Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Publication year range
1.
Mol Cell ; 83(8): 1216-1236.e12, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36944333

ABSTRACT

Highly coordinated changes in gene expression underlie T cell activation and exhaustion. However, the mechanisms by which such programs are regulated and how these may be targeted for therapeutic benefit remain poorly understood. Here, we comprehensively profile the genomic occupancy of mSWI/SNF chromatin remodeling complexes throughout acute and chronic T cell stimulation, finding that stepwise changes in localization over transcription factor binding sites direct site-specific chromatin accessibility and gene activation leading to distinct phenotypes. Notably, perturbation of mSWI/SNF complexes using genetic and clinically relevant chemical strategies enhances the persistence of T cells with attenuated exhaustion hallmarks and increased memory features in vitro and in vivo. Finally, pharmacologic mSWI/SNF inhibition improves CAR-T expansion and results in improved anti-tumor control in vivo. These findings reveal the central role of mSWI/SNF complexes in the coordination of T cell activation and exhaustion and nominate small-molecule-based strategies for the improvement of current immunotherapy protocols.


Subject(s)
Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Transcription Factors/metabolism , Chromatin/genetics , Transcriptional Activation
2.
Pediatr Nephrol ; 39(6): 1847-1858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38196016

ABSTRACT

BACKGROUND: We aimed to develop a tool for predicting HNF1B mutations in children with congenital abnormalities of the kidneys and urinary tract (CAKUT). METHODS: The clinical and laboratory data from 234 children and young adults with known HNF1B mutation status were collected and analyzed retrospectively. All subjects were randomly divided into a training (70%) and a validation set (30%). A random forest model was constructed to predict HNF1B mutations. The recursive feature elimination algorithm was used for feature selection for the model, and receiver operating characteristic curve statistics was used to verify its predictive effect. RESULTS: A total of 213 patients were analyzed, including HNF1B-positive (mut + , n = 109) and HNF1B-negative (mut - , n = 104) subjects. The majority of patients had mild chronic kidney disease. Kidney phenotype was similar between groups, but bilateral kidney anomalies were more frequent in the mut + group. Hypomagnesemia and hypermagnesuria were the most common abnormalities in mut + patients and were highly selective of HNF1B. Hypomagnesemia based on age-appropriate norms had a better discriminatory value than the age-independent cutoff of 0.7 mmol/l. Pancreatic anomalies were almost exclusively found in mut + patients. No subjects had hypokalemia; the mean serum potassium level was lower in the HNF1B cohort. The abovementioned, discriminative parameters were selected for the model, which showed a good performance (area under the curve: 0.85; sensitivity of 93.67%, specificity of 73.57%). A corresponding calculator was developed for use and validation. CONCLUSIONS: This study developed a simple tool for predicting HNF1B mutations in children and young adults with CAKUT.


Subject(s)
Kidney Diseases , Urinary Tract , Urogenital Abnormalities , Vesico-Ureteral Reflux , Child , Humans , Young Adult , Retrospective Studies , Kidney/abnormalities , Urinary Tract/abnormalities , Mutation , Kidney Diseases/genetics , Magnesium , Hepatocyte Nuclear Factor 1-beta/genetics
3.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674137

ABSTRACT

The evolving landscape of clinical genetics is becoming increasingly relevant in the field of nephrology. HNF1B-associated renal disease presents with a diverse array of renal and extrarenal manifestations, prominently featuring cystic kidney disease and diabetes mellitus. For the genetic analyses, whole exome sequencing (WES) and multiplex ligation-dependent probe amplification (MLPA) were performed. Bioinformatics analysis was performed with Ingenuity Clinical Insights software (Qiagen). The patient's electronic record was utilized after receiving informed consent. In this report, we present seven cases of HNF1B-associated kidney disease, each featuring distinct genetic abnormalities and displaying diverse extrarenal manifestations. Over 12 years, the mean decline in eGFR averaged -2.22 ± 0.7 mL/min/1.73 m2. Diabetes mellitus was present in five patients, kidney dysplastic lesions in six patients, pancreatic dysplasia, hypomagnesemia and abnormal liver function tests in three patients each. This case series emphasizes the phenotypic variability and the fast decline in kidney function associated with HNF-1B-related disease. Additionally, it underscores that complex clinical presentations may have a retrospectively straightforward explanation through the use of diverse genetic analytical tools.


