; 24(31): 9675-9682, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39058271

ABSTRACT

Feeding silkworms with functional materials as additives to produce naturally modified silk is a facile, diverse, controllable, and environmentally friendly method with a low cost of time and investment. Among various additives, carbon dots (CDs) show unique advantages due to their excellent biocompatibility and fluorescence stability. Here, a new type of green fluorescent carbon dots (G-CDs) is synthesized with a high oil-water partition ratio of 147, a low isoelectric point of 5.16, an absolute quantum yield of 71%, and critically controlled surface states. After feeding with G-CDs, the silkworms weave light yellow cocoons whose green fluorescence is visible to the naked eye under UV light. The luminous silk is sewn onto the cloth to create striking patterns with beautiful fluorescence. Such G-CDs have no adverse effect on the survival rate and the life cycle of silkworms and enable their whole bodies to glow under UV light. Based on the strong fluorescence, chemical stability, and biological safety, G-CDs are found in the digestive tracts, silk glands, feces, cocoons, and even moth bodies. G-CDs accumulate in the posterior silk glands where fibroin protein is secreted, indicating its stronger combination with fibroin than sericin, which meets the requirements for practical applications.


Subject(s)
Bombyx , Carbon , Quantum Dots , Silk , Animals , Silk/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Fibroins/chemistry , Ultraviolet Rays , Fluorescence , Fluorescent Dyes/chemistry , Surface Properties
8.
J Infect Dis ; 229(6): 1894-1903, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38408353

ABSTRACT

BACKGROUND: Plasmodium falciparum and Plasmodium vivax account for >90% global malaria burden. Transmission intervention strategies encompassing transmission-blocking vaccines (TBV) and drugs represent ideal public health tools to eliminate malaria at the population level. The availability of mature P. falciparum gametocytes through in vitro culture has facilitated development of a standard membrane feeding assay to assess efficacy of transmission interventions against P. falciparum. The lack of in vitro culture for P. vivax has significantly hampered similar progress on P. vivax and limited studies have been possible using blood from infected patients in endemic areas. The ethical and logistical limitations of on-time access to blood from patients have impeded the development of P. vivax TBVs. METHODS: Transgenic murine malaria parasites (Plasmodium berghei) expressing TBV candidates offer a promising alternative for evaluation of P. vivax TBVs through in vivo studies in mice, and ex vivo membrane feeding assay (MFA). RESULTS: We describe the development of transmission-competent transgenic TgPbvs25 parasites and optimization of parameters to establish an ex vivo MFA to evaluate P. vivax TBV based on Pvs25 antigen. CONCLUSIONS: The MFA is expected to expedite Pvs25-based TBV development without dependence on blood from P. vivax-infected patients in endemic areas for evaluation.


Subject(s)
Malaria Vaccines , Malaria, Vivax , Plasmodium berghei , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/genetics , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Malaria, Vivax/transmission , Malaria, Vivax/prevention & control , Malaria, Vivax/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Mice , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Humans , Female , Antigens, Surface
9.
Gut ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39084687

ABSTRACT

OBJECTIVE: The specific breast milk-derived metabolites that mediate host-microbiota interactions and contribute to the onset of atopic dermatitis (AD) remain unknown and require further investigation. DESIGN: We enrolled 250 mother-infant pairs and collected 978 longitudinal faecal samples from infants from birth to 6 months of age, along with 243 maternal faecal samples for metagenomics. Concurrently, 239 corresponding breast milk samples were analysed for metabolomics. Animal and cellular experiments were conducted to validate the bioinformatics findings. RESULTS: The clinical findings suggested that a decrease in daily breastfeeding duration was associated with a reduced incidence of AD. This observation inspired us to investigate the effects of breast milk-derived fatty acids. We found that high concentrations of arachidonic acid (AA), but not eicosapentaenoic acid (EPA) or docosahexaenoic acid, induced gut dysbiosis in infants. Further investigation revealed that four specific bacteria degraded mannan into mannose, consequently enhancing the mannan-dependent biosynthesis of O-antigen and lipopolysaccharide. Correlation analysis confirmed that in infants with AD, the abundance of Escherichia coli under high AA concentrations was positively correlated with some microbial pathways (eg, 'GDP-mannose-derived O-antigen and lipopolysaccharide biosynthesis'). These findings are consistent with those of the animal studies. Additionally, AA, but not EPA, disrupted the ratio of CD4/CD8 cells, increased skin lesion area and enhanced the proportion of peripheral Th2 cells. It also promoted IgE secretion and the biosynthesis of prostaglandins and leukotrienes in BALB/c mice fed AA following ovalbumin immunostimulation. Moreover, AA significantly increased IL-4 secretion in HaCaT cells costimulated with TNF-α and INF-γ. CONCLUSIONS: This study demonstrates that AA is intimately linked to the onset of AD via gut dysbiosis.

