ABSTRACT
Recent reports raise concerns on the changing epidemiology of mpox in the Democratic Republic of the Congo (DRC). High-quality genomes were generated for 337 patients from 14/26 provinces to document whether the increase in number of cases is due to zoonotic spillover events or viral evolution, with enrichment of APOBEC3 mutations linked to human adaptation. Our study highlights two patterns of transmission contributing to the source of human cases. All new sequences from the eastern South Kivu province (n = 17; 4.8%) corresponded to the recently described clade Ib, associated with sexual contact and sustained human-to-human transmission. By contrast, all other genomes are clade Ia, which exhibits high genetic diversity with low numbers of APOBEC3 mutations compared with clade Ib, suggesting multiple zoonotic introductions. The presence of multiple clade I variants in urban areas highlights the need for coordinated international response efforts and more studies on the transmission and the reservoir of mpox.
ABSTRACT
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Humans , Animals , Evolution, Molecular , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Genome/genetics , DNA Polymerase thetaABSTRACT
Bacterial colonies composed of genetically identical individuals can diversify to yield variant cells with distinct genotypes. Variant outgrowth manifests as sectors. Here, we show that Type VI secretion system (T6SS)-driven cell death in Vibrio cholerae colonies imposes a selective pressure for the emergence of variant strains that can evade T6SS-mediated killing. T6SS-mediated cell death occurs in two distinct spatiotemporal phases, and each phase is driven by a particular T6SS toxin. The first phase is regulated by quorum sensing and drives sectoring. The second phase does not require the T6SS-injection machinery. Variant V. cholerae strains isolated from colony sectors encode mutated quorum-sensing components that confer growth advantages by suppressing T6SS-killing activity while simultaneously boosting T6SS-killing defenses. Our findings show that the T6SS can eliminate sibling cells, suggesting a role in intra-specific antagonism. We propose that quorum-sensing-controlled T6SS-driven killing promotes V. cholerae genetic diversity, including in natural habitats and during disease.
Subject(s)
Type VI Secretion Systems , Vibrio cholerae , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Genetic Variation , Quorum Sensing , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Vibrio cholerae/metabolismABSTRACT
Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.
Subject(s)
Genetic Variation/genetics , Tick-Borne Diseases/microbiology , Ticks/genetics , Animals , Cell Line , Disease Vectors , Host Specificity/geneticsABSTRACT
Underrepresentation of Asian genomes has hindered population and medical genetics research on Asians, leading to population disparities in precision medicine. By whole-genome sequencing of 4,810 Singapore Chinese, Malays, and Indians, we found 98.3 million SNPs and small insertions or deletions, over half of which are novel. Population structure analysis demonstrated great representation of Asian genetic diversity by three ethnicities in Singapore and revealed a Malay-related novel ancestry component. Furthermore, demographic inference suggested that Malays split from Chinese â¼24,800 years ago and experienced significant admixture with East Asians â¼1,700 years ago, coinciding with the Austronesian expansion. Additionally, we identified 20 candidate loci for natural selection, 14 of which harbored robust associations with complex traits and diseases. Finally, we show that our data can substantially improve genotype imputation in diverse Asian and Oceanian populations. These results highlight the value of our data as a resource to empower human genetics discovery across broad geographic regions.
Subject(s)
Genetics, Population , Genome, Human/genetics , Selection, Genetic , Whole Genome Sequencing , Asian People/genetics , Female , Genotype , Humans , Malaysia/epidemiology , Male , Polymorphism, Single Nucleotide/genetics , Singapore/epidemiologyABSTRACT
Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.
Subject(s)
Crops, Agricultural , Fruit , Crops, Agricultural/genetics , Fruit/genetics , Genomics/methods , Domestication , Plant Breeding/methods , Genetic Variation , Genome, Plant/genetics , Vitis/genetics , Solanum lycopersicum/genetics , Phoeniceae/geneticsABSTRACT
The Human Genome Project was an enormous accomplishment, providing a foundation for countless explorations into the genetics and genomics of the human species. Yet for many years, the human genome reference sequence remained incomplete and lacked representation of human genetic diversity. Recently, two major advances have emerged to address these shortcomings: complete gap-free human genome sequences, such as the one developed by the Telomere-to-Telomere Consortium, and high-quality pangenomes, such as the one developed by the Human Pangenome Reference Consortium. Facilitated by advances in long-read DNA sequencing and genome assembly algorithms, complete human genome sequences resolve regions that have been historically difficult to sequence, including centromeres, telomeres, and segmental duplications. In parallel, pangenomes capture the extensive genetic diversity across populations worldwide. Together, these advances usher in a new era of genomics research, enhancing the accuracy of genomic analysis, paving the path for precision medicine, and contributing to deeper insights into human biology.
Subject(s)
Genome, Human , Human Genome Project , Humans , Genetic Variation , Genomics/methods , Sequence Analysis, DNA/methods , Telomere/geneticsABSTRACT
Genome analysis of individuals affected by retinitis pigmentosa (RP) identified two rare nucleotide substitutions at the same genomic location on chromosome 11 (g.61392563 [GRCh38]), 69 base pairs upstream of the start codon of the ciliopathy gene TMEM216 (c.-69G>A, c.-69G>T [GenBank: NM_001173991.3]), in individuals of South Asian and African ancestry, respectively. Genotypes included 71 homozygotes and 3 mixed heterozygotes in trans with a predicted loss-of-function allele. Haplotype analysis showed single-nucleotide variants (SNVs) common across families, suggesting ancestral alleles within the two distinct ethnic populations. Clinical phenotype analysis of 62 available individuals from 49 families indicated a similar clinical presentation with night blindness in the first decade and progressive peripheral field loss thereafter. No evident systemic ciliopathy features were noted. Functional characterization of these variants by luciferase reporter gene assay showed reduced promotor activity. Nanopore sequencing confirmed the lower transcription of the TMEM216 c.-69G>T allele in blood-derived RNA from a heterozygous carrier, and reduced expression was further recapitulated by qPCR, using both leukocytes-derived RNA of c.-69G>T homozygotes and total RNA from genome-edited hTERT-RPE1 cells carrying homozygous TMEM216 c.-69G>A. In conclusion, these variants explain a significant proportion of unsolved cases, specifically in individuals of African ancestry, suggesting that reduced TMEM216 expression might lead to abnormal ciliogenesis and photoreceptor degeneration.
Subject(s)
Pedigree , Polymorphism, Single Nucleotide , Retinitis Pigmentosa , Adult , Child , Child, Preschool , Female , Humans , Male , Young Adult , Alleles , Haplotypes , Heterozygote , Homozygote , Membrane Proteins/genetics , Phenotype , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathologyABSTRACT
Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.
Subject(s)
Mammals , Marsupialia , Animals , Mice , Australia , Population Dynamics , Genotype , Heterozygote , Genetic Variation , Genetics, PopulationABSTRACT
Genetic biodiversity is rapidly gaining attention in global conservation policy. However, for almost all species, conservation relevant, population-level genetic data are lacking, limiting the extent to which genetic diversity can be used for conservation policy and decision-making. Macrogenetics is an emerging discipline that explores the patterns and processes underlying population genetic composition at broad taxonomic and spatial scales by aggregating and reanalyzing thousands of published genetic datasets. Here we argue that focusing macrogenetic tools on conservation needs, or conservation macrogenetics, will enhance decision-making for conservation practice and fill key data gaps for global policy. Conservation macrogenetics provides an empirical basis for better understanding the complexity and resilience of biological systems and, thus, how anthropogenic drivers and policy decisions affect biodiversity.
Subject(s)
Biodiversity , Conservation of Natural Resources , Genetics, Population , EcosystemABSTRACT
Polygenic scores (PGSs) aggregate the effects of variants across the genome to estimate genetic liability, but have lower performance in external study populations. A new study by Ding et al. has applied a novel framework to estimate the individual-level predictive accuracy of PGSs, and demonstrates that performance reduction occurs linearly with genetic distance.
ABSTRACT
Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.
Subject(s)
Turtles , Animals , Ecosystem , Population DynamicsABSTRACT
Genetic progress of crop plants is required to face human population growth and guarantee production stability in increasingly unstable environmental conditions. Breeding is accompanied by a loss in genetic diversity, which hinders sustainable genetic gain. Methodologies based on molecular marker information have been developed to manage diversity and proved effective in increasing long-term genetic gain. However, with realistic plant breeding population sizes, diversity depletion in closed programs appears ineluctable, calling for the introduction of relevant diversity donors. Although maintained with significant efforts, genetic resource collections remain underutilized, due to a large performance gap with elite germplasm. Bridging populations created by crossing genetic resources to elite lines prior to introduction into elite programs can manage this gap efficiently. To improve this strategy, we explored with simulations different genomic prediction and genetic diversity management options for a global program involving a bridging and an elite component. We analyzed the dynamics of quantitative trait loci fixation and followed the fate of allele donors after their introduction into the breeding program. Allocating 25% of total experimental resources to create a bridging component appears highly beneficial. We showed that potential diversity donors should be selected based on their phenotype rather than genomic predictions calibrated with the ongoing breeding program. We recommend incorporating improved donors into the elite program using a global calibration of the genomic prediction model and optimal cross selection maintaining a constant diversity. These approaches use efficiently genetic resources to sustain genetic gain and maintain neutral diversity, improving the flexibility to address future breeding objectives.
Subject(s)
Quantitative Trait Loci , Selection, Genetic , Humans , Phenotype , Quantitative Trait Loci/genetics , Genomics , Alleles , Plant Breeding , Genetic Variation , Models, GeneticABSTRACT
Within 15,000 years, the explosive adaptive radiation of haplochromine cichlids in Lake Victoria, East Africa, generated 500 endemic species. In the 1980s, the upsurge of Nile perch, a carnivorous fish artificially introduced to the lake, drove the extinction of more than 200 endemic cichlids. The Nile perch predation particularly harmed piscivorous cichlids, including paedophages, cichlids eat eggs and fries, which is an example of the unique trophic adaptation seen in African cichlids. Here, aiming to investigate past demographic events possibly triggered by the invasion of Nile perch and the subsequent impacts on the genetic structure of cichlids, we conducted large-scale comparative genomics. We discovered evidence of recent bottleneck events in 4 species, including 2 paedophages, which began during the 1970s to 1980s, and population size rebounded during the 1990s to 2000s. The timing of the bottleneck corresponded to the historical records of endemic haplochromines" disappearance and later resurgence, which is likely associated with the introduction of Nile perch by commercial demand to Lake Victoria in the 1950s. Interestingly, among the 4 species that likely experienced bottleneck, Haplochromis sp. "matumbi hunter," a paedophagous cichlid, showed the most severe bottleneck signatures. The components of shared ancestry inferred by ADMIXTURE suggested a high genetic differentiation between matumbi hunter and other species. In contrast, our phylogenetic analyses highly supported the monophyly of the 5 paedophages, consistent with the results of previous studies. We conclude that high genetic differentiation of matumbi hunter occurred due to the loss of shared genetic components among haplochromines in Lake Victoria caused by the recent severe bottleneck.
Subject(s)
Cichlids , Lakes , Animals , Cichlids/genetics , Genome , Genomics , PhylogenyABSTRACT
The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.
Subject(s)
Balaenoptera , Neoplasms , Animals , Balaenoptera/genetics , Segmental Duplications, Genomic , Genome , Demography , Neoplasms/geneticsABSTRACT
Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.
Subject(s)
Genetic Drift , Passeriformes , Animals , China , Phylogeography , Forests , Passeriformes/genetics , Phylogeny , Genetic VariationABSTRACT
Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.
Subject(s)
Heteroplasmy , Mitochondria , Mutation Rate , Plastids , Plastids/genetics , Mitochondria/genetics , Mitochondria/metabolism , AllelesABSTRACT
Modern wheat shows phenomenal evolutional success and adaptability to a range of environments owing to polyploidization; however, during its hybridization process a major genetic gain has been overlooked. Recently, Gaurav et al. emphasized harnessing genetic diversity from wheat wild progenitor Aegilops tauschii for the improvement of hexaploid wheat through introgression or transgenesis.
Subject(s)
Aegilops , Aegilops/genetics , Triticum/geneticsABSTRACT
Obesity is well established as a risk factor for many noncommunicable diseases; however, its consequences for infectious disease are poorly understood. Here, we investigated the impact of host obesity on influenza A virus (IAV) genetic variation using a diet-induced obesity ferret model and the A/Hong Kong/1073/1999 (H9N2) strain. Using a co-caging study design, we investigated the maintenance, generation, and transmission of intrahost IAV genetic variation by sequencing viral genomic RNA obtained from nasal wash samples over multiple days of infection. We found evidence for an enhanced role of positive selection acting on de novo mutations in obese hosts that led to nonsynonymous changes that rose to high frequency. In addition, we identified numerous cases of mutations throughout the genome that were specific to obese hosts and that were preserved during transmission between hosts. Despite detection of obese-specific variants, the overall viral genetic diversity did not differ significantly between obese and lean hosts. This is likely due to the high supply rate of de novo variation and common evolutionary adaptations to the ferret host regardless of obesity status, which we show are mediated by variation in the hemagglutinin and polymerase genes (PB2 and PB1). We also identified defective viral genomes (DVGs) that were found uniquely in either obese or lean hosts, but the overall DVG diversity and dynamics did not differ between the two groups. Our study suggests that obesity may result in a unique selective environment impacting intrahost IAV evolution, highlighting the need for additional genetic and functional studies to confirm these effects.IMPORTANCEObesity is a chronic health condition characterized by excess adiposity leading to a systemic increase in inflammation and dysregulation of metabolic hormones and immune cell populations. Influenza A virus (IAV) is a highly infectious pathogen responsible for seasonal and pandemic influenza. Host risk factors, including compromised immunity and pre-existing health conditions, can contribute to increased infection susceptibility and disease severity. During viral replication in a host, the negative-sense single-stranded RNA genome of IAV accumulates genetic diversity that may have important consequences for viral evolution and transmission. Our study provides the first insight into the consequences of host obesity on viral genetic diversity and adaptation, suggesting that host factors associated with obesity alter the selective environment experienced by a viral population, thereby impacting the spectrum of genetic variation.
Subject(s)
Ferrets , Genetic Variation , Genome, Viral , Influenza A virus , Obesity , Orthomyxoviridae Infections , Animals , Humans , Male , Disease Models, Animal , Evolution, Molecular , Ferrets/virology , Genetic Variation/genetics , Genome, Viral/genetics , Host Microbial Interactions , Influenza A virus/genetics , Mutation , Obesity/virology , Orthomyxoviridae Infections/virology , RNA, Viral/genetics , Thinness/virologyABSTRACT
Koala retrovirus (KoRV) subtype A (KoRV-A) is currently in transition from exogenous virus to endogenous viral element, providing an ideal system to elucidate retroviral-host coevolution. We characterized KoRV geography using fecal DNA from 192 samples across 20 populations throughout the koala's range. We reveal an abrupt change in KoRV genetics and incidence at the Victoria/New South Wales state border. In northern koalas, pol gene copies were ubiquitously present at above five per cell, consistent with endogenous KoRV. In southern koalas, pol copies were detected in only 25.8% of koalas and always at copy numbers below one, while the env gene was detected in all animals and in a majority at copy numbers above one per cell. These results suggest that southern koalas carry partial endogenous KoRV-like sequences. Deep sequencing of the env hypervariable region revealed three putatively endogenous KoRV-A sequences in northern koalas and a single, distinct sequence present in all southern koalas. Among northern populations, env sequence diversity decreased with distance from the equator, suggesting infectious KoRV-A invaded the koala genome in northern Australia and then spread south. The exogenous KoRV subtypes (B to K), two novel subtypes, and intermediate subtypes were detected in all northern koala populations but were strikingly absent from all southern animals tested. Apart from KoRV subtype D, these exogenous subtypes were generally locally prevalent but geographically restricted, producing KoRV genetic differentiation among northern populations. This suggests that sporadic evolution and local transmission of the exogenous subtypes have occurred within northern Australia, but this has not extended into animals within southern Australia.