Subject(s)
Hepatocyte Nuclear Factor 1-beta , Phenotype , Humans , Hepatocyte Nuclear Factor 1-beta/genetics , Male , Female , Adult , Exome Sequencing , Adolescent , Middle Aged , Child , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/diagnosis , Mutation , Young Adult , Diabetes Mellitus/genetics , Diabetes Mellitus/diagnosis
4.
Cancer Sci ; 114(4): 1672-1685, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36511816

ABSTRACT

The molecular subtypes of pancreatic cancer (PC), either classical/progenitor-like or basal/squamous-like, are currently a major topic of research because of their direct association with clinical outcomes. Some transcription factors (TFs) have been reported to be associated with these subtypes. However, the mechanisms by which these molecular signatures of PCs are established remain unknown. Epigenetic regulatory processes, supported by dynamic changes in the chromatin structure, are essential for transcriptional profiles. Previously, we reported the importance of open chromatin profiles in the biological features and transcriptional status of PCs. Here, we aimed to analyze the relationships between three-dimensional (3D) genome structures and the molecular subtypes of human PCs using Hi-C analysis. We observed a correlation of the specific elements of 3D genome modules, including compartments, topologically associating domains, and enhancer-promoter loops, with the expression of related genes. We focused on HNF1B, a TF that is implicated in the progenitor subtype. Forced expression of HNF1B in squamous-type PC organoids induced the upregulation and downregulation of genes associated with progenitor and squamous subtypes, respectively. Long-range genomic interactions induced by HNF1B were accompanied by compartment modulation and H3K27ac redistribution. We also found that these HNF1B-induced changes in subtype-related gene expression required an intrinsically disordered region, suggesting a possible involvement of phase separation in compartment modulation. Thus, mapping of 3D structural changes induced by TFs, such as HNF1B, may become a useful resource for further understanding the molecular features of PCs.


Subject(s)
Carcinoma, Squamous Cell , Genome , Humans , Chromatin/genetics , Transcription Factors/genetics , Epigenesis, Genetic , Carcinoma, Squamous Cell/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Hepatocyte Nuclear Factor 1-beta/metabolism
5.
Gastroenterology ; 162(4): 1272-1287.e16, 2022 04.
Article in English | MEDLINE | ID: mdl-34953915

ABSTRACT

BACKGROUND & AIMS: Chromatin architecture governs cell lineages by regulating the specific gene expression; however, its role in the diversity of cancer development remains unknown. Among pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasms (IPMN) with an associated invasive carcinoma (IPMNinv) arise from 2 distinct precursors, and their fundamental differences remain obscure. Here, we aimed to assess the difference of chromatin architecture regulating the transcriptional signatures or biological features in pancreatic cancers. METHODS: We established 28 human organoids from distinct subtypes of pancreatic tumors, including IPMN, IPMNinv, and PDAC. We performed exome sequencing (seq), RNA-seq, assay for transposase-accessible chromatin-seq, chromatin immunoprecipitation-seq, high-throughput chromosome conformation capture, and phenotypic analyses with short hairpin RNA or clustered regularly interspaced short palindromic repeats interference. RESULTS: Established organoids successfully reproduced the histology of primary tumors. IPMN and IPMNinv organoids harbored GNAS, RNF43, or KLF4 mutations and showed the distinct expression profiles compared with PDAC. Chromatin accessibility profiles revealed the gain of stomach-specific open regions in IPMN and the pattern of diverse gastrointestinal tissues in IPMNinv. In contrast, PDAC presented an impressive loss of accessible regions compared with normal pancreatic ducts. Transcription factor footprint analysis and functional assays identified that MNX1 and HNF1B were biologically indispensable for IPMN lineages. The upregulation of MNX1 was specifically marked in the human IPMN lineage tissues. The MNX1-HNF1B axis governed a set of genes, including MYC, SOX9, and OLFM4, which are known to be essential for gastrointestinal stem cells. High-throughput chromosome conformation capture analysis suggested the HNF1B target genes to be 3-dimensionally connected in the genome of IPMNinv. CONCLUSIONS: Our organoid analyses identified the MNX1-HNF1B axis to be biologically significant in IPMN lineages.


Subject(s)
Adenocarcinoma, Mucinous , Carcinoma, Pancreatic Ductal , Hepatocyte Nuclear Factor 1-beta , Homeodomain Proteins , Pancreatic Intraductal Neoplasms , Transcription Factors , Adenocarcinoma, Mucinous/genetics , Carcinoma, Pancreatic Ductal/pathology , Chromatin , Hepatocyte Nuclear Factor 1-beta/genetics , Homeodomain Proteins/genetics , Humans , Pancreatic Intraductal Neoplasms/genetics , Transcription Factors/genetics , Pancreatic Neoplasms
6.
Metabolomics ; 18(3): 15, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35179657