10.
Mol Plant Microbe Interact ; 37(3): 211-219, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38148271

ABSTRACT

Phloem-feeding insects include many important agricultural pests that cause crop damage globally, either through feeding-related damage or upon transmission of viruses and microbes that cause plant diseases. With genetic crop resistances being limited to most of these pests, control relies on insecticides, which are costly and damaging to the environment and to which insects can develop resistance. Like other plant parasites, phloem-feeding insects deliver effectors inside their host plants to promote susceptibility, most likely by a combination of suppressing immunity and promoting nutrient availability. The recent emergence of the effector paradigm in plant-insect interactions is highlighted by increasing availability of effector repertoires for a range of species and a broadening of our knowledge concerning effector functions. Here, we focus on recent progress made toward identification of effector repertoires from phloem-feeding insects and developments in effector biology that will advance functional characterization studies. Importantly, identification of effector activities from herbivorous insects promises to provide new avenues toward development of crop protection strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Phloem , Saliva , Animals , Saliva/metabolism , Phloem/metabolism , Insecta , Plants , Herbivory
11.
BMC Genomics ; 25(1): 153, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38326788

ABSTRACT

BACKGROUND: Russian wheat aphid (Diuraphis noxia Kurd.) is a severe pest to wheat, and even though resistance varieties are available to curb this pest, they are becoming obsolete with the development of new virulent aphid populations. Unlike many other aphids, D noxia only harbours a single endosymbiont, Buchnera aphidicola. Considering the importance of Buchnera, this study aimed to elucidate commonalities and dissimilarities between various hosts, to better understand its distinctiveness within its symbiotic relationship with D. noxia. To do so, the genome of the D. noxia's Buchnera was assembled and compared to those of other aphid species that feed on diverse host species. RESULTS: The overall importance of several features such as gene length and percentage GC content was found to be critical for the maintenance of Buchnera genes when compared to their closest free-living relative, Escherichia coli. Buchnera protein coding genes were found to have percentage GC contents that tended towards a mean of ~ 26% which had strong correlation to their identity to their E. coli homologs. Several SNPs were identified between different aphid populations and multiple isolates of Buchnera were confirmed in single aphids. CONCLUSIONS: Establishing the strong correlation of percentage GC content of protein coding genes and gene identity will allow for identifying which genes will be lost in the continually shrinking Buchnera genome. This is also the first report of a parthenogenically reproducing aphid that hosts multiple Buchnera strains in a single aphid, raising questions regarding the benefits of maintaining multiple strains. We also found preliminary evidence for post-transcriptional regulation of Buchnera genes in the form of polyadenylation.


Subject(s)
Aphids , Buchnera , Animals , Buchnera/genetics , Buchnera/metabolism , Escherichia coli , Aphids/genetics , Aphids/metabolism , Gene Expression Regulation , Diet , Symbiosis/genetics
12.
Am J Physiol Endocrinol Metab ; 326(3): E382-E397, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38294699

ABSTRACT

The hypothalamus is a key integrating center that is involved in the initiation of the corticosteroid stress response, and in regulating nutrient homeostasis. Although cortisol, the principal glucocorticoid in humans and teleosts, plays a central role in feeding regulation, the mechanisms are far from clear. We tested the hypothesis that the metabolic changes to cortisol exposure signal an energy excess in the hypothalamus, leading to feeding suppression during stress in fish. Rainbow trout (Oncorhynchus mykiss) were administered a slow-release cortisol implant for 3 days, and the metabolite profiles in the plasma, hypothalamus, and the rest of the brain were assessed. Also, U-13C-glucose was injected into the hypothalamus by intracerebroventricular (ICV) route, and the metabolic fate of this energy substrate was followed in the brain regions by metabolomics. Chronic cortisol treatment reduced feed intake, and this corresponded with a downregulation of the orexigenic gene agrp, and an upregulation of the anorexigenic gene cart in the hypothalamus. The U-13C-glucose-mediated metabolite profiling indicated an enhancement of glycolytic flux and tricarboxylic acid intermediates in the rest of the brain compared with the hypothalamus. There was no effect of cortisol treatment on the phosphorylation status of AMPK or mechanistic target of rapamycin in the brain, whereas several endogenous metabolites, including leucine, citrate, and lactate were enriched in the hypothalamus, suggesting a tissue-specific metabolic shift in response to cortisol stimulation. Altogether, our results suggest that the hypothalamus-specific enrichment of leucine and the metabolic fate of this amino acid, including the generation of lipid intermediates, contribute to cortisol-mediated feeding suppression in fish.NEW & NOTEWORTHY Elevated cortisol levels during stress suppress feed intake in animals. We tested whether the feed suppression is associated with cortisol-mediated alteration in hypothalamus metabolism. The brain metabolome revealed a hypothalamus-specific metabolite profile suggesting nutrient excess. Specifically, we noted the enrichment of leucine and citrate in the hypothalamus, and the upregulation of pathways involved in leucine metabolism and fatty acid synthesis. This cortisol-mediated energy substrate repartitioning may modulate the feeding/satiety centers leading to the feeding suppression.


Subject(s)
Oncorhynchus mykiss , Animals , Humans , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/metabolism , Hydrocortisone/metabolism , Leucine/metabolism , Hypothalamus/metabolism , Brain/metabolism , Glucose/pharmacology , Glucose/metabolism , Citrates/metabolism , Citrates/pharmacology
13.
Neurobiol Dis ; 199: 106570, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38885850

ABSTRACT

BACKGROUND: Hepatic lipoprotein receptor-related protein 1 (LRP-1) plays a central role in peripheral amyloid beta (Aß) clearance, but its importance in Alzheimer's disease (AD) pathology is understudied. Our previous work showed that intragastric alcohol feeding to C57BL/6 J mice reduced hepatic LRP-1 expression which correlated with significant AD-relevant brain changes. Herein, we examined the role of hepatic LRP-1 in AD pathogenesis in APP/PS1 AD mice using two approaches to modulate hepatic LRP-1, intragastric alcohol feeding to model chronic heavy drinking shown by us to reduce hepatic LRP-1, and hepato-specific LRP-1 silencing. METHODS: Eight-month-old male APP/PS1 mice were fed ethanol or control diet intragastrically for 5 weeks (n = 7-11/group). Brain and liver Aß were assessed using immunoassays. Three important mechanisms of brain amyloidosis were investigated: hepatic LRP-1 (major peripheral Aß regulator), blood-brain barrier (BBB) function (vascular Aß regulator), and microglia (major brain Aß regulator) using immunoassays. Spatial LRP-1 gene expression in the periportal versus pericentral hepatic regions was confirmed using NanoString GeoMx Digital Spatial Profiler. Further, hepatic LRP-1 was silenced by injecting LRP-1 microRNA delivered by the adeno-associated virus 8 (AAV8) and the hepato-specific thyroxine-binding globulin (TBG) promoter to 4-month-old male APP/PS1 mice (n = 6). Control male APP/PS1 mice received control AAV8 (n = 6). Spatial memory and locomotion were assessed 12 weeks after LRP-1 silencing using Y-maze and open-field test, respectively, and brain and liver Aß were measured. RESULTS: Alcohol feeding reduced plaque-associated microglia in APP/PS1 mice brains and increased aggregated Aß (p < 0.05) by ELISA and 6E10-positive Aß load by immunostaining (p < 0.05). Increased brain Aß corresponded with a significant downregulation of hepatic LRP-1 (p < 0.01) at the protein and transcript level, primarily in pericentral hepatocytes (zone 3) where alcohol-induced injury occurs. Hepato-specific LRP-1 silencing significantly increased brain Aß and locomotion hyperactivity (p < 0.05) in APP/PS1 mice. CONCLUSION: Chronic heavy alcohol intake reduced hepatic LRP-1 expression and increased brain Aß. The hepato-specific LRP-1 silencing similarly increased brain Aß which was associated with behavioral deficits in APP/PS1 mice. Collectively, our results suggest that hepatic LRP-1 is a key regulator of brain amyloidosis in alcohol-dependent AD.


Subject(s)
Alzheimer Disease , Liver , Low Density Lipoprotein Receptor-Related Protein-1 , Mice, Inbred C57BL , Mice, Transgenic , Animals , Alzheimer Disease/metabolism , Male , Mice , Liver/metabolism , Amyloidosis/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/drug effects , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Ethanol/administration & dosage , Disease Models, Animal , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
14.
Antimicrob Agents Chemother ; : e0085324, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058023

ABSTRACT

Plasmodium vivax is now the main cause of malaria outside Africa. The gametocytocidal effects of antimalarial drugs are important to reduce malaria transmissibility, particularly in low-transmission settings, but they are not well characterized for P. vivax. The transmission-blocking effects of chloroquine, artesunate, and methylene blue on P. vivax gametocytes were assessed. Blood specimens were collected from patients presenting with vivax malaria, incubated with or without the tested drugs, and then fed to mosquitos from a laboratory-adapted colony of Anopheles dirus (a major malaria vector in Southeast Asia). The effects on oocyst and sporozoite development were analyzed under a multi-level Bayesian model accounting for assay variability and the heterogeneity of mosquito Plasmodium infection. Artesunate and methylene blue, but not chloroquine, exhibited potent transmission-blocking effects. Gametocyte exposures to artesunate and methylene blue reduced the mean oocyst count 469-fold (95% CI: 345 to 650) and 1,438-fold (95% CI: 970 to 2,064), respectively. The corresponding estimates for the sporozoite stage were a 148-fold reduction (95% CI: 61 to 470) and a 536-fold reduction (95% CI: 246 to 1,311) in the mean counts, respectively. In contrast, high chloroquine exposures reduced the mean oocyst count only 1.40-fold (95% CI: 1.20 to 1.64) and the mean sporozoite count 1.34-fold (95% CI: 1.12 to 1.66). This suggests that patients with vivax malaria often remain infectious to anopheline mosquitos after treatment with chloroquine. Use of artemisinin combination therapies or immediate initiation of primaquine radical cure should reduce the transmissibility of P. vivax infections.

15.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G105-G116, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772905

ABSTRACT

The neural connectivity among the oral cavity, pharynx, and esophagus is a critical component of infant feeding physiology. Central integration of oral and pharyngeal afferents alters motor outputs to structures that power swallowing, but the potential effects of esophageal afferents on preesophageal feeding physiology are unclear. These effects may explain the prevalence of oropharyngeal dysphagia in infants suffering from gastroesophageal reflux (GER), though the mechanism underlying this relationship remains unknown. Here we use the validated infant pig model to assess the impacts of simulated GER on preesophageal feeding parameters. We used high-speed videofluoroscopy and electromyography to record bottle-feeding before and following the infusion of a capsaicin-containing solution into the lower esophagus. Sucking parameters were minimally affected by capsaicin exposure, such that genioglossus activity was unchanged and tongue kinematics were largely unaffected. Aspects of the pharyngeal swallow were altered with simulated GER, including increased thyrohyoid muscle activity, increased excursions of the hyoid and thyroid per swallow, decreased swallow frequency, and increased bolus sizes. These results suggest that esophageal afferents can elicit changes in pharyngeal swallowing. In addition, decreased swallowing frequency may be the mechanism by which esophageal pathologies induce oropharyngeal dysphagia. Although recent work indicates that oral or pharyngeal capsaicin may improve dysphagia symptoms, the decreased performance following esophageal capsaicin exposure highlights the importance of designing sensory interventions based upon neurophysiology and the mechanisms underlying disordered feeding. This mechanistic approach requires comprehensive data collection across the entirety of the feeding process, which can be achieved using models such as the infant pig.NEW & NOTEWORTHY Simulated gastroesophageal reflux (GER) in an infant pig model resulted in significant changes in pharyngeal swallowing, which suggests that esophageal afferents are centrally integrated to alter motor outputs to the pharynx. In addition, decreased swallow frequency and increased bolus sizes may be underlying mechanisms by which esophageal pathologies induce oropharyngeal dysphagia. The infant pig model used here allows for a mechanistic approach, which can facilitate the design of intervention strategies based on neurophysiology.


Subject(s)
Capsaicin , Deglutition , Gastroesophageal Reflux , Animals , Gastroesophageal Reflux/physiopathology , Swine , Deglutition/drug effects , Capsaicin/pharmacology , Esophagus/physiopathology , Esophagus/drug effects , Esophagus/innervation , Electromyography , Pharynx/physiopathology , Animals, Newborn , Deglutition Disorders/physiopathology , Deglutition Disorders/etiology , Oropharynx/physiopathology , Bottle Feeding , Female , Fluoroscopy
16.
Funct Integr Genomics ; 24(2): 62, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38514486

ABSTRACT

Long-wave sensitive (LWS) is a G protein-coupled receptor expressed in the retina, and zebrafish is a better model organism for studying vision, but the role of LWS1 in vision-guided behavior of larvae fish has rarely been reported. In this study, we found that zebrafish lws1 and lws2 are tandemly replicated genes, both with six exons, with lws1 being more evolutionarily conserved. The presence of Y277F in the amino acid sequence of lws2 may have contributed to the shift of λmax to green light. We established a lws1 knockout zebrafish model using CRISPR/Cas9 technology. Lws1-/- larvae showed significantly higher levels of feeding and appetite gene (agrp) expression than WT, and significantly lower levels of anorexia gene (pomc, cart) expression. In addition, green light gene compensation was observed in lws1-/- larvae with significantly increased expression levels of rh2-1. The light-dark movement test showed that lws1-/- larvae were more active under light-dark transitions or vibrational stimuli, and the expression of phototransduction-related genes was significantly up-regulated. This study reveals the important role of lws1 gene in the regulation of vision-guided behavior in larvae.


Subject(s)
Cone Opsins , Zebrafish , Animals , Amino Acid Sequence , Zebrafish/genetics , Zebrafish/metabolism , Cone Opsins/genetics , Feeding Behavior , Vision, Ocular/genetics
17.
Am Nat ; 203(2): 189-203, 2024 02.
Article in English | MEDLINE | ID: mdl-38306279

ABSTRACT

AbstractAnimals can form dominance relationships that vary from highly unequal, or despotic, to egalitarian, and this variation likely impacts the fitness of individuals. How and why these differences in relationships and fitness exist among groups, populations, and species has been the subject of much debate. Here, we investigated the influence of two major factors: (1) spatial resource distribution and (2) the presence or absence of winner-loser effects. To determine the effects of these factors, we built an agent-based model that represented 10 agents directly competing over food resources on a simple landscape. By varying the food distribution and using either asymmetry of strength or experience, we contrasted four scenarios from which we recorded attack decisions, fight outcomes, and individual energy intake to calculate dominance hierarchy steepness and energetic skew. Surprisingly, resource distribution and winner-loser effects did not have the predicted effects on hierarchy steepness. However, skew in energy intake arose when resources were distributed heterogeneously, despite hierarchy steepness frequently being higher in the homogeneous resource scenarios. Thus, this study confirms some decades-old predictions about feeding competition but also casts doubt on the ability to infer energetic consequences from observations of agonistic interactions.


Subject(s)
Ecology , Social Dominance , Humans , Food
18.
Article in English | MEDLINE | ID: mdl-38729392

ABSTRACT

BACKGROUND & AIMS: Breastfeeding is critical for offspring health and development. Although many observational studies report a protective effect between breastfeeding and inflammatory bowel disease (IBD), the relationship is not well-understood. METHODS: We used prospectively collected data from 3 population-based birth cohorts (Danish National Birth Cohort, Norwegian Mother, Father, and Child Cohort, and All Babies in Southeast Sweden) and cross-linked national registers to ascertain the impact of breastfeeding duration on offspring IBD risk in each country, using adjusted Cox proportional regression analyses. We performed meta-analyses to determine pooled estimates. RESULTS: We included 148,737 offspring and 169,510 offspring in analyses of exclusive and any breastfeeding duration, respectively. During median follow-up of 16.3-22.3 years, between 1996 and 2021, 543 offspring were diagnosed with IBD. In each country, there was no association between exclusive breastfeeding duration and offspring IBD risk after adjusting for birth year (Denmark), offspring sex, parental IBD status, maternal education, smoking during pregnancy, age at delivery, mode of delivery, preterm birth, and small for gestational age. The pooled adjusted hazard ratio for IBD was 1.24 (95% confidence interval, 0.94-1.62; Q = 0.16, I2 = 0.0%) and 1.02 (95% confidence interval, 0.85-1.21; Q = 1.45, I 2= 0.0%) among offspring breastfed exclusively for ≥6 months and <4 months, respectively, compared with 4-5 months. Similarly, we found null associations in pooled analyses of any breastfeeding duration and IBD, subtypes Crohn's disease and ulcerative colitis, as well as in cohort-specific analyses. CONCLUSIONS: In prospectively collected data from 3 population-based birth cohorts, the duration of exclusive or any breastfeeding was not associated with offspring IBD risk.

19.
Microbiology (Reading) ; 170(2)2024 02.
Article in English | MEDLINE | ID: mdl-38385784

ABSTRACT

Ecological dependencies - where organisms rely on other organisms for survival - are a ubiquitous feature of life on earth. Multicellular hosts rely on symbionts to provide essential vitamins and amino acids. Legume plants similarly rely on nitrogen-fixing rhizobia to convert atmospheric nitrogen to ammonia. In some cases, dependencies can arise via loss-of-function mutations that allow one partner to benefit from the actions of another. It is common in microbiology to label ecological dependencies between species as cooperation - making it necessary to invoke cooperation-specific frameworks to explain the phenomenon. However, in many cases, such traits are not (at least initially) cooperative, because they are not selected for because of the benefits they confer on a partner species. In contrast, dependencies in microbial communities may originate from fitness benefits gained from genomic-streamlining (i.e. Black Queen Dynamics). Here, we outline how the Black Queen Hypothesis predicts the formation of metabolic dependencies via loss-of-function mutations in microbial communities, without needing to invoke any cooperation-specific explanations. Furthermore we outline how the Black Queen Hypothesis can act as a blueprint for true cooperation as well as discuss key outstanding questions in the field. The nature of interactions in microbial communities can predict the ability of natural communities to withstand and recover from disturbances. Hence, it is vital to gain a deeper understanding of the factors driving these dynamic interactions over evolutionary time.


Subject(s)
Illusions , Microbiota , Humans , Amino Acids , Biological Evolution , Nitrogen
20.
BMC Med ; 22(1): 106, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454391

ABSTRACT

BACKGROUND: Breastfeeding (BF) confers metabolic benefits to infants, including reducing risks of metabolic syndrome such as obesity and diabetes later in life. However, the underlying mechanism is not yet fully understood. Hence, we aim to investigate the impacts of BF on the metabolic organs of infants. METHODS: Previous literatures directly studying the influences of BF on offspring's metabolic organs in both animal models and humans were comprehensively reviewed. A microarray dataset of intestinal gene expression comparing infants fed on breastmilk versus formula milk was analyzed. RESULTS: Reanalysis of microarray data showed that BF is associated with enhanced intestinal gluconeogenesis in infants. This resembles observations in other mammalian species showing that BF was also linked to increased gluconeogenesis. CONCLUSIONS: BF is associated with enhanced intestinal gluconeogenesis in infants, which may underpin its metabolic advantages through finetuning metabolic homeostasis. This observation seems to be conserved across species, hinting its biological significance.


Subject(s)
Breast Feeding , Metabolic Syndrome , Infant , Female , Animals , Humans , Gluconeogenesis , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL