Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Environ Manage ; 351: 119731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38169249

ABSTRACT

Wildland fire incident commanders make wildfire response decisions within an increasingly complex socio-environmental context. Threats to human safety and property, along with public pressures and agency cultures, often lead commanders to emphasize full suppression. However, commanders may use less-than-full suppression to enhance responder safety, reduce firefighting costs, and encourage beneficial effects of fire. This study asks: what management, socioeconomic, environmental, and fire behavior characteristics are associated with full suppression and the less-than-full suppression methods of point-zone protection, confinement/containment, and maintain/monitor? We analyzed incident report data from 374 wildfires in the United States northern Rocky Mountains between 2008 and 2013. Regression models showed that full suppression was most strongly associated with higher housing density and earlier dates in the calendar year, along with non-federal land jurisdiction, regional and national incident management teams, human-caused ignitions, low fire-growth potential, and greater fire size. Interviews with commanders provided decision-making context for these regression results. Future efforts to encourage less-than-full suppression should address the complex management context, in addition to the biophysical context, of fire response.


Subject(s)
Fires , Wildfires , United States , Humans , Forecasting , Risk Management
2.
Global Biogeochem Cycles ; 37(8): e2023GB007813, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38439941

ABSTRACT

Wildfires and land use play a central role in the long-term carbon (C) dynamics of forested ecosystems of the United States. Understanding their linkages with changes in biomass, resource use, and consumption in the context of climate change mitigation is crucial. We reconstruct a long-term C balance of forests in the contiguous U.S. using historical reports, satellite data, and other sources at multiple scales (national scale 1926-2017, regional level 1941-2017) to disentangle the drivers of biomass C stock change. The balance includes removals of forest biomass by fire, by extraction of woody biomass, by forest grazing, and by biomass stock change, their sum representing the net ecosystem productivity (NEP). Nationally, the total forest NEP increased for most of the 20th century, while fire, harvest and grazing reduced total forest stocks on average by 14%, 51%, and 6%, respectively, resulting in a net increase in C stock density of nearly 40%. Recovery from past land-use, plus reductions in wildfires and forest grazing coincide with consistent forest regrowth in the eastern U.S. but associated C stock increases were offset by increased wood harvest. C stock changes across the western U.S. fluctuated, with fire, harvest, and other disturbances (e.g., insects, droughts) reducing stocks on average by 14%, 81%, and 7%, respectively, resulting in a net growth in C stock density of 14%. Although wildfire activities increased in recent decades, harvest was the key driver in the forest C balance in all regions for most of the observed timeframe.

3.
Entropy (Basel) ; 24(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36359714

ABSTRACT

The steam ejector is valuable and efficient in the fire suppression field due to its strong fluid-carrying capacity and mixing ability. It utilizes pressurized steam droplets generated at the exit to extinguish the fire quickly and the steam droplet strategy allows for an expressive decrease in water consumption. In this regard, the fire suppression process is influenced by the steam ejector efficiency, the performance of the pressurized steam, and the ejector core geometry, which controls the quality of the extinguishing mechanisms. This study investigated the impact of different mixing section diameters on the pumping performance of the ejector. The results showed that change in the diffuser throat diameter was susceptible to the entrainment ratio, which significantly increased, by 4 mm, by increasing the throat diameter of the diffuser and improved the pumping efficiency. Still, the critical back pressure of the ejector reduced. In addition, the diameter effect was studied and analyzed to evaluate the ejector performance under different operating parameters. The results revealed a rise in the entrainment ratio, then it diminished with increasing primary fluid pressure. The highest entrainment ratio recorded was 0.5 when the pressure reached 0.36 MPa at the critical range of back pressure, where the entrainment ratio remained constant until a certain back pressure value. Exceeding the critical pressure by increasing the back pressure to 7000 Pa permitted the entrainment ratio to reduce to zero. An optimum constant diameter maximized the ejector pumping efficiency under certain operating parameters. In actual design and production, it is necessary to consider both the exhaust efficiency and the ultimate exhaust capacity of the ejector.

4.
Oecologia ; 196(4): 951-961, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33885980

ABSTRACT

Fire-suppression is of concern in fire-prone ecosystems because it can result in the loss of endemic species. Suppressing fires also causes a build-up of flammable biomass, increasing the risk of severe fires. Using a Before-After, Control-Impacted design, we assessed the consequences of high-severity fires on Neotropical savanna arboreal ant communities. Over a 9-year period, we sampled the ant fauna of the same trees before and after two severe fires that hit a savanna reserve in Brazil and the trees from an unburned savanna site that served as a temporal control. The ant community associated with the unburned trees was relatively stable, with no significant temporal variation in species richness and only a few species changing in abundance over time. In contrast, we found a strong decline in species richness and marked changes in species composition in the burned trees, with some species becoming more prevalent and many becoming rare or locally extinct. The dissimilarity in species richness and composition was significantly smaller between the two pre-fire surveys than between the pre- and post-fire surveys. Fire-induced changes were much more marked among species with strictly arboreal nesting habits, and therefore more susceptible to the direct effects of fire. The decline of some of the ecologically dominant arboreal ant species may be particularly important, as it opens substantial ecological space for cascading community-wide changes. In particular, severe fires appear to disrupt the typical vertical stratification between the arboreal and ground-dwelling faunas, which might lead to homogenization of the overall ant community.


Subject(s)
Ants , Fires , Animals , Ecosystem , Grassland , Trees
5.
J Environ Manage ; 280: 111644, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33234318

ABSTRACT

As a multi-jurisdictional, non-fire-adapted region, the Sonoran Desert Ecoregion is a complex, social-ecological system faced increasingly with no-analogue conditions. A diversity of management objectives and activities form the socioecological landscape of fire management. Different managers have different objectives, resources, and constraints, and each therefore applies different activities. As a result, it can be difficult to predict the regional consequences of changing fire regimes. We interviewed and surveyed managers of 53 million acres of government-managed lands across the Sonoran Desert Ecoregion of Arizona, asking them to describe their management objectives and activities as well as expected changes in the face of projected fire regime change across the region. If current activities were deemed unlikely to meet objectives into the future, this represents a likely adaptation turning point, where new activities are required in order to meet objectives. If no potential activity will meet an objective, it may be necessary to select a new objective, indicating an adaptation tipping point. Here, we report which current objectives and activities are deemed by managers most likely and least likely to succeed. We also discuss constraints reported by managers from different jurisdictions. We find that agriculture, military, and resource extraction objectives are perceived by managers as most likely to be met, whereas conservation of natural and cultural resources is considered least likely to be achieved. Federal land managers reported higher likelihood of both achieving current objectives and adopting new activities than did non-federal land managers. This study illustrates how rapid global change is affecting the ability of land managers differing in missions, mandates, and resources to achieve their central objectives, as well as the constraints and opportunities they face. Our results indicate that changing environmental conditions are unlikely to affect all management entities equally and for some jurisdictions may result in adaptation turning points or tipping points in natural and cultural resource conservation.


Subject(s)
Conservation of Natural Resources , Fires , Agriculture , Arizona , Ecosystem
6.
Ecol Appl ; 30(4): e02072, 2020 06.
Article in English | MEDLINE | ID: mdl-31925848

ABSTRACT

During the past century, systematic wildfire suppression has decreased fire frequency and increased fire severity in the western United States of America. While this has resulted in large ecological changes aboveground such as altered tree species composition and increased forest density, little is known about the long-term, belowground implications of altered, ecologically novel, fire regimes, especially on soil biological processes. To better understand the long-term implications of ecologically novel, high-severity fire, we used a 44-yr high-severity fire chronosequence in the Sierra Nevada where forests were historically adapted to frequent, low-severity fire, but were fire suppressed for at least 70 yr. High-severity fire in the Sierra Nevada resulted in a long-term (44 +yr) decrease (>50%, P < 0.05) in soil extracellular enzyme activities, basal microbial respiration (56-72%, P < 0.05), and organic carbon (>50%, P < 0.05) in the upper 5 cm compared to sites that had not been burned for at least 115 yr. However, nitrogen (N) processes were only affected in the most recent fire site (4 yr post-fire). Net nitrification increased by over 600% in the most recent fire site (P < 0.001), but returned to similar levels as the unburned control in the 13-yr site. Contrary to previous studies, we did not find a consistent effect of plant cover type on soil biogeochemical processes in mid-successional (10-50 yr) forest soils. Rather, the 44-yr reduction in soil organic carbon (C) quantity correlated positively with dampened C cycling processes. Our results show the drastic and long-term implication of ecologically novel, high-severity fire on soil biogeochemistry and underscore the need for long-term fire ecological experiments.


Subject(s)
Tracheophyta , Wildfires , Carbon , Ecosystem , Forests , Soil
7.
Risk Anal ; 40(9): 1762-1779, 2020 09.
Article in English | MEDLINE | ID: mdl-32469122

ABSTRACT

Despite escalating expenditures in firefighting, extreme fire events continue to pose a major threat to ecosystem services and human communities in Mediterranean areas. Developing a safe and effective fire response is paramount to efficiently restrict fire spread, reduce negative effects to natural values, prevent residential housing losses, and avoid causalties. Though current fire policies in most countries demand full suppression, few studies have attempted to identify the strategic locations where firefighting efforts would likely contain catastrophic fire events. The success in containing those fires that escape initial attack is determined by diverse structural factors such as ground accessibility, airborne support, barriers to surface fire spread, and vegetation impedance. In this study, we predicted the success in fire containment across Catalonia (northeastern Spain) using a model generated with random forest from detailed geospatial data and a set of 73 fire perimeters for the period 2008-2016. The model attained a high predictive performance (AUC = 0.88), and the results were provided at fine resolution (25 m) for the entire study area (32,108 km2 ). The highest success rates were found in agricultural plains along the nonburnable barriers such as major road corridors and largest rivers. Low levels of containment likelihood were predicted for dense forest lands and steep-relief mountainous areas. The results can assist in suppression resource pre-positioning and extended attack decision making, but also in strategic fuels management oriented at creating defensive locations and fragmenting the landscape in operational firefighting areas. Our modeling workflow and methods may serve as a baseline to generate locally adapted models in fire-prone areas elsewhere.

8.
Glob Chang Biol ; 25(4): 1247-1262, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30536531

ABSTRACT

A century of fire suppression across the Western United States has led to more crowded forests and increased competition for resources. Studies of forest thinning or stand conditions after mortality events have provided indirect evidence for how competition can promote drought stress and predispose forests to severe fire and/or bark beetle outbreaks. Here, we demonstrate linkages between fire deficits and increasing drought stress through analyses of annually resolved tree-ring growth, fire scars, and carbon isotope discrimination (Δ13 C) across a dry mixed-conifer forest landscape. Fire deficits across the study area have increased the sensitivity of leaf gas exchange to drought stress over the past >100 years. Since 1910, stand basal area in these forests has more than doubled and fire-return intervals have increased from 25 to 140 years. Meanwhile, the portion of interannual variation in tree-ring Δ13 C explained by the Palmer Drought Severity Index has more than doubled in ca. 300-500-year-old Pinus ponderosa as well as in fire-intolerant, ca. 90-190-year-old Abies grandis. Drought stress has increased in stands with a basal area of ≥25 m2 /ha in 1910, as indicated by negative temporal Δ13 C trends, whereas stands with basal area ≤25 m2 /ha in 1910, due to frequent or intense wildfire activity in decades beforehand, were initially buffered from increased drought stress and have benefited more from rising ambient carbon dioxide concentrations, [CO2 ], as demonstrated by positive temporal Δ13 C trends. Furthermore, the average Δ13 C response across all P. ponderosa since 1830 indicates that photosynthetic assimilation rates and stomatal conductance have been reduced by ~10% and ~20%, respectively, compared to expected trends due to increasing [CO2 ]. Although disturbance legacies contribute to local-scale intensity of drought stress, fire deficits have reduced drought resistance of mixed-conifer forests and made them more susceptible to challenges by pests and pathogens and other disturbances.

9.
Sensors (Basel) ; 19(3)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30744012

ABSTRACT

A novel method of near-field computer vision (NFCV) was developed to monitor the jet trajectory during the jetting process, which was used to precisely predict the falling point position of the jet trajectory. By means of a high-resolution webcam, the NFCV sensor device collected near-field images of the jet trajectory. Preprocessing of collected images was carried out, which included squint image correction, noise elimination, and jet trajectory extraction. The features of the jet trajectory in the processed image were extracted, including: start-point slope (SPS), end-point slope (EPS), and overall trajectory slope (OTS) based on the proposed mean position method. A multiple regression jet trajectory range prediction model was established based on these trajectory characteristics and the reliability of the model was verified. The results show that the accuracy of the prediction model is not less than 94% and the processing time is less than 0.88s, which satisfy the requirements of real-time online jet trajectory monitoring.

10.
J Environ Manage ; 248: 109338, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31382193

ABSTRACT

Revegetating cleared land with native trees and shrubs is increasingly used as a means of addressing loss of biodiversity, degraded soil and water resources and sequestration of carbon. However, revegetation also brings a potential to alter fire risk due to changing fuel types across the landscape. Previous research has found that increasing the area of revegetation does not increase the risk of fire at a landscape scale, but it remains unclear whether the design of revegetation can be optimised to minimise risk. We evaluated if size and arrangement of revegetation affects fire size and intensity within an agricultural setting using a simulation modelling approach. Three revegetation planting designs were assessed, including small (3.2 ha) dispersed plantings, small (3.2 ha) plantings clustered into one third of the landscape, and large (29.2 ha) dispersed plantings, all resulting in the same overall percentage of revegetation (approximately 10% of the landscape). We simulated fires using Phoenix Rapidfire under varying planting design, weather, surrounding pasture conditions, and fire suppression. Planting design had little effect on fire sizes across the landscape, with larger plantings resulting in slightly larger fire sizes. Fires were smaller in landscapes with all planting designs compared with current landscape patterns. There was no significant influence of planting design on fire intensity. Weather and suppression had the strongest influence on both fire size and intensity, with larger and more intense fires under extreme weather conditions, with higher adjacent pasture loads and with no simulated suppression. Management of fuel loads in the pasture surrounding revegetation, weather and suppression are far greater risk factors for fire in these landscapes than planting design.


Subject(s)
Conservation of Natural Resources , Trees , Biodiversity , Plants , Weather
11.
J Environ Manage ; 232: 600-606, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30522066

ABSTRACT

Land occupation and management systems have defined fire regimes and landscapes for millennia. The savanna biome is responsible for 86% of all fire events, contributes to 10% of the total carbon emissions annually and is home to 10% of the human population. European colonization has been associated with the implementation of fire suppression policies in many tropical savanna regions, markedly disrupting traditional fire management practices and transforming ecosystems. In this paper we assess savanna burning approaches from pre-colonial to contemporary eras in three regions: northern Australia, southern Africa and Brazil. In these regions, fire suppression policies have led to (i) conflicts between government authorities and local communities; (ii) frequent late dry season wildfires and/or (iii) woody encroachment. Such consequences are facilitating changes to fire management policies, including recognition and incorporation of traditional ecological knowledge in contemporary community-based adaptive savanna fire management. Such programs include implementation of prescribed early dry season fires and, in some regions, generating income opportunities for rural and traditional communities through the reduction of late dry season wildfires and associated greenhouse gas emissions. We present a brief history of fire management policies in these three important savanna regions, and identify ongoing challenges for implementation of culturally and ecologically sustainable fire management policies.


Subject(s)
Ecosystem , Fires , Africa, Southern , Australia , Brazil , Grassland , Humans
12.
Risk Anal ; 38(3): 472-488, 2018 03.
Article in English | MEDLINE | ID: mdl-28675517

ABSTRACT

A new fire policy reinforcing aggressive fire suppression was established in Mediterranean France in response to the devastating wildfires of the 1990s, but to what extent this has changed fire activity yet remains poorly understood. For this purpose, we compared the number and location of ignitions and of burned areas between two 20-year periods (1975-1994 vs. 1995-2014), in parallel to the changes in fuel covering, human activity promoting ignitions, and fire weather. The number of fires decreased almost continuously since 1975, but sharply after 1994, suggesting an effect of better fire prevention due to the new policy. But the major change in fire activity is a considerable reduction in fire size and burned areas after 1994, especially during summer and in the most fire-prone places, in response to massive efforts put into fire suppression. These reductions have occurred while the covering by fuel biomass, the human pressure on ignition, and the fire weather index increased, thus making the study area more hazardous. Our results suggest that a strategy of aggressive fire suppression has great potential for counterbalancing the effects of climate changes and human activities and for controlling fire activity in the short term. However, we discuss whether such a suppression-oriented approach is sustainable in the context of global changes, which cast new fire challenges as demonstrated by the devastative fires of 2003 and 2016. We advocate for a more comprehensive fire policy to come.

13.
Sensors (Basel) ; 18(6)2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29899213

ABSTRACT

In arson attacks the detection of ignitable liquid residues (ILRs) at fire scenes provides key evidence since ignitable liquids, such as gasoline, are commonly used to initiate the fire. In most forensic laboratories gas chromatography-mass spectrometry is employed for the analysis of ILRs. When a fire occurs, suppression agents are used to extinguish the fire and, before the scene is investigated, the samples at the scene are subjected to a variety of processes such as weathering, which can significantly modify the chemical composition and thus lead to erroneous conclusions. In order to avoid this possibility, the application of chemometric tools that help the analyst to extract useful information from data is very advantageous. The study described here concerned the application of a headspace-mass spectrometry electronic nose (HS-MS eNose) combined with chemometric tools to determine the presence/absence of gasoline in weathered fire debris samples. The effect of applying two suppression agents (Cafoam Aquafoam AF-6 and Pyro-chem PK-80 Powder) and delays in the sampling time (from 0 to 48 h) were studied. It was found that, although the suppression systems affect the mass spectra, the HS-MS eNose in combination with suitable pattern recognition chemometric tools, such as linear discriminant analysis, is able to identify the presence of gasoline in any of the studied situations (100% correct classification).

14.
J Environ Manage ; 205: 40-49, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28964973

ABSTRACT

Fire has shaped plant evolution and biogeochemical cycles for millions of years in savanna ecosystems, but changes in natural fire regimes promoted by human land use threaten contemporary conservation efforts. In protected areas in the Brazilian savannas (Cerrado), the predominant management policy is fire suppression, reflecting a cultural heritage which considers that fire always has a negative impact on biodiversity. Here we compare resultant fire-regimes in Canastra National Park (CNP), southeast Brazil, associated with areas under and without fire suppression management, based on a 16-year Landsat imagery record. In open grasslands of the Canastra plateau (CP), firefighting is undertaken under government-sanctioned regulation, whereas in the Babilonia sector, non-sanctioned fire management is undertaken by small farmers to promote cattle grazing and cropping. Fire regimes in the Canastra sector are characterized by few, very large, late dry season wildfires recurring at intervals of two years. Fire regimes in lowlands of the Babilonia sector are characterized by many small-scale, starting at the beginning of the dry season (EDS). In Babilonia uplands fire regimes are characterized by higher frequencies of large fires. The study illustrates major challenges for managing fire-prone areas in conflict-of-interest regions. We suggest that management planning in CNP needs to effectively address: i) managing conflicts between CNP managers and local communities; and ii) fire management practices in order to achieve more ecologically sustainable fire regimes. The study has broader implications for conservation management in fire-prone savannas in South America generally.


Subject(s)
Biodiversity , Fires , Grassland , Parks, Recreational , Animals , Brazil , Cattle , Ecosystem , Humans
15.
Glob Chang Biol ; 23(1): 235-244, 2017 01.
Article in English | MEDLINE | ID: mdl-27371937

ABSTRACT

Tropical savannas are a globally extensive biome prone to rapid vegetation change in response to changing environmental conditions. Via a meta-analysis, we quantified savanna woody vegetation change spanning the last century. We found a global trend of woody encroachment that was established prior the 1980s. However, there is critical regional variation in the magnitude of encroachment. Woody cover is increasing most rapidly in the remaining uncleared savannas of South America, most likely due to fire suppression and land fragmentation. In contrast, Australia has experienced low rates of encroachment. When accounting for land use, African savannas have a mean rate annual woody cover increase two and a half times that of Australian savannas. In Africa, encroachment occurs across multiple land uses and is accelerating over time. In Africa and Australia, rising atmospheric CO2 , changing land management and rainfall are likely causes. We argue that the functional traits of each woody flora, specifically the N-fixing ability and architecture of woody plants, are critical to predicting encroachment over the next century and that African savannas are at high risk of widespread vegetation change.


Subject(s)
Conservation of Natural Resources , Grassland , Africa , Australia , Ecosystem , South America , Trees
16.
Ecol Appl ; 27(8): 2475-2486, 2017 12.
Article in English | MEDLINE | ID: mdl-28873261

ABSTRACT

Many western North American forest types have experienced considerable changes in ecosystem structure, composition, and function as a result of both fire exclusion and timber harvesting. These two influences co-occurred over a large portion of dry forests, making it difficult to know the strength of either one on its own or the potential for an interaction between the two. In this study, we used contemporary remeasurements of a systematic historical forest inventory to investigate forest change in the Sierra Nevada. The historical data opportunistically spanned a significant land management agency boundary, which protected part of the inventory area from timber harvesting. This allowed for a robust comparison of forest change between logged and unlogged areas. In addition, we assessed the effects of recent management activities aimed at forest restoration relative to the same areas historically, and to other areas without recent management. Based on analyses of 22,007 trees (historical, 9,573; contemporary, 12,434), live basal area and tree density significantly increased from 1911 to the early 2000s in both logged and unlogged areas. Both shrub cover and the proportion of live basal area occupied by pine species declined from 1911 to the early 2000s in both areas, but statistical significance was inconsistent. The most notable difference between logged and unlogged areas was in the density of large trees, which declined significantly in logged areas, but was unchanged in unlogged areas. Recent management activities had a varied impact on the forest structure and composition variables analyzed. In general, areas with no recent management activities experienced the greatest change from 1911 to the early 2000s. If approximating historical forest conditions is a land management goal the documented changes in forest structure and composition from 1911 to the early 2000s indicate that active restoration, including fire use and mechanical thinning, is needed in many areas.


Subject(s)
Conservation of Natural Resources , Forestry/methods , Forests , California , Fires
17.
Fire Saf J ; 912017.
Article in English | MEDLINE | ID: mdl-30983691

ABSTRACT

Computations of cup-burner flames in normal gravity have been performed using propane as the fuel to reveal the combustion inhibition and enhancement by the CF3Br (halon 1301) and potential alternative fire-extinguishing agents (C2HF5, C2HF3Cl2, and C3H2F3Br). The time-dependent, two-dimensional numerical code used includes a detailed kinetic model (up to 241 species and 3918 reactions), diffusive transport, and a gray-gas radiation model. The peak reactivity spot (i.e., reaction kernel) at the flame base stabilizes a trailing flame, which is inclined inwardly by a buoyancy-induced entrainment flow. As the volume fraction of agent in the coflow increases gradually, the premixed-like reaction kernel weakens, thus inducing the flame base detachment from the burner rim and blowoff-type extinguishment eventually. The two-zone flame structure (with two heat-release-rate peaks) is formed in the trailing diffusion flame. The H2O formed in the inner zone is converted further, primarily in the outer zone, to HF and CF2O through exothermic reactions most significantly with the C2HF5 addition. The total heat release of the entire flame decreases (inhibiting) for CF3Br but increases (enhancing) for the halon alternative agents, particularly C2HF5 and C2HF3Cl2. Addition of C2HF5 results in unusual (non-chain branching) reactions.

18.
Ecol Appl ; 26(5): 1503-1516, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27755759

ABSTRACT

Decades of fire suppression following extensive timber harvesting have left much of the forest in the intermountain western United States exceedingly dense, and forest restoration techniques (i.e., thinning and prescribed fire) are increasingly being used in an attempt to mitigate the effects of severe wildfire, to enhance tree growth and regeneration, and to stimulate soil nutrient cycling. While many of the short-term effects of forest restoration have been established, the long-term effects on soil biogeochemical and ecosystem processes are largely unknown. We assessed the effects of commonly used forest restoration treatments (thinning, burning, and thinning + burning) on nutrient cycling and other ecosystem processes 11 yr after restoration treatments were implemented in a ponderosa pine (Pinus ponderosa var. scopulorum)/Douglas fir (Pseudotsuga menziesii var. glauca) forest at the Lubrecht Fire and Fire Surrogates Study (FFS) site in western Montana, USA. Despite short-term (<3 yr) increases in soil inorganic nitrogen (N) pools and N cycling rates following prescribed fire, long-term soil N pools and N mineralization rates showed only subtle differences from untreated control plots. Similarly, despite a persistent positive correlation between fuels consumed in prescribed burns and several metrics of N cycling, variability in inorganic N pools decreased significantly since treatments were implemented, indicating a decline in N spatial heterogeneity through time. However, rates of net nitrification remain significantly higher in a thin + burn treatment relative to other treatments. Short-term declines in forest floor carbon (C) pools have persisted in the thin + burn treatment, but there were no significant long-term differences among treatments in extractable soil phosphorus (P). Finally, despite some short-term differences, long-term foliar nutrient concentrations, litter decomposition rates, and rates of free-living N fixation in the experimental plots were not different from control plots, suggesting nutrient cycles and ecosystem processes in temperate coniferous forests are resilient to disturbance following long periods of fire suppression. Overall, this study provides forest managers and policymakers valuable information showing that the effects of these commonly used restoration prescriptions on soil nutrient cycling are ephemeral and that use of repeated treatments (i.e., frequent fire) will be necessary to ensure continued restoration success.


Subject(s)
Carbon Cycle , Environmental Restoration and Remediation , Forests , Nitrogen Cycle , Soil/chemistry , Tracheophyta , Canada , Carbon/chemistry , Nitrogen/chemistry , Time Factors
19.
Combust Flame ; 167: 452-462, 2016 May.
Article in English | MEDLINE | ID: mdl-29628525

ABSTRACT

Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, C3H2F3Br (2-BTP, C3H2F3Br, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of C3H2F3Br in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of C3H2F3Br vs. CF3Br in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of C3H2F3Br at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions.

20.
J Environ Manage ; 166: 227-36, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26513321

ABSTRACT

This study examines the production and efficiency of wildland fire suppression effort. We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency are identified and the effects of these determinants on the daily production of controlled fire line are examined. Results indicate that the use of bulldozers and fire engines increase the production of controlled fire line, while firefighter crews do not tend to contribute to controlled fire line production. Production of controlled fire line is more efficient if it occurs along natural or built breaks, such as rivers and roads, and within areas previously burned by wildfires. However, results also indicate that productivity and efficiency of the controlled fire line are sensitive to weather, landscape and fire characteristics.


Subject(s)
Fires , Forestry/methods , Stochastic Processes , Weather
SELECTION OF CITATIONS
SEARCH DETAIL