ABSTRACT

INTRODUCTION: Patients with hepatocyte nuclear factor-1 beta (HNF1B) mutations present a variable phenotype with two main symptoms: maturity onset diabetes of the young (MODY) and polycystic kidney disease (PKD). OBJECTIVES: Identification of serum metabolites specific for HNF1Bmut and evaluation of their role in disease pathogenesis. METHODS: We recruited patients with HNF1Bmut (N = 10), HNF1Amut (N = 10), PKD: non-dialyzed and dialyzed (N = 8 and N = 13); and healthy controls (N = 12). Serum fingerprinting was performed by LC-QTOF-MS. Selected metabolite was validated by ELISA (enzyme-linked immunosorbent assay) measurements and then biologically connected with HNF1B by in silico analysis. HepG2 were stimulated with lysophosphatidic acid (LPA) and HNF1B gene was knocked down (kd) by small interfering RNA. Transcriptomic analysis with microarrays and western blot measurements were performed. RESULTS: Serum levels of six metabolites including: arachidonic acid, hydroxyeicosatetraenoic acid, linoleamide and three LPA (18:1, 18:2 and 20:4), had AUC (the area under the curve) > 0.9 (HNF1Bmut vs comparative groups). The increased level of LPA was confirmed by ELISA measurements. In HepG2HNF1Bkd cells LPA stimulation lead to downregulation of many pathways associated with cell cycle, lipid metabolism, and upregulation of steroid hormone metabolism and Wnt signaling. Also, increased intracellular protein level of autotaxin was detected in the cells. GSK-3alpha/beta protein level and its phosphorylated ratio were differentially affected by LPA stimulation in HNF1Bkd and control cells. CONCLUSIONS: LPA is elevated in sera of patients with HNF1Bmut. LPA contributes to the pathogenesis of HNF1B-MODY by affecting Wnt/GSK-3 signaling.


Subject(s)
Glycogen Synthase Kinase 3 , Kidney Diseases, Cystic , Glycogen Synthase Kinase 3/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Humans , Lysophospholipids , Metabolomics , Mutation/genetics
7.
J Pathol ; 254(1): 31-45, 2021 05.
Article in English | MEDLINE | ID: mdl-33527355

ABSTRACT

Maturity-onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a unique MODY5 mouse model generated by heterozygous insertion of a human HNF1B splicing mutation at the intron-2 splice donor site in the mouse genome. This Hnf1bsp2/+ model generated with targeted mutation of Hnf1b mimicking the c.544+1G>T (T) mutation identified in humans, results in alternative transcripts and a 38% decrease of native Hnf1b transcript levels. As a clinical feature of MODY5 patients, the hypomorphic mouse model Hnf1bsp2/+ displays glucose intolerance. Whereas Hnf1bsp2/+ isolated islets showed no altered insulin secretion, we found a 65% decrease in pancreatic insulin content associated with a 30% decrease in total large islet volume and a 20% decrease in total ß-cell volume. These defects were associated with a 30% decrease in expression of the pro-endocrine gene Neurog3 that we previously identified as a direct target of Hnf1b, showing a developmental etiology. As another clinical feature of MODY5 patients, the Hnf1bsp2/+ pancreases display exocrine dysfunction with hypoplasia. We observed chronic pancreatitis with loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis, with upregulation of signaling pathways and impaired acinar cell regeneration. This was associated with ductal cell deficiency characterized by shortened primary cilia. Importantly, the Hnf1bsp2/+ mouse model reproduces the pancreatic features of the human MODY5/HNF1B disease, providing a unique in vivo tool for molecular studies of the endocrine and exocrine defects and to advance basic and translational research. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Central Nervous System Diseases/genetics , Central Nervous System Diseases/physiopathology , Dental Enamel/abnormalities , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Hepatocyte Nuclear Factor 1-beta/genetics , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/physiopathology , Pancreas/physiopathology , Animals , Central Nervous System Diseases/pathology , Dental Enamel/pathology , Dental Enamel/physiopathology , Diabetes Mellitus, Type 2/pathology , Humans , Kidney Diseases, Cystic/pathology , Mice , Mice, Transgenic , Mutation , Pancreas/pathology , Phenotype
8.
BMC Endocr Disord ; 22(1): 77, 2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35346144

ABSTRACT

BACKGROUND: Maturity-onset diabetes of the young type 5 (MODY5) is a rare subtype of MODYs. It is caused by mutations of the hepatocyte nuclear factor 1 homeobox b gene (HNF1B). 17q12 recurrent deletion syndrome usually results in MODY5 because of the deletion of HNF1B. These patients often have other clinical manifestations besides diabetes. Refractory hypomagnesemia was a clue for further examination in this patient. But she lacked structural abnormalities of the genitourinary system and neurodevelopmental disorders that are common manifestations in patients with 17q12 recurrent deletion syndrome. Some atypical patients deserved attention. CASE PRESENTATION: A 21-year-old young woman was admitted to our hospital for severe malnutrition and gastrointestinal symptoms. At age 20, she was diagnosed with type 2 diabetes mellitus (T2DM) and was administered oral antidiabetic drugs. Soon afterward, the patient discontinued the medication on her own accord and then went to the hospital again due to diabetic ketoacidosis. After insulin treatment, diabetic ketoacidosis was cured and blood glucose was controlled satisfactorily. But intractable nausea, vomiting, and persistent weight loss were stubborn. Further examination revealed that the patient had hypokalemia and hard rectification hypomagnesemia. Genetic testing revealed about 1.85 Mb heterozygous fragment deletion on chromosome 17 and deletion of exons 1-9 of HNF1B heterozygosity missing was approved. Finally, the patient was diagnosed MODY5. DISCUSSION AND CONCLUSIONS: The 17q12 recurrent deletion syndrome is characterized by MODY5, structural or functional abnormalities of the kidney and urinary tract, and neurodevelopmental or neuropsychiatric disorders. This patient did not have any structural abnormalities of the genitourinary system and neuropsychiatric disorders, which is rare. She had experienced a period of misdiagnosis before being diagnosed with 17q12 recurrent deletion syndrome, and hypomagnesemia was an important clue for her diagnosis. Therefore, diabetic physicians should be alert to a special type of diabetes if patients have unexplained signs and symptoms. The absence of well-known features of HNF1B disease does not exclude MODY5.


Subject(s)
Central Nervous System Diseases , Diabetes Mellitus, Type 2 , Kidney Diseases, Cystic , Adult , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Female , Hepatocyte Nuclear Factor 1-beta/genetics , Humans , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Syndrome , Young Adult
9.
Cell Biol Toxicol ; 37(1): 65-84, 2021 02.
Article in English | MEDLINE | ID: mdl-32623698

ABSTRACT

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) associated with non-alcoholic fatty liver disease (NAFLD). The effects of gestational BPA exposure on hepatic lipid accumulation in offspring are not fully understood. Here, we investigate the sex-dependent effects of gestational BPA exposure on hepatic lipid and glucose metabolism in the offspring of mice to reveal the mechanisms underlying gestational BPA exposure-associated NAFLD. Pregnant mice were administered gavage with or without 1 µg kg-1 day-1 BPA at embryonic day 7.5 (E7.5)-E16.5. Hepatic glucose and lipid metabolism were evaluated in these models. Both male and female offspring mice exhibited hepatic fatty liver after BPA treatment. Lipid accumulation and dysfunction of glucose metabolism were observed in male offspring. We revealed abnormal expression of lipid regulators in the liver and that inhibition of peroxisome proliferator-activated receptor γ (PPARγ) repressed hepatic lipid accumulation induced by gestational BPA exposure. We also found a sex-dependent decrease of hepatocyte nuclear factor 1b (HNF1b) expression in male offspring. The transcriptional repression of PPARγ by HNF1b was confirmed in L02 cells. Downregulation of HNF1b, upregulation of PPARγ, and subsequent upregulation of hepatic lipid accumulation were essential for NAFLD development in male offspring gestationally exposed to BPA as well as BPA-exposed adult male mice. Dysregulation of the HNF1b/PPARγ pathway may be involved in gestational BPA exposure-induced NAFLD in male offspring. These data provide new insights into the mechanism of gestational BPA exposure-associated sex-dependent glucose and lipid metabolic dysfunction. Graphical abstract Schematic of the mechanism of gestational BPA exposure-induced glucose and lipid metabolic dysfunction.


Subject(s)
Benzhydryl Compounds/toxicity , Fatty Liver/chemically induced , Hepatocyte Nuclear Factor 1-beta/antagonists & inhibitors , PPAR gamma/metabolism , Phenols/toxicity , Prenatal Exposure Delayed Effects/pathology , Up-Regulation , Animals , Down-Regulation/drug effects , Estrogens/metabolism , Female , Gene Expression Regulation/drug effects , Glucose/metabolism , Hepatocyte Nuclear Factor 1-beta/metabolism , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Liver/drug effects , Liver/pathology , Liver/ultrastructure , Male , Mice, Inbred C57BL , Pregnancy , Transcription, Genetic/drug effects , Triglycerides/metabolism , Up-Regulation/drug effects
10.
Eur J Pediatr ; 180(12): 3599-3603, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34176013

ABSTRACT

Cystic kidney diseases such as autosomal recessive or dominant polycystic kidney disease (ARPKD and ADPKD) are associated with high prevalence of arterial hypertension. On the contrary, studies on hypertension in children with renal cysts and diabetes (RCAD) syndrome caused by abnormalities in the HNF1B gene are rare. Therefore, the primary aim of our study was to investigate the prevalence of high blood pressure in children with RCAD syndrome due to HNF1B gene abnormalities and secondary to search for possible risk factors for development of high blood pressure. Data on all children with genetically proven RCAD syndrome from three pediatric nephrology tertiary centers were retrospectively reviewed (office blood pressure (BP), ambulatory blood pressure monitoring (ABPM), creatinine clearance, renal ultrasound, echocardiography, albuminuria/proteinuria). High blood pressure was defined as BP ≥ 95th percentile of the current ESH 2016 guidelines and/or by the use of antihypertensive drugs. Thirty-two children with RCAD syndrome were investigated. Three children received ACE inhibitors for hypertension and/or proteinuria. High blood pressure was diagnosed using office BP in 22% of the children (n = 7). In the 7 performed ABPM, 1 child (14%) was diagnosed with hypertension and one child with white-coat hypertension. Creatinine clearance, proteinuria, albuminuria, body mass index, enlargement, or hypodysplasia of the kidneys and prevalence of HNF1B-gene deletion or mutation were not significantly different between hypertensive and normotensive children.Conclusion: High blood pressure is present in 22% of children with RCAD syndrome. What is Known: • Arterial hypertension is a common complication in children with polycystic kidney diseases. What is New: • High office blood pressure is present in 22% and ambulatory hypertension in 14% of children with renal cyst and diabetes (RCAD) syndrome.


Subject(s)
Diabetes Mellitus , Hypertension , Polycystic Kidney, Autosomal Dominant , Blood Pressure , Blood Pressure Monitoring, Ambulatory , Central Nervous System Diseases , Child , Dental Enamel/abnormalities , Diabetes Mellitus, Type 2 , Humans , Hypertension/epidemiology , Hypertension/etiology , Kidney Diseases, Cystic , Retrospective Studies
11.
J Cell Mol Med ; 24(24): 14539-14548, 2020 12.
Article in English | MEDLINE | ID: mdl-33174391

ABSTRACT

Prostate cancer is the most common malignancy in men in developed countries. In previous study, we identified HNF1B (Hepatocyte Nuclear Factor 1ß) as a downstream effector of Enhancer of zeste homolog 2 (EZH2). HNF1B suppresses EZH2-mediated migration of two prostate cancer cell lines via represses the EMT process by inhibiting SLUG expression. Besides, HNF1B expression inhibits cell proliferation through unknown mechanisms. Here, we demonstrated that HNF1B inhibited the proliferation rate of prostate cancer cells. Overexpression of HNF1B in prostate cancer cells led to the arrest of G1 cell cycle and decreased Cyclin D1 expression. In addition, we re-explored data from ChIP-sequencing (ChIP-seq) and RNA-sequencing (RNA-seq), and demonstrated that HNF1B repressed Cyclin D1 via direct suppression of SMAD6 expression. We also identified CDKN2A as a HNF1B-interacting protein that would contribute to HNF1B-mediated repression of SMAD6 expression. In summary, we provide the novel mechanisms and evidence in support HNF1B as a tumour suppressor gene for prostate cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 1-beta/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Smad6 Protein/genetics , Cell Line, Tumor , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Hepatocyte Nuclear Factor 1-beta/genetics , Humans , Immunohistochemistry , Male , Prostatic Neoplasms/pathology , Protein Binding , Smad6 Protein/metabolism
12.
Am J Hum Genet ; 101(5): 789-802, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100090

ABSTRACT

Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10-5 for novel LOF, increased to p = 4.1 × 10-6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10-7). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD.


Subject(s)
Congenital Abnormalities/genetics , Exome/genetics , Kidney Diseases/congenital , Kidney/abnormalities , Mutation/genetics , Neoplasm Proteins/genetics , Alleles , Animals , Case-Control Studies , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Female , Genetic Heterogeneity , Genome-Wide Association Study/methods , Genotype , Heredity/genetics , Homozygote , Humans , Kidney Diseases/genetics , Male , Membrane Proteins/genetics , Mice , Phenotype , RNA, Long Noncoding/genetics , Urinary Tract/abnormalities , Urogenital Abnormalities/genetics , Zebrafish
13.
Pediatr Nephrol ; 35(10): 1877-1886, 2020 10.
Article in English | MEDLINE | ID: mdl-32388583

ABSTRACT

BACKGROUND: Hypomagnesemia in patients with congenital anomalies of the kidneys and urinary tract or autosomal dominant tubulointerstitial kidney disease is highly suggestive of HNF1B-associated disease. Intriguingly, the frequency of low serum Mg2+ (sMg) level varies and is lower in children than in adults with HNF1B mutations that could be partially due to application of inaccurate normal limit of sMg, irrespective of age and gender. We aimed to re-assess cross-sectionally and longitudinally the frequency of hypomagnesemia in HNF1B disease by using locally derived reference values of sMg. METHODS: Fourteen children with HNF1B-associated kidney disease were included. Control group comprising 110 subjects served to generate 2.5th percentiles of sMg as the lower limits of normal. RESULTS: In both controls and patients, sMg correlated with age, gender, and fractional excretion of Mg2+. In girls, sMg concentration was higher than in boys when analyzed in the entire age spectrum (p < 0.05). In HNF1B patients, mean sMg was lower than in controls as compared with respective gender- and age-specific interval (p < 0.001). Low sMg levels (< 0.7 mmol/l) were found in 21.4% of patients at diagnosis and 36.4% at last visit, which rose to 85.7% and 72.7% respectively when using the age- and gender-adjusted reference data. Similarly, in the longitudinal observation, 23% of sMg measurements were < 0.7 mmol/l versus 79.7% when applying respective references. CONCLUSIONS: Hypomagnesemia is underdiagnosed in children with HNF1B disease. sMg levels are age- and gender-dependent; thus, the use of appropriate reference data is crucial to hypomagnesemia in children.


Subject(s)
Hepatocyte Nuclear Factor 1-beta/genetics , Magnesium/blood , Nephritis, Interstitial/blood , Urogenital Abnormalities/blood , Vesico-Ureteral Reflux/blood , Adolescent , Age Factors , Child , Child, Preschool , Cross-Sectional Studies , DNA Mutational Analysis , Female , Humans , Kidney/metabolism , Longitudinal Studies , Male , Mutation , Nephritis, Interstitial/diagnosis , Nephritis, Interstitial/genetics , Reference Values , Renal Reabsorption/genetics , Retrospective Studies , Sex Factors , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/diagnosis , Vesico-Ureteral Reflux/genetics
14.
Int J Med Sci ; 17(18): 2895-2904, 2020.
Article in English | MEDLINE | ID: mdl-33173410

ABSTRACT

Cancer incidence is rapidly growing, and cancer is the leading cause of death worldwide in the 21st century. Hepatocyte nuclear factor 1B (HNF1B) is a transcription factor that involves the growth and development of multiple organs. The aim of this study was to explore the significance of HNF1B in human cancer by an integrative analysis of online databases. The UALCAN database, cBio cancer genomics portal, Cancer Regulome tools, Kaplan-Meier plotter and Tumor IMmune Estimation Resource (TIMER) website were used to perform the corresponding analysis. The results showed that HNF1B is dysregulated in various cancers and associated with the differential overall survival of cancer patients. HNF1B showed many mutation forms and high mutation levels in different cancer types. In addition, we found that HNF1B interacted with different genes in multiple aspects. Moreover, HNF1B expression is associated with many immune cell infiltration levels and influences the prognostic prediction of immune cells in some kinds of cancers. In conclusion, HNF1B plays a significant role in cancer and may be a potential target for cancer immunotherapy.


Subject(s)
Biomarkers, Tumor/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Neoplasms/genetics , Biomarkers, Tumor/metabolism , Data Mining , Datasets as Topic , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Mutation , Neoplasms/immunology , Neoplasms/mortality , Neoplasms/pathology , Prognosis , RNA, Messenger/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
15.
Endocr J ; 67(9): 981-988, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32461507

ABSTRACT

Pancreatic tail hypoplasia is a common manifestation of maturity onset diabetes of the young (MODY) 5 that can cause reno-genito-urinary malformations such as renal cysts and bicornuate uterus. A 69-year-old female was admitted to our hospital for consultation on her relatively high HbA1c value. At age 20, she was diagnosed with uterus bicornis. At age 68, she was diagnosed with pancreas tail hypoplasia, renal cysts and non-functioning pancreatic neuroendocrine tumor (NET) in addition to right hydronephrosis due to multiple ureteral bladder carcinomas. She received total right nephrectomy, ureterectomy and partial cystectomy for multiple ureteral bladder carcinomas [non-invasive papillary urothelial carcinoma, low grade (G1), pTa, LV10, u-rtx, RM0, and pN0 (0/8)]. She also received distal pancreatomy for pancreatic NET [NET G1]. She then was referred to our department at age 69 due to increase in her HbA1c value from 6.2 to 7.2%; 75 g oral glucose tolerance test revealed impaired glucose tolerance. Her clinical characteristics (uterus bicornis, pancreas hypoplasia, and renal cysts) closely resembled the phenotype of MODY5, in which mutations in the HNF1B gene have been reported. Our genetic testing failed to detect any mutation or microdeletion in the coding or minimal promoter regions of the HNF1B gene. Although there remains a possibility that genetic mutations in introns and regulatory regions of the HNF1B gene might cause the MODY5-like manifestations in this patient, these results might suggest involvement of genes other than HNF1B in the pathogenesis of our patient's disease.


Subject(s)
Central Nervous System Diseases/diagnosis , Dental Enamel/abnormalities , Diabetes Mellitus, Type 2/diagnosis , Hepatocyte Nuclear Factor 1-beta/genetics , Kidney Diseases, Cystic/diagnosis , Mutation , Promoter Regions, Genetic , Aged , Central Nervous System Diseases/genetics , Diabetes Mellitus, Type 2/genetics , Female , Humans , Kidney Diseases, Cystic/genetics
16.
J Clin Lab Anal ; 34(3): e23076, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31692082

ABSTRACT

BACKGROUND: Tuberculosis remains a global public health problem. Genetic polymorphisms may affect the susceptibility, clinical characteristics, and adverse drug reactions of patients with TB. The present study aimed to examine the association of single nucleotide polymorphisms of lncRNA-HNF1B-3:1 with the clinical manifestation of TB in a Western Chinese population. METHOD: A total of 526 tuberculosis patients and 561 healthy subjects were recruited in Western China. The correlation between lnc-HNF1B-3:1 polymorphism and tuberculosis susceptibility was investigated. Moreover, the influence on adverse drug reactions following treatment was explored. A total of 7 SNPs within the lnc-HNF1B-3:1 locus was genotyped by the improved multiplex ligation detection reaction method. RESULTS: No significant associations were noted between TB susceptibility and the presence of all 7 SNPs of the lnc-HNF1B-3:1 as determined by single-locus analysis (All P > .05). The AA genotype of rs12939622 (in the dominant model) and the AA genotype of rs4262994 (in the recessive model) caused increased susceptibility of the subjects to fever (P < .001 and P = .008, respectively). The Rs2542670 G allele was associated with increased risk of thrombocytopenia, leukopenia, and chronic kidney damage following drug administration (P = .007, .029, .003, respectively). CONCLUSION: The present study reported for the first time that the rs12939622, rs4262994 and rs2542670 genotypes in lnc-HNF1B-3:1 locus may influence the clinical manifestations of tuberculosis.


Subject(s)
Asian People/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , RNA, Long Noncoding/genetics , Tuberculosis/genetics , Adult , Antitubercular Agents/adverse effects , Antitubercular Agents/therapeutic use , Female , Genes, Dominant , Genes, Recessive , Genetic Association Studies , Humans , Male , Models, Genetic , Risk Factors , Tuberculosis/drug therapy
17.
Pediatr Int ; 62(4): 428-437, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31830341

ABSTRACT

Bartter syndrome (BS) and Gitelman syndrome (GS) are syndromes associated with congenital tubular dysfunction, characterized by hypokalemia and metabolic alkalosis. Clinically, BS is classified into two types: the severe antenatal/neonatal type, which develops during the fetal period with polyhydramnios and preterm delivery; and the relatively mild classic type, which is usually found during infancy with failure to thrive. GS can be clinically differentiated from BS by its age at onset, usually after school age, or laboratory findings of hypomagnesemia and hypocalciuria. Recent advances in molecular biology have shown that these diseases can be genetically classified into type 1 to 5 BS and GS. As a result, it has become clear that the clinical classification of antenatal/neonatal BS, classic BS, and GS does not always correspond to the clinical symptoms associated with the genotypes in a one-to-one manner; and there is clinically no clear differential border between type 3 BS and GS. This has caused confusion among clinicians in the diagnosis of these diseases. It has been proposed that the disease name "inherited salt-losing tubulopathy" can be used for cases of tubulopathies accompanied by hypokalemia and metabolic alkalosis. It is reasonable to use this term prior to genetic typing into type 1-5 BS or GS, to avoid confusion in a clinical setting. In this article, we review causative genes and phenotypic correlations, diagnosis, and treatment strategies for salt-losing tubulopathy as well as the clinical characteristics of pseudo-BS/GS, which can also be called a "salt-losing disorder".


Subject(s)
Bartter Syndrome/genetics , Bartter Syndrome/therapy , Gitelman Syndrome/genetics , Gitelman Syndrome/therapy , Alkalosis/complications , Bartter Syndrome/diagnosis , Female , Genotype , Gitelman Syndrome/diagnosis , Hearing Loss, Sensorineural/genetics , Humans , Hypokalemia/complications , Male , Phenotype , Pregnancy , Salts/metabolism , Solute Carrier Family 12, Member 1/genetics
18.
Pediatr Nephrol ; 34(6): 1065-1075, 2019 06.
Article in English | MEDLINE | ID: mdl-30666461

ABSTRACT

BACKGROUND: HNF1B gene mutations are an important cause of bilateral (cystic) dysplasia in children, complicated by chronic renal insufficiency. The clinical variability, the absence of genotype-phenotype correlations, and limited long-term data render counseling of affected families difficult. METHODS: Longitudinal data of 62 children probands with genetically proven HNF1B nephropathy was obtained in a multicenter approach. Genetic family cascade screening was performed in 30/62 cases. RESULTS: Eighty-seven percent of patients had bilateral dysplasia, 74% visible bilateral, and 16% unilateral renal cysts at the end of observation. Cyst development was non-progressive in 72% with a mean glomerular filtration rate (GFR) loss of - 0.33 ml/min/1.73m2 per year (± 8.9). In patients with an increase in cyst number, the annual GFR reduction was - 2.8 ml/min/1.73m2 (± 13.2), in the total cohort - 1.0 ml/min/1.73m2 (±10.3). A subset of HNF1B patients differs from this group and develops end stage renal disease (ESRD) at very early ages < 2 years. Hyperuricemia (37%) was a frequent finding at young age (median 1 year), whereas hypomagnesemia (24%), elevated liver enzymes (21%), and hyperglycemia (8%) showed an increased incidence in the teenaged child. Genetic analysis revealed no genotype-phenotype correlations but a significant parent-of-origin effect with a preponderance of 81% of maternal inheritance in dominant cases. CONCLUSIONS: In most children, HNF1B nephropathy has a non-progressive course of cyst development and a slow-progressive course of kidney function. A subgroup of patients developed ESRD at very young age < 2 years requiring special medical attention. The parent-of-origin effect suggests an influence of epigenetic modifiers in HNF1B disease.


Subject(s)
Hepatocyte Nuclear Factor 1-beta/genetics , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Polycystic Kidney Diseases/physiopathology , Adolescent , Age of Onset , Child , Child, Preschool , Disease Progression , Female , Genetic Association Studies , Germany , Humans , Infant , Infant, Newborn , Kidney Failure, Chronic/genetics , Male , Phenotype , Registries
19.
Clin Exp Nephrol ; 23(9): 1119-1129, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31131422

ABSTRACT

BACKGROUND: Hepatocyte nuclear factor 1ß (HNF1B), located on chromosome 17q12, causes renal cysts and diabetes syndrome (RCAD). Moreover, various phenotypes related to congenital anomalies of the kidney and urinary tract (CAKUT) or Bartter-like electrolyte abnormalities can be caused by HNF1B variants. In addition, 17q12 deletion syndrome presents with multi-system disorders, as well as RCAD. As HNF1B mutations are associated with different phenotypes and genotype-phenotype relationships remain unclear, here, we extensively studied these mutations in Japan. METHODS: We performed genetic screening of RCAD, CAKUT, and Bartter-like syndrome cases. Heterozygous variants or whole-gene deletions in HNF1B were detected in 33 cases (19 and 14, respectively). All deletion cases were diagnosed as 17q12 deletion syndrome, confirmed by multiplex ligation probe amplification and/or array comparative genomic hybridization. A retrospective review of clinical data was also conducted. RESULTS: Most cases had morphological abnormalities in the renal-urinary tract system. Diabetes developed in 12 cases (38.7%). Hyperuricemia and hypomagnesemia were associated with six (19.3%) and 13 cases (41.9%), respectively. Pancreatic malformations were detected in seven cases (22.6%). Ten patients (32.3%) had liver abnormalities. Estimated glomerular filtration rates were significantly lower in the patients with heterozygous variants compared to those in patients harboring the deletion (median 37.6 vs 58.8 ml/min/1.73 m2; p = 0.0091). CONCLUSION: We present the clinical characteristics of HNF1B-related disorders. To predict renal prognosis and complications, accurate genetic diagnosis is important. Genetic testing for HNF1B mutations should be considered for patients with renal malformations, especially when associated with other organ involvement.


Subject(s)
Bartter Syndrome/genetics , Central Nervous System Diseases/genetics , Chromosome Deletion , Chromosomes, Human, Pair 17 , Dental Enamel/abnormalities , Diabetes Mellitus, Type 2/genetics , Gene Deletion , Hepatocyte Nuclear Factor 1-beta/genetics , Kidney Diseases, Cystic/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Adolescent , Adult , Bartter Syndrome/diagnosis , Central Nervous System Diseases/diagnosis , Child , Child, Preschool , Comparative Genomic Hybridization , Diabetes Mellitus, Type 2/diagnosis , Disease Progression , Genetic Predisposition to Disease , Heredity , Humans , Infant , Japan , Kidney Diseases, Cystic/diagnosis , Male , Middle Aged , Multiplex Polymerase Chain Reaction , Pedigree , Phenotype , Prognosis , Retrospective Studies , Risk Factors , Urogenital Abnormalities/diagnosis , Vesico-Ureteral Reflux/diagnosis
20.
Endocr J ; 66(12): 1113-1116, 2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31391355

ABSTRACT

We report a sporadic case of maturity-onset diabetes of the young type 5 (MODY5) with a whole-gene deletion of the hepatocyte nuclear factor-1beta (HNF1B) gene. A 44-year-old Japanese man who had been diagnosed with early-onset non-autoimmune diabetes mellitus at the age of 23 was examined. He showed multi-systemic symptoms, including a solitary congenital kidney, pancreatic hypoplasia, pancreatic exocrine dysfunction, elevation of the serum levels of liver enzymes, hypomagnesemia, and hyperuricemia. These clinical characteristics, in spite of the absence of a family history of diabetes, prompted us to make the diagnosis of maturity-onset diabetes of the young 5 (MODY 5). One allele deletion of the entire HNF1B gene revealed by multiplex ligation-dependent probe amplification (MLPA) led us to the diagnoses of 17q12 microdeletion syndrome even though there were negative chromosomal analyses with array comparative genomic hybridization (CGH). 17q12 microdeletion syndrome, which is not rare especially in sporadic cases since 17q12 is a typical hot spot for chromosomal deletion, could have complicated the clinical heterogeneity of MODY5.


Subject(s)
Chromosomes, Human, Pair 17/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Gene Deletion , Hepatocyte Nuclear Factor 1-beta/genetics , Adult , Calcium/urine , Diabetes Mellitus, Type 2/physiopathology , Humans , Japan , Liver/enzymology , Magnesium/blood , Male , Pancreas/physiopathology , Syndrome , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL