Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Publication year range
1.
Cell ; 186(19): 4074-4084.e11, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37669665

ABSTRACT

H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza, Human , Animals , Humans , Mice , Chickens , Ferrets , Influenza A Virus, H3N2 Subtype , Respiratory Aerosols and Droplets
2.
Clin Infect Dis ; 78(3): 646-650, 2024 03 20.
Article in English | MEDLINE | ID: mdl-37555762

ABSTRACT

Here, we report on a case of human infection with the H3N8 avian influenza virus. The patient had multiple myeloma and died of severe infection. Genome analysis showed multiple gene mutations and reassortments without mammalian-adaptive mutations. This suggests that avian influenza (A/H3N8) virus infection could be lethal for immunocompromised persons.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza, Human , Humans , China , Influenza A Virus, H3N8 Subtype/genetics
3.
J Virol ; 97(6): e0043423, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37289052

ABSTRACT

Although influenza A viruses of several subtypes have occasionally infected humans, to date only those of the H1, H2, and H3 subtypes have led to pandemics and become established in humans. The detection of two human infections by avian H3N8 viruses in April and May of 2022 raised pandemic concerns. Recent studies have shown the H3N8 viruses were introduced into humans from poultry, although their genesis, prevalence, and transmissibility in mammals have not been fully elucidated. Findings generated from our systematic influenza surveillance showed that this H3N8 influenza virus was first detected in chickens in July 2021 and then disseminated and became established in chickens over wider regions of China. Phylogenetic analyses revealed that the H3 HA and N8 NA were derived from avian viruses prevalent in domestic ducks in the Guangxi-Guangdong region, while all internal genes were from enzootic poultry H9N2 viruses. The novel H3N8 viruses form independent lineages in the glycoprotein gene trees, but their internal genes are mixed with those of H9N2 viruses, indicating continuous gene exchange among these viruses. Experimental infection of ferrets with three chicken H3N8 viruses showed transmission through direct contact and inefficient transmission by airborne exposure. Examination of contemporary human sera detected only very limited antibody cross-reaction to these viruses. The continuing evolution of these viruses in poultry could pose an ongoing pandemic threat. IMPORTANCE A novel H3N8 virus with demonstrated zoonotic potential has emerged and disseminated in chickens in China. It was generated by reassortment between avian H3 and N8 virus(es) and long-term enzootic H9N2 viruses present in southern China. This H3N8 virus has maintained independent H3 and N8 gene lineages but continues to exchange internal genes with other H9N2 viruses to form novel variants. Our experimental studies showed that these H3N8 viruses were transmissible in ferrets, and serological data suggest that the human population lacks effective immunological protection against it. With its wide geographical distribution and continuing evolution in chickens, other spillovers to humans can be expected and might lead to more efficient transmission in humans.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Influenza, Human/epidemiology , Chickens , Public Health , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny , Ferrets , China/epidemiology , Poultry
4.
Vet Res ; 55(1): 36, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520035

ABSTRACT

Equine influenza virus (EIV) remains a threat to horses, despite the availability of vaccines. Strategies to monitor the virus and prevent potential vaccine failure revolve around serological assays, RT-qPCR amplification, and sequencing the viral hemagglutinin (HA) and neuraminidase (NA) genes. These approaches overlook the contribution of other viral proteins in driving virulence. This study assesses the potential of long-read nanopore sequencing for fast and precise sequencing of circulating equine influenza viruses. Therefore, two French Florida Clade 1 strains, including the one circulating in winter 2018-2019 exhibiting more pronounced pathogenicity than usual, as well as the two currently OIE-recommended vaccine strains, were sequenced. Our results demonstrated the reliability of this sequencing method in generating accurate sequences. Sequence analysis of HA revealed a subtle antigenic drift in the French EIV strains, with specific substitutions, such as T163I in A/equine/Paris/1/2018 and the N188T mutation in post-2015 strains; both substitutions were in antigenic site B. Antigenic site E exhibited modifications in post-2018 strains, with the N63D substitution. Segment 2 sequencing also revealed that the A/equine/Paris/1/2018 strain encodes a longer variant of the PB1-F2 protein when compared to other Florida clade 1 strains (90 amino acids long versus 81 amino acids long). Further biological and biochemistry assays demonstrated that this PB1-F2 variant has enhanced abilities to abolish the mitochondrial membrane potential ΔΨm and permeabilize synthetic membranes. Altogether, our results highlight the interest in rapidly characterizing the complete genome of circulating strains with next-generation sequencing technologies to adapt vaccines and identify specific virulence markers of EIV.


Subject(s)
Horse Diseases , Influenza A Virus, H3N8 Subtype , Orthomyxoviridae Infections , Vaccines , Animals , Amino Acids/genetics , Genomics , Horses , Influenza A Virus, H3N8 Subtype/genetics , Orthomyxoviridae Infections/veterinary , Reproducibility of Results , Sequence Analysis/veterinary , Virulence Factors
5.
Emerg Infect Dis ; 29(6): 1210-1214, 2023 06.
Article in English | MEDLINE | ID: mdl-37095078

ABSTRACT

Human infection with avian influenza A(H3N8) virus is uncommon but can lead to acute respiratory distress syndrome. In explant cultures of the human bronchus and lung, novel H3N8 virus showed limited replication efficiency in bronchial and lung tissue but had a higher replication than avian H3N8 virus in lung tissue.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza, Human , Orthomyxoviridae Infections , Animals , Humans , Lung/diagnostic imaging , Bronchi , Virus Replication
6.
J Med Virol ; 95(7): e28912, 2023 07.
Article in English | MEDLINE | ID: mdl-37403888

ABSTRACT

Influenza A(H3N8) viruses first emerged in humans in 2022, but their public health risk has not been evaluated. Here, we systematically investigated the biological features of avian and human isolated H3N8 viruses. The human-origin H3N8 viruses exhibited dual receptor binding profiles but avian-origin H3N8 viruses bound to avian type (sialic acid α2, 3) receptors only. All H3N8 viruses were sensitive to the antiviral drug oseltamivir. Although H3N8 viruses showed lower virulence than the 2009 pandemic H1N1 (09pdmH1N1) viruses, they induced comparable infectivity in mice. More importantly, the human population is naïve to H3N8 virus infection and current seasonal vaccination is not protective. Therefore, the threat of influenza A(H3N8) viruses should not be underestimated. Any variations should be monitored closely and their effect should be studied in time for the pandemic potential preparedness purpose.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Influenza, Human , Orthomyxoviridae Infections , Humans , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Birds , China/epidemiology
7.
Euro Surveill ; 28(41)2023 10.
Article in English | MEDLINE | ID: mdl-37824247

ABSTRACT

BackgroundTwo human cases of avian influenza A (H3N8) virus infection were reported in China in 2022.AimTo characterise H3N8 viruses circulating in China in September 2021-May 2022.MethodsWe sampled poultry and poultry-related environments in 25 Chinese provinces. After isolating H3N8 viruses, whole genome sequences were obtained for molecular and phylogenetic analyses. The specificity of H3N8 viruses towards human or avian receptors was assessed in vitro. Their ability to replicate in chicken and mice, and to transmit between guinea pigs was also investigated.ResultsIn total, 98 H3N8 avian influenza virus isolates were retrieved from 38,639 samples; genetic analysis of 31 representative isolates revealed 17 genotypes. Viruses belonging to 10 of these genotypes had six internal genes originating from influenza A (H9N2) viruses. These reassorted viruses could be found in live poultry markets and comprised the strains responsible for the two human infections. A subset of nine H3N8 viruses (including six reassorted) that replicated efficiently in mice bound to both avian-type and human-type receptors in vitro. Three reassorted viruses were shed by chickens for up to 9 days, replicating efficiently in their upper respiratory tract. Five reassorted viruses tested on guinea pigs were transmissible among these by respiratory droplets.ConclusionAvian H3N8 viruses with H9N2 virus internal genes, causing two human infections, occurred in live poultry markets in China. The low pathogenicity of H3N8 viruses in poultry allows their continuous circulation with potential for reassortment. Careful monitoring of spill-over infections in humans is important to strengthen early-warning systems and maintain influenza pandemic preparedness.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Poultry Diseases , Animals , Humans , Mice , Guinea Pigs , Influenza, Human/epidemiology , Poultry , Influenza in Birds/epidemiology , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny , Chickens , China/epidemiology , Poultry Diseases/epidemiology
8.
Emerg Infect Dis ; 28(10): 2009-2015, 2022 10.
Article in English | MEDLINE | ID: mdl-36037827

ABSTRACT

Zoonotic and pandemic influenza continue to pose threats to global public health. Pandemics arise when novel influenza A viruses, derived in whole or in part from animal or avian influenza viruses, adapt to transmit efficiently in a human population that has little population immunity to contain its onward transmission. Viruses of previous pandemic concern, such as influenza A(H7N9), arose from influenza A(H9N2) viruses established in domestic poultry acquiring a hemagglutinin and neuraminidase from influenza A viruses of aquatic waterfowl. We report a novel influenza A(H3N8) virus in chicken that has emerged in a similar manner and that has been recently reported to cause zoonotic disease. Although they are H3 subtype, these avian viruses are antigenically distant from contemporary human influenza A(H3N2) viruses, and there is little cross-reactive immunity in the human population. It is essential to heighten surveillance for these avian A(H3N8) viruses in poultry and in humans.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Chickens , China/epidemiology , Hemagglutinins , Hong Kong/epidemiology , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza, Human/epidemiology , Neuraminidase/genetics , Phylogeny , Poultry
9.
Microb Pathog ; 157: 104885, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33991641

ABSTRACT

To prevent and control H3N8 subtype equine influenza, we prepared virus-like particles (VLPs) comprising the HA, NA and M1 proteins of H3N8 equine influenza virus (EIV) through the insect cell-baculovirus expression system. The results of Western blot and hemagglutination analyses demonstrated that the constructed VLPs comprising HA, NA and M1 proteins have good hemagglutination activity. Immunoelectron microscope revealed that the VLPs share similar morphology and structure with natural virus particles. The hyperimmune serum from horses immunized with the VLPs were injected into mice by means of artificial passive immunization and then challenge, or challenge following by injecting hyperimmune serum. The results showed that the equine hyperimmune serum has good preventive and therapeutic efficacy against the infection of H3N8 EIV. The study provides a technical foundation for the development of H3N8 EIV VLP vaccine.


Subject(s)
Horse Diseases , Influenza A Virus, H3N8 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Vaccines, Virus-Like Particle , Animals , Antibodies, Viral , Horse Diseases/prevention & control , Horses , Influenza A Virus, H3N8 Subtype/genetics , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary
10.
J Virol ; 93(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-31019053

ABSTRACT

Equine influenza virus (EIV) causes severe acute respiratory disease in horses. Currently, the strains belonging to the H3N8 subtype are divided into two clades, Florida clade 1 (FC1) and Florida clade 2 (FC2), which emerged in 2002. Both FC1 and FC2 clades were reported in Asian and Middle East countries in the last decade. In this study, we described the evolution, epidemiology, and molecular characteristic of the EIV lineages, with focus on those detected in Asia from 2007 to 2017. The full genome phylogeny showed that FC1 and FC2 constituted separate and divergent lineages, without evidence of reassortment between the clades. While FC1 evolved as a single lineage, FC2 showed a divergent event around 2004 giving rise to two well-supported and coexisting sublineages, European and Asian. Furthermore, two different spread patterns of EIV in Asian countries were identified. The FC1 outbreaks were caused by independent introductions of EIV from the Americas, with the Asian isolates genetically similar to the contemporary American lineages. On the other hand, the FC2 strains detected in Asian mainland countries conformed to an autochthonous monophyletic group with a common ancestor dated in 2006 and showed evidence of an endemic circulation in a local host. Characteristic aminoacidic signature patterns were detected in all viral proteins in both Asian-FC1 and FC2 populations. Several changes were located at the top of the HA1 protein, inside or near antigenic sites. Further studies are needed to assess the potential impact of these antigenic changes in vaccination programs.IMPORTANCE The complex and continuous antigenic evolution of equine influenza viruses (EIVs) remains a major hurdle for vaccine development and the design of effective immunization programs. The present study provides a comprehensive analysis showing the EIV evolutionary dynamics, including the spread and circulation within the Asian continent and its relationship to global EIV populations over a 10-year period. Moreover, we provide a better understanding of EIV molecular evolution in Asian countries and its consequences on the antigenicity. The study underscores the association between the global horse movement and the circulation of EIV in this region. Understanding EIV evolution is imperative in order to mitigate the risk of outbreaks affecting the horse industry and to help with the selection of the viral strains to be included in the formulation of future vaccines.


Subject(s)
Horse Diseases/epidemiology , Horse Diseases/virology , Influenza A Virus, H3N8 Subtype/classification , Influenza A Virus, H3N8 Subtype/isolation & purification , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Phylogeny , Animals , Asia , Disease Outbreaks , Evolution, Molecular , Horses , Influenza A Virus, H3N8 Subtype/genetics , Influenza A Virus, H7N7 Subtype/classification , Phylogeography , Viral Proteins/genetics
11.
J Virol ; 92(2)2018 01 15.
Article in English | MEDLINE | ID: mdl-29118117

ABSTRACT

Vaccination is the primary strategy for influenza prevention and control. However, egg-based vaccines, the predominant production platform, have several disadvantages, including the emergence of viral antigenic variants that can be induced during egg passage. These limitations have prompted the development of cell-based vaccines, which themselves are not without issue. Most importantly, vaccine seed viruses often do not grow efficiently in mammalian cell lines. Here we aimed to identify novel high-yield signatures for influenza viruses in continuous Madin-Darby canine kidney (MDCK) and Vero cells. Using influenza A(H1N1)pdm09 virus as the testing platform and an integrating error-prone PCR-based mutagenesis strategy, we identified a Y161F mutation in hemagglutinin (HA) that not only enhanced the infectivity of the resultant virus by more than 300-fold but also increased its thermostability without changing its original antigenic properties. The vaccine produced from the Y161F mutant fully protected mice against lethal challenge with wild-type A(H1N1)pdm09. Compared with A(H1N1)pdm09, the Y161F mutant had significantly higher avidity for avian-like and human-like receptor analogs. Of note, the introduction of the Y161F mutation into HA of seasonal H3N2 influenza A virus (IAV) and canine H3N8 IAV also increased yields and thermostability in MDCK cells and chicken embryotic eggs. Thus, residue F161 plays an important role in determining viral growth and thermostability, which could be harnessed to optimize IAV vaccine seed viruses.IMPORTANCE Although a promising complement to current egg-based influenza vaccines, cell-based vaccines have one large challenge: high-yield vaccine seeds for production. In this study, we identified a molecular signature, Y161F, in hemagglutinin (HA) that resulted in increased virus growth in Madin-Darby canine kidney and Vero cells, two cell lines commonly used for influenza vaccine manufacturing. This Y161F mutation not only increased HA thermostability but also enhanced its binding affinity for α2,6- and α2,3-linked Neu5Ac. These results suggest that a vaccine strain bearing the Y161F mutation in HA could potentially increase vaccine yields in mammalian cell culture systems.


Subject(s)
Amino Acid Substitution , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/physiology , Mutation , Virus Replication , Amino Acid Sequence , Animals , Chlorocebus aethiops , Cluster Analysis , Codon , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Madin Darby Canine Kidney Cells , Mice , Models, Molecular , Molecular Conformation , Neutralization Tests , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Protein Binding , Protein Stability , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Temperature , Vero Cells , Virus Cultivation
12.
J Virol ; 92(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-29997206

ABSTRACT

An outbreak of respiratory disease caused by the equine-origin influenza A(H3N8) virus was first detected in dogs in 2004 and since then has been enzootic among dogs. Currently, the molecular mechanisms underlying host adaption of this virus from horses to dogs is unknown. Here, we have applied quantitative binding, growth kinetics, and immunofluorescence analyses to elucidate these mechanisms. Our findings suggest that a substitution of W222L in the hemagglutinin of the equine-origin A(H3N8) virus facilitated its host adaption to dogs. This mutation increased binding avidity of the virus specifically to receptor glycans with N-glycolylneuraminic acid (Neu5Gc) and sialyl Lewis X (SLeX) motifs. We have demonstrated these motifs are abundantly located in the submucosal glands of dog trachea. Our findings also suggest that in addition to the type of glycosidic linkage (e.g., α2,3-linkage or α2,6-linkage), the type of sialic acid (Neu5Gc or 5-N-acetyl neuraminic acid) and the glycan substructure (e.g., SLeX) also play an important role in host tropism of influenza A viruses.IMPORTANCE Influenza A viruses (IAVs) cause a significant burden on human and animal health, and mechanisms for interspecies transmission of IAVs are far from being understood. Findings from this study suggest that an equine-origin A(H3N8) IAV with mutation W222L at its hemagglutinin increased binding to canine-specific receptors with sialyl Lewis X and Neu5Gc motifs and, thereby, may have facilitated viral adaption from horses to dogs. These findings suggest that in addition to the glycosidic linkage (e.g., α2,3-linked and α2,6-linked), the substructure in the receptor saccharides (e.g., sialyl Lewis X and Neu5Gc) could present an interspecies transmission barrier for IAVs and drive viral mutations to overcome such barriers.


Subject(s)
Hemagglutinins/genetics , Host Specificity , Influenza A Virus, H3N8 Subtype/genetics , Mutation , Receptors, Virus/genetics , Animals , Binding Sites , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Horses , Influenza A Virus, H3N8 Subtype/growth & development , Influenza A Virus, H3N8 Subtype/metabolism , Kinetics , Neuraminic Acids/analysis , Oligosaccharides/analysis , Orthomyxoviridae Infections/virology , Protein Binding , Receptors, Virus/metabolism , Sialyl Lewis X Antigen , Trachea/chemistry , Trachea/virology , Viral Tropism , Virus Attachment
13.
Acta Virol ; 62(3): 266-276, 2018.
Article in English | MEDLINE | ID: mdl-30160142

ABSTRACT

Avian influenza A viruses (IAVs) are able to overcome the interspecies barrier and adapt to the new non-avian host. The process of adaptation requires the adaptive changes of IAV genome resulting in amino acid substitutions. The aim of this work was the description of amino acid substitutions in avian influenza A viruses (IAVs) occurring during their adaptation to equine host. Today, viruses of the equine influenza H3N8 subtype, first isolated in 1963, represent a single genetic lineage of IAV causing a respiratory disease in horses. We compared the amino acid sequences of the conserved proteins PB2, PB1, PA, NP, M1, M2, NS1 and NEP of equine influenza H3N8 subtype IAV with sequences of avian viruses, both available in the NCBI's Influenza Virus Resource Database. The amino acid substitutions persisting in equine IAV isolates and occurring in avian IAV at f both hosts.


Subject(s)
Horse Diseases/virology , Influenza A Virus, H3N8 Subtype/genetics , Orthomyxoviridae Infections/veterinary , Adaptation, Physiological , Amino Acid Substitution , Animals , Genetic Markers , Horses , Humans , Influenza A Virus, H3N8 Subtype/physiology , Influenza, Human/virology , Orthomyxoviridae Infections/virology , Species Specificity , Viral Proteins/genetics
14.
BMC Genomics ; 18(1): 652, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28830350

ABSTRACT

BACKGROUND: Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. RESULTS: The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. CONCLUSIONS: Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the codon usage patterns and evolution of polymerase genes of EIVs.


Subject(s)
Codon/genetics , DNA-Directed DNA Polymerase/genetics , Evolution, Molecular , Influenza A Virus, H3N8 Subtype/enzymology , Influenza A Virus, H3N8 Subtype/genetics , Phylogeny , Selection, Genetic
15.
Virus Genes ; 52(1): 38-50, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26611442

ABSTRACT

A novel strain of H3N8 influenza virus was isolated from domestic pigeons during the avian influenza virus (AIV) surveillance in wet markets in Anhui, China, during 2013. The virus was characterized by whole-genome sequencing with subsequent genetic comparison and phylogenetic analysis. Phylogenetic analysis revealed that the NA gene of AIV mapped to the North American lineage, and the remaining seven genes belong to a Eurasian lineage. These findings indicated that this H3N8 virus is a novel nature reassortant virus. Comparison of the hemagglutinin amino acid sequences indicated 9 substitutions. One substitution caused the loss of a potential glycosylation site, and six substitutions were not previously observed in avian H3 isolates. Q226 and T228 at the receptor binding sites suggested that Anhui-08 preferentially binds to a-2,3-linked sialic acid receptors, and the cleavage site sequence showed a low pathogenic feature. Animal experiments further confirmed that A/pigeon/Anhui/08/2013 (H3N8) is low or in pigeons. The results improve our understanding of these viruses as they evolve and also provide important information to aid ongoing risk assessment analyses because these zoonotic influenza viruses continue to circulate and adapt to new hosts.


Subject(s)
Columbidae/virology , Influenza A Virus, H3N8 Subtype/genetics , Animals , Chickens/classification , Chickens/virology , China , DNA, Complementary , Ducks/virology , Influenza A Virus, H3N8 Subtype/isolation & purification , Influenza in Birds/virology , Phylogeny , RNA, Viral , Reassortant Viruses/genetics , Sequence Analysis, RNA
16.
EBioMedicine ; 101: 105034, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408394

ABSTRACT

BACKGROUND: In 2022 and 2023, novel reassortant H3N8 influenza viruses infected three people, marking the first human infections with viruses of this subtype. METHODS: Here, we generated one of these viruses (A/Henan/4-10CNIC/2022; hereafter called A/Henan/2022 virus) by using reverse genetics and characterized it. FINDINGS: In intranasally infected mice, reverse genetics-generated A/Henan/2022 virus caused weight loss in all five animals (one of which had to be euthanized) and replicated efficiently in the respiratory tract. Intranasal infection of ferrets resulted in minor weight loss and moderate fever but no mortality. Reverse genetics-generated A/Henan/2022 virus replicated efficiently in the upper respiratory tract of ferrets but was not detected in the lungs. Virus transmission via respiratory droplets occurred in one of four pairs of ferrets. Deep-sequencing of nasal swab samples from inoculated and exposed ferrets revealed sequence polymorphisms in the haemagglutinin protein that may affect receptor-binding specificity. We also tested 90 human sera for neutralizing antibodies against reverse genetics-generated A/Henan/2022 virus and found that some of them possessed neutralizing antibody titres, especially sera from older donors with likely exposure to earlier human H3N2 viruses. INTERPRETATION: Our data demonstrate that reverse genetics-generated A/Henan/2022 virus is a low pathogenic influenza virus (of avian influenza virus descent) with some antigenic resemblance to older human H3N2 viruses and limited respiratory droplet transmissibility in ferrets. FUNDING: This work was supported by the Japan Program for Infectious Diseases Research and Infrastructure (JP23wm0125002), and the Japan Initiative for World-leading Vaccine Research and Development Centers (JP233fa627001) from the Japan Agency for Medical Research and Development (AMED).


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza, Human , Orthomyxoviridae Infections , Humans , Animals , Mice , Influenza A Virus, H3N2 Subtype/genetics , Ferrets , Lung/pathology , Weight Loss
17.
Open Vet J ; 14(1): 350-359, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633177

ABSTRACT

Background: Equine influenza (EI) is a transmissible viral respiratory sickness of the Equidae family. Two viruses, H7N7 and H3N8 caused EI; however, H7N7 has not been detected for decades. H3N8 has circulated and bifurcated into Eurasian and American lineages. The latter subsequently diversified into Kentucky, South America, and Florida sub-lineages. Florida clade 1 (FC1) and Florida clade 2 (FC2) strains are the only circulating EI viruses (EIVs) in the meantime. Immunization is considered the major means for the prevention and control of EI infection. Using disparate technologies and platforms, several vaccines have been developed and commercialized. According to the recommendations of the World Organization for Animal Health (WOAH), all commercial vaccines shall comprise representatives of both FC1 and FC2 strains. Unfortunately, most of the commercially available vaccines were not updated to incorporate a representative of FC2 strains. Aim: The purpose of this research was to develop a new EI vaccine candidate that incorporates the hemagglutinin (HA) antigen from the currently circulating FC2. Methods: In this study, we report the expression of the full-length recombinant HA gene of FC2 in the baculovirus expression system. Results: The HA recombinant protein has been proven to maintain its biological characteristics by hemadsorption (HAD) and hemagglutination tests. Moreover, using a reference-specific serum, the specificity of the HA has been confirmed through the implementation of immunoperoxidase and western immunoblotting assays. Conclusion: In conclusion, we report the expression of specific biologically active recombinant HA of FC2, which would act as a foundation for the generation of an updated EI subunit or virus vector vaccine candidates.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H7N7 Subtype , Orthomyxoviridae Infections , Vaccines , Horses , Animals , Hemagglutinins , Influenza A Virus, H3N8 Subtype/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Baculoviridae
18.
Comp Immunol Microbiol Infect Dis ; 104: 102109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118336

ABSTRACT

We have performed an equine influenza (EI) serological study of the equine population in Algeria by testing 298 serum samples collected between February and August 2021 from 5 provinces. The results were obtained performing an NP-ELISA. Our results revealed that 49.3% (147/298) samples positive for antibodies to EI (H3N8). During this study and after a gap of one decade an outbreak of EI was reported in Algeria in the first week of March 2021. The disease was confirmed by virus detection from the nasal swabs (n = 39) by qRT-PCR and by identifying 5 EI seroconversion. The virus sequences were identified as H3N8 by sequencing the haemagglutinin (HA) and neuraminidase (NA) genes. Alignment of HA1 amino acid sequence confirmed that viruses belong to Clade 1 of the Florida sublineage in the American lineage. This study indicate the first detection of FC1 strain of EIV in Maghreb area.


Subject(s)
Horse Diseases , Influenza A Virus, H3N8 Subtype , Influenza, Human , Orthomyxoviridae Infections , Horses , Animals , Humans , Influenza A Virus, H3N8 Subtype/genetics , Algeria/epidemiology , Influenza, Human/epidemiology , Phylogeny , Africa, Northern , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Disease Outbreaks/veterinary , Horse Diseases/diagnosis
19.
Vaccine X ; 19: 100531, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39157684

ABSTRACT

Since 2022, three human cases of a novel H3N8 avian influenza virus infection have been reported in three provinces in China. Specific vaccines are important means of preparing for the potential influenza pandemic. Thus, H3N8 viruses [A/Henan/cnic410/2022 (HN410) and A/Changsha/1000/2022(CS1000)] were isolated from the infected patients as prototype viruses to develop candidate vaccine viruses (CVVs) using the reverse genetics (RG) technology. Five reassortant viruses with different HA and NA combinations were constructed based on the two viruses to get a high-yield and safe CVV. The results showed that all viruses had similar antigenicity but different growth characteristics. Reassortant viruses carrying NA from CS1000 exhibited better growth ability and NA enzyme activity than the ones carrying HN410 NA. Furthermore, the NA gene of CS1000 had one more potential N-glycosylation site at position 46 compared with HN410. The substitution of position 46 showed that adding or removing N-glycosylation sites to different reassortant viruses had different effects on growth ability. A reassortant virus carrying HN410 HA and CS1000 NA with high growth ability was selected as a CVV, which met the requirements for a CVV. These data suggest that different surface gene combinations and the presence or absence of potential N-glycosylation sites on position 46 in the NA gene affect the growth characteristics of H3N8 CVVs.

20.
Biomed Environ Sci ; 26(7): 546-51, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23895699

ABSTRACT

OBJECTIVE: To conduct a full genome sequence analysis for genetic characterization of an H3N8 influenza virus isolated from drinking water of a domestic duck farm in Poyang Lake area in 2011. METHODS: The virus was cultivated by specific pathogen free (SPF) chicken embryo eggs and was subtyped into hemagglutinin (HA) and neuraminidase (NA) by real-time PCR method. Eight gene segments were sequenced and phylogenetic analysis was conducted. RESULTS: The NA gene of this virus belongs to North American lineage; other seven genes belong to Eurasian lineage. Compared with the viruses containing NA gene, the PB2 and PB1 gene came from different clades. And this indicates that the virus was a novel reassortant genotype. The HA receptor binding preference was avian-like and the cleavage site sequence showed a low pathogenic feature. There was no drug resistance mutation of M2 protein. The mutations of Asn30Asp, and Thr215Ala of the M1 protein implied the potential of pathogenicity increase in mice. CONCLUSION: The finding of novel genotype of H3N8 virus in drinking water in this duck farm near Poyang Lake highlighted the importance of strengthening the surveillance of avian influenza in this region, which could contribute to pinpointing the influenza ecological relations among avian, swine, and human.


Subject(s)
Influenza A Virus, H3N8 Subtype/genetics , Influenza A Virus, H3N8 Subtype/isolation & purification , Water Pollutants/isolation & purification , Amino Acid Sequence , Animal Husbandry , Animals , Base Sequence , China , DNA, Viral/genetics , Drinking Water , Ducks , Lakes , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL