Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.102
Filter
Add more filters

Publication year range
1.
Cell ; 184(14): 3812-3828.e30, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34214472

ABSTRACT

We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.


Subject(s)
CD28 Antigens/deficiency , Inheritance Patterns/genetics , Papillomaviridae/physiology , Skin/virology , T-Lymphocytes/immunology , Adult , Amino Acid Sequence , Animals , Base Sequence , CD28 Antigens/genetics , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , Child , Endopeptidases/metabolism , Female , Genes, Recessive , HEK293 Cells , Homozygote , Humans , Immunity, Humoral , Immunologic Memory , Jurkat Cells , Keratinocytes/pathology , Male , Mice, Inbred C57BL , Oncogenes , Papilloma/pathology , Papilloma/virology , Pedigree , Protein Sorting Signals , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Cell ; 174(6): 1465-1476.e13, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30122350

ABSTRACT

Cell-penetrating peptides (CPPs) are short protein segments that can transport cargos into cells. Although CPPs are widely studied as potential drug delivery tools, their role in normal cell physiology is poorly understood. Early during infection, the L2 capsid protein of human papillomaviruses binds retromer, a cytoplasmic trafficking factor required for delivery of the incoming non-enveloped virus into the retrograde transport pathway. Here, we show that the C terminus of HPV L2 proteins contains a conserved cationic CPP that drives passage of a segment of the L2 protein through the endosomal membrane into the cytoplasm, where it binds retromer, thereby sorting the virus into the retrograde pathway for transport to the trans-Golgi network. These experiments define the cell-autonomous biological role of a CPP in its natural context and reveal how a luminal viral protein engages an essential cytoplasmic entry factor.


Subject(s)
Capsid Proteins/metabolism , Cell-Penetrating Peptides/metabolism , Oncogene Proteins, Viral/metabolism , Amino Acid Sequence , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/genetics , Endosomes/metabolism , Golgi Apparatus/virology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Human papillomavirus 16/genetics , Human papillomavirus 16/physiology , Humans , Mutagenesis , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/genetics , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Virus Attachment , Virus Internalization
3.
Cell ; 170(6): 1164-1174.e6, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886384

ABSTRACT

Although most cervical human papillomavirus type 16 (HPV16) infections become undetectable within 1-2 years, persistent HPV16 causes half of all cervical cancers. We used a novel HPV whole-genome sequencing technique to evaluate an exceptionally large collection of 5,570 HPV16-infected case-control samples to determine whether viral genetic variation influences risk of cervical precancer and cancer. We observed thousands of unique HPV16 genomes; very few women shared the identical HPV16 sequence, which should stimulate a careful re-evaluation of the clinical implications of HPV mutation rates, transmission, clearance, and persistence. In case-control analyses, HPV16 in the controls had significantly more amino acid changing variants throughout the genome. Strikingly, E7 was devoid of variants in precancers/cancers compared to higher levels in the controls; we confirmed this in cancers from around the world. Strict conservation of the 98 amino acids of E7, which disrupts Rb function, is critical for HPV16 carcinogenesis, presenting a highly specific target for etiologic and therapeutic research.


Subject(s)
Alphapapillomavirus/genetics , Alphapapillomavirus/isolation & purification , Carcinoma/virology , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/virology , Adult , Alphapapillomavirus/classification , Case-Control Studies , Female , Genome, Viral , Humans , Middle Aged , Papillomavirus E7 Proteins/genetics , Polymorphism, Single Nucleotide , Young Adult
4.
Mol Cell ; 84(2): 202-220.e15, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38103559

ABSTRACT

Compounds binding to the bromodomains of bromodomain and extra-terminal (BET) family proteins, particularly BRD4, are promising anticancer agents. Nevertheless, side effects and drug resistance pose significant obstacles in BET-based therapeutics development. Using high-throughput screening of a 200,000-compound library, we identified small molecules targeting a phosphorylated intrinsically disordered region (IDR) of BRD4 that inhibit phospho-BRD4 (pBRD4)-dependent human papillomavirus (HPV) genome replication in HPV-containing keratinocytes. Proteomic profiling identified two DNA damage response factors-53BP1 and BARD1-crucial for differentiation-associated HPV genome amplification. pBRD4-mediated recruitment of 53BP1 and BARD1 to the HPV origin of replication occurs in a spatiotemporal and BRD4 long (BRD4-L) and short (BRD4-S) isoform-specific manner. This recruitment is disrupted by phospho-IDR-targeting compounds with little perturbation of the global transcriptome and BRD4 chromatin landscape. The discovery of these protein-protein interaction inhibitors (PPIi) not only demonstrates the feasibility of developing PPIi against phospho-IDRs but also uncovers antiviral agents targeting an epigenetic regulator essential for virus-host interaction and cancer development.


Subject(s)
Papillomavirus Infections , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Human Papillomavirus Viruses , Papillomavirus Infections/drug therapy , Papillomavirus Infections/genetics , Proteomics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Papillomaviridae/genetics , Papillomaviridae/metabolism , Viral Proteins/genetics , Virus Replication/physiology , DNA Repair , Bromodomain Containing Proteins
5.
Immunity ; 54(12): 2842-2858.e5, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34813775

ABSTRACT

People living with HIV (PLWH) are at increased risk for developing skin and mucosal malignancies despite systemic reconstitution of CD4+ T cells upon antiretroviral therapy (ART). The underlying mechanism of chronic tissue-related immunodeficiency in HIV is unclear. We found that skin CD4+ tissue-resident memory T (Trm) cells were depleted after HIV infection and replenished only upon early ART initiation. TCR clonal analysis following early ART suggested a systemic origin for reconstituting CD4+ Trm cells. Single-cell RNA sequencing in PLWH that received late ART treatment revealed a loss of CXCR3+ Trm cells and a tolerogenic skin immune environment. Human papilloma virus-induced precancerous lesion biopsies showed reduced CXCR3+ Trm cell frequencies in the mucosa in PLWH versus HIV- individuals. These results reveal an irreversible loss of CXCR3+ Trm cells confined to skin and mucosa in PLWH who received late ART treatment, which may be a precipitating factor in the development of HPV-related cancer.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/physiology , Immunologic Deficiency Syndromes/immunology , Memory T Cells/immunology , Mucous Membrane/immunology , Skin/immunology , Adult , Antiretroviral Therapy, Highly Active , Female , HIV Infections/drug therapy , HIV Long-Term Survivors , Humans , Immunologic Deficiency Syndromes/drug therapy , Male , Middle Aged , Receptors, CXCR3/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Time-to-Treatment , Young Adult
6.
CA Cancer J Clin ; 72(6): 561-569, 2022 11.
Article in English | MEDLINE | ID: mdl-35969145

ABSTRACT

Human papillomavirus (HPV) is currently linked to almost 35,000 new cases of cancer in women and men each year in the United States. Gardasil-9 (Merck & Company), the only HPV vaccine now available in the United States, is nearly 100% effective at preventing precancers caused by oncogenic HPV types. In the United States, however, only about one half of adolescents are up to date with HPV vaccination. It is well known that health care clinicians' recommendations play a significant role in parents' decisions regarding HPV vaccination. A growing body of literature examines specific communication strategies for promoting uptake of the HPV vaccine. A comprehensive review of the evidence for each of these strategies is needed. The authors searched the PubMed, EMBASE, Cochrane Central Register of Controlled Trials, PsycINFO, Cumulative Index to Nursing and Allied Health Literature, and Web of Science Complete databases for original articles with a defined clinician communication strategy and an outcome of HPV vaccine uptake or intention to vaccinate (PROSPERO registry no. CRD42020107602). In total, 46 studies were included. The authors identified two main strategies with strong evidence supporting their positive impact on vaccine uptake: strong recommendation and presumptive recommendation. Determinations about a causal relationship were limited by the small numbers of randomized controlled trials. There is also opportunity for more research to determine the effects of motivational interviewing and cancer-prevention messaging.


Subject(s)
Alphapapillomavirus , Neoplasms , Papillomavirus Infections , Papillomavirus Vaccines , Adolescent , Male , Female , Humans , United States , Papillomavirus Infections/prevention & control , Papillomavirus Infections/complications , Papillomavirus Vaccines/therapeutic use , Vaccination , Communication , Parents , Neoplasms/prevention & control
7.
CA Cancer J Clin ; 71(6): 505-526, 2021 11.
Article in English | MEDLINE | ID: mdl-34499351

ABSTRACT

Despite being highly preventable, cervical cancer is the fourth most common cancer and cause of cancer death in women globally. In low-income countries, cervical cancer is often the leading cause of cancer-related morbidity and mortality. Women living with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome are at a particularly high risk of cervical cancer because of an impaired immune response to human papillomavirus, the obligate cause of virtually all cervical cancers. Globally, approximately 1 in 20 cervical cancers is attributable to HIV; in sub-Saharan Africa, approximately 1 in 5 cervical cancers is due to HIV. Here, the authors provide a critical appraisal of the evidence to date on the impact of HIV disease on cervical cancer risk, describe key methodologic issues, and frame the key outstanding research questions, especially as they apply to ongoing global efforts for prevention and control of cervical cancer. Expanded efforts to integrate HIV care with cervical cancer prevention and control, and vice versa, could assist the global effort to eliminate cervical cancer as a public health problem.


Subject(s)
HIV Infections/epidemiology , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/prevention & control , Early Detection of Cancer , Female , Humans , Immunocompromised Host , Papillomavirus Infections , Papillomavirus Vaccines , Precancerous Conditions/therapy , Primary Prevention , Secondary Prevention
8.
Am J Hum Genet ; 111(3): 544-561, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38307027

ABSTRACT

Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Chromosome Aberrations , Telomere/genetics , DNA
9.
CA Cancer J Clin ; 70(4): 274-280, 2020 07.
Article in English | MEDLINE | ID: mdl-32639044

ABSTRACT

The American Cancer Society (ACS) presents an adaptation of the current Advisory Committee on Immunization Practices recommendations for human papillomavirus (HPV) vaccination. The ACS recommends routine HPV vaccination between ages 9 and 12 years to achieve higher on-time vaccination rates, which will lead to increased numbers of cancers prevented. Health care providers are encouraged to start offering the HPV vaccine series at age 9 or 10 years. Catch-up HPV vaccination is recommended for all persons through age 26 years who are not adequately vaccinated. Providers should inform individuals aged 22 to 26 years who have not been previously vaccinated or who have not completed the series that vaccination at older ages is less effective in lowering cancer risk. Catch-up HPV vaccination is not recommended for adults aged older than 26 years. The ACS does not endorse the 2019 Advisory Committee on Immunization Practices recommendation for shared clinical decision making for some adults aged 27 through 45 years who are not adequately vaccinated because of the low effectiveness and low cancer prevention potential of vaccination in this age group, the burden of decision making on patients and clinicians, and the lack of sufficient guidance on the selection of individuals who might benefit.


Subject(s)
Immunization Schedule , Mass Vaccination/standards , Neoplasms/prevention & control , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/administration & dosage , Adolescent , Adult , Advisory Committees/standards , Alphapapillomavirus/immunology , Alphapapillomavirus/pathogenicity , American Cancer Society/organization & administration , Child , Clinical Competence , Female , Health Personnel/education , Health Plan Implementation/organization & administration , Health Plan Implementation/standards , Humans , Intersectoral Collaboration , Mass Vaccination/organization & administration , Middle Aged , Neoplasms/pathology , Neoplasms/virology , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , United States , Vaccination Coverage/organization & administration , Vaccination Coverage/standards , Young Adult
10.
Semin Immunol ; 65: 101671, 2023 01.
Article in English | MEDLINE | ID: mdl-36459926

ABSTRACT

Over the past few decades, with the rise of immunotherapies, tumor infiltrating immune cells were increasingly investigated. Indeed, they may represent biomarkers for patient outcome prediction, they may bear immune checkpoint markers that can be targeted by therapeutic antibodies and mechanistic studies may reveal how to tweak their activation profile so that we can re-direct them towards tumor cells. Macrophages possess a central place in tissue homeostasis for tissue remodeling and cleaning, transformed cell elimination, phagocytosis and regulation of inflammation via cytokine production. All these functions allow the discovery of approaches to target Tumor Associated Macrophages (TAMs) using immunotherapies. Indeed, TAMs express known immune checkpoint markers such as PD-L1, CD40, Sirp-α and markers such as CD163, CD204, TREM2, TREM1 associated with prognosis. In the context of therapies TAM may participate to antibody dependent cell phagocytosis (ADCP) thanks to FCγ-Receptors. Here, we will review the recent literature on TAMs in the specific context of HPV+ tumors. Indeed, HPV infection of mucosal tissue may lead to head and neck, cervical, penile, anal and vaginal cancers. HPV+ tumors exhibit a higher immune cell infiltrate, which relies on inflammation, immunosuppression and anti-viral response. In this context, and considering the many functions on macrophages, we will show the versatility of TAMs in a tumor microenvironment with viral infection features.


Subject(s)
Neoplasms , Papillomavirus Infections , Female , Humans , Tumor-Associated Macrophages , Immunosuppression Therapy , Biomarkers , Inflammation , Tumor Microenvironment
11.
EMBO Rep ; 25(10): 4542-4569, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39271776

ABSTRACT

High grade serous ovarian carcinoma (HGSOC) is the most common and aggressive ovarian malignancy. Accumulating evidence indicates that HGSOC may originate from human fallopian tube epithelial cells (FTECs), although the exact pathogen(s) and/or molecular mechanism underlying the malignant transformation of FTECs is unclear. Here we show that human papillomavirus (HPV), which could reach FTECs via retrograde menstruation or sperm-carrying, interacts with the yes-associated protein 1 (YAP1) to drive the malignant transformation of FTECs. HPV prevents FTECs from natural replicative and YAP1-induced senescence, thereby promoting YAP1-induced malignant transformation of FTECs. HPV also stimulates proliferation and drives metastasis of YAP1-transformed FTECs. YAP1, in turn, stimulates the expression of the putative HPV receptors and suppresses the innate immune system to facilitate HPV acquisition. These findings provide critical clues for developing new strategies to prevent and treat HGSOC.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Transformation, Neoplastic , Epithelial Cells , Fallopian Tubes , Transcription Factors , YAP-Signaling Proteins , Humans , Female , YAP-Signaling Proteins/metabolism , Epithelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Cell Transformation, Neoplastic/genetics , Fallopian Tubes/pathology , Fallopian Tubes/virology , Fallopian Tubes/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Papillomaviridae/genetics , Cell Proliferation , Animals , Papillomavirus Infections/virology , Papillomavirus Infections/pathology , Papillomavirus Infections/genetics , Papillomavirus Infections/complications , Ovarian Neoplasms/pathology , Ovarian Neoplasms/virology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Mice , Immunity, Innate
12.
Mol Cell ; 72(5): 823-835.e5, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30415951

ABSTRACT

High-risk human papilloma viruses (HPVs) cause cervical, anal, and oropharyngeal cancers, unlike the low-risk HPVs, which cause benign lesions. E6 oncoproteins from the high-risk strains are essential for cell proliferation and transformation in HPV-induced cancers. We report that a cellular deubiquitinase, USP46, is selectively recruited by the E6 of high-risk, but not low-risk, HPV to deubiqutinate and stabilize Cdt2/DTL. Stabilization of Cdt2, a component of the CRL4Cdt2 E3 ubiquitin ligase, limits the level of Set8, an epigenetic writer, and promotes cell proliferation. USP46 is essential for the proliferation of HPV-transformed cells, but not of cells without HPV. Cdt2 is elevated in human cervical cancers and knockdown of USP46 inhibits HPV-transformed tumor growth in xenografts. Recruitment of a cellular deubiquitinase to stabilize key cellular proteins is an important activity of oncogenic E6, and the importance of E6-USP46-Cdt2-Set8 pathway in HPV-induced cancers makes USP46 a target for the therapy of such cancers.


Subject(s)
Endopeptidases/genetics , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Nuclear Proteins/genetics , Papillomavirus Infections/genetics , Uterine Cervical Neoplasms/genetics , Animals , Cell Cycle , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endopeptidases/metabolism , Female , Gene Expression Regulation , HeLa Cells , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Host-Pathogen Interactions/genetics , Human papillomavirus 16/metabolism , Human papillomavirus 16/pathogenicity , Human papillomavirus 18/metabolism , Human papillomavirus 18/pathogenicity , Humans , Injections, Intralesional , Mice , Nuclear Proteins/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/enzymology , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Uterine Cervical Neoplasms/enzymology , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , Xenograft Model Antitumor Assays
13.
Proc Natl Acad Sci U S A ; 120(42): e2307721120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37819982

ABSTRACT

The activity of proteins is thought to be invariably determined by their amino acid sequence or composition, but we show that a long segment of a viral protein can support infection independent of its sequence or composition. During virus entry, the papillomavirus L2 capsid protein protrudes through the endosome membrane into the cytoplasm to bind cellular factors such as retromer required for intracellular virus trafficking. Here, we show that an ~110 amino acid segment of L2 is predicted to be disordered and that large deletions in this segment abolish infectivity of HPV16 pseudoviruses by inhibiting cytoplasmic protrusion of L2, association with retromer, and proper virus trafficking. The activity of these mutants can be restored by insertion of protein segments with diverse sequences, compositions, and chemical properties, including scrambled amino acid sequences, a tandem array of a short sequence, and the intrinsically disordered region of an unrelated cellular protein. The infectivity of mutants with small in-frame deletions in this segment directly correlates with the size of the segment. These results indicate that the length of the disordered segment, not its sequence or composition, determines its activity during HPV16 pseudovirus infection. We propose that a minimal length of L2 is required for it to protrude far enough into the cytoplasm to bind cytoplasmic trafficking factors, but the sequence of this segment is largely irrelevant. Thus, protein segments can carry out complex biological functions such as Human papillomavirus pseudovirus infection in a sequence-independent manner. This finding has important implications for protein function and evolution.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Capsid Proteins/chemistry , Human Papillomavirus Viruses , Virus Internalization , HeLa Cells , Capsid/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/chemistry
14.
Proc Natl Acad Sci U S A ; 120(35): e2305907120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37611058

ABSTRACT

R-loops are trimeric RNA: DNA hybrids that are important physiological regulators of transcription; however, their aberrant formation or turnover leads to genomic instability and DNA breaks. High-risk human papillomaviruses (HPV) are the causative agents of genital as well as oropharyngeal cancers and exhibit enhanced amounts of DNA breaks. The levels of R-loops were found to be increased up to 50-fold in cells that maintain high-risk HPV genomes and were readily detected in squamous cell cervical carcinomas in vivo but not in normal cells. The high levels of R-loops in HPV-positive cells were present on both viral and cellular sites together with RNase H1, an enzyme that controls their resolution. Depletion of RNase H1 in HPV-positive cells further increased R-loop levels, resulting in impaired viral transcription and replication along with reduced expression of the DNA repair genes such as FANCD2 and ATR, both of which are necessary for viral functions. Overexpression of RNase H1 decreased total R-loop levels, resulting in a reduction of DNA breaks by over 50%. Furthermore, increased RNase H1 expression blocked viral transcription and replication while enhancing the expression of factors in the innate immune regulatory pathway. This suggests that maintaining elevated R-loop levels is important for the HPV life cycle. The E6 viral oncoprotein was found to be responsible for inducing high levels of R-loops by inhibiting p53's transcriptional activity. Our studies indicate that high R-loop levels are critical for HPV pathogenesis and that this depends on suppressing the p53 pathway.


Subject(s)
Carcinoma, Squamous Cell , Fanconi Anemia , Papillomavirus Infections , Humans , R-Loop Structures , Tumor Suppressor Protein p53/genetics , Papillomavirus Infections/genetics
15.
Proc Natl Acad Sci U S A ; 120(32): e2216532120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523561

ABSTRACT

We analyzed transcriptional data from 104 HPV+ (Human papillomavirus) HNSCC (head and neck squamous cell carcinoma) tumors together with two publicly available sources to identify highly robust transcriptional programs (modules) which could be detected consistently despite heterogeneous sequencing and quantification methodologies. Among 22 modules identified, we found a single module that naturally subclassifies HPV+ HNSCC tumors based on a bimodal pattern of gene expression, clusters all atypical features of HPV+ HNSCC biology into a single subclass, and predicts patient outcome in four independent cohorts. The subclass-defining gene set was strongly correlated with Nuclear factor kappa B (NF-κB) target expression. Tumors with high expression of this NF-κB module were rarely associated with activating PIK3CA alterations or viral integration, and also expressed higher levels of HPHPV E2 and had decreased APOBEC mutagenesis. Alternatively, they harbored inactivating alterations of key regulators of NF-κB, TNF receptor associated factor 3 (TRAF3), and cylindromatosis (CYLD), as well as retinoblastoma protein (RB1). HPV+ HNSCC cells in culture with experimental depletion of TRAF3 or CYLD displayed increased expression of the subclass-defining genes, as well as robust radio-sensitization, thus recapitulating both the tumor transcriptional state and improved treatment response observed in patient data. Across all gene sets investigated, methylation to expression correlations were the strongest for the subclass-defining, NF-κB-related genes. Increased tumor-infiltrating CD4+ T cells and increased Estrogen receptors alpha (ERα) expression were identified in NF-κB active tumors. Based on the relatively high rates of cure in HPV+ HNSCC, deintensification of therapy to reduce treatment-related morbidity is being studied at many institutions. Tumor subclassification based on oncogenic subtypes may help guide the selection of therapeutic intensity or modality for patients with HPV+ HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/radiotherapy , NF-kappa B/genetics , NF-kappa B/metabolism , TNF Receptor-Associated Factor 3/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/metabolism , Papillomavirus Infections/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Human Papillomavirus Viruses , Carcinogenesis , Papillomaviridae/genetics , Papillomaviridae/metabolism
16.
J Virol ; 98(8): e0100324, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39046232

ABSTRACT

Three-stranded DNA-RNA structures known as R-loops that form during papillomavirus transcription can cause transcription-replication conflicts and lead to DNA damage. We found that R-loops accumulated at the viral early promoter in human papillomavirus (HPV) episomal cells but were greatly reduced in cells with integrated HPV genomes. RNA-DNA helicases unwind R-loops and allow for transcription and replication to proceed. Depletion of the RNA-DNA helicase senataxin (SETX) using siRNAs increased the presence of R-loops at the viral early promoter in HPV-31 (CIN612) and HPV-16 (W12) episomal HPV cell lines. Depletion of SETX reduced viral transcripts in episomal HPV cell lines. The viral E2 protein, which binds with high affinity to specific palindromes near the promoter and origin, complexes with SETX, and both SETX and E2 are present at the viral p97 promoter in CIN612 and W12 cells. SETX overexpression increased E2 transcription activity on the p97 promoter. SETX depletion also significantly increased integration of viral genomes in CIN612 cells. Our results demonstrate that SETX resolves viral R-loops to proceed with HPV transcription and prevent genome integration.IMPORTANCEPapillomaviruses contain small circular genomes of approximately 8 kilobase pairs and undergo unidirectional transcription from the sense strand of the viral genome. Co-transcriptional R-loops were recently reported to be present at high levels in cells that maintain episomal HPV and were also detected at the early viral promoter. R-loops can inhibit transcription and DNA replication. The process that removes R-loops from the PV genome and the requisite enzymes are unknown. We propose a model in which the host RNA-DNA helicase senataxin assembles on the HPV genome to resolve R-loops in order to maintain the episomal status of the viral genome.


Subject(s)
DNA Helicases , Multifunctional Enzymes , Promoter Regions, Genetic , R-Loop Structures , RNA Helicases , Humans , RNA Helicases/genetics , RNA Helicases/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , R-Loop Structures/genetics , Plasmids/genetics , Virus Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Papillomaviridae/genetics , Genome, Viral , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Transcription, Genetic , Cell Line , DNA, Viral/genetics
17.
J Virol ; 98(5): e0192523, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38624230

ABSTRACT

Recurrent respiratory papillomatosis (RRP) is a rare benign tumor caused mainly by the infection of the respiratory tract epithelial cells by the human papillomavirus (HPV) type 6/11. However, the specific mechanisms underlying the inhibition of the host's innate immune response by HPV remain unclear. For this purpose, we employed single-cell RNA sequencing to analyze the states of various immune cells in RRP samples post-HPV infection and utilized a cellular model of HPV infection to elucidate the mechanisms by which HPV evades the innate immune system in RRP. The results revealed distinct immune cell heterogeneity in RRP and demonstrated that HPV11 E7 can inhibit the phosphorylation of the stimulator of interferon genes protein, thereby circumventing the body's antiviral response. In vitro co-culture experiments demonstrated that stimulation of macrophages to produce interferon-beta induced the death of HPV-infected epithelial cells, also reducing HPV viral levels. In summary, our study preliminarily identifies the potential mechanisms by which HPV evades the host's antiviral immune response, as well as the latent antiviral functions exhibited by activated macrophages. This research serves as an initial exploration of antiviral immune evasion in RRP, laying a solid foundation for investigating immunotherapeutic approaches for the disease.IMPORTANCESurgical tumor reduction is the most common treatment for recurrent respiratory papillomatosis (RRP). One of the characteristics of RRP is its persistent recurrence, and multiple surgeries are usually required to control the symptoms. Recently, some adjuvant therapies have shown effectiveness, but none of them can completely clear human papillomavirus (HPV) infection, and thus, a localized antiviral immune response is significant for disease control; after all, HPV infection is limited to the epithelium. Inhibition of interferon-beta (IFN-ß) secretion by HPV11 E7 viral proteins in epithelial cells by affecting stimulator of interferon genes phosphorylation may account for the persistence of low-risk HPV replication in the RRP. Moreover, suppression of the IFN-I pathway in RRP cell types might provide clues regarding the hyporeactive function of local immune cells. However, activation of macrophage groups to produce IFN-ß can still destroy HPV-infected cells.


Subject(s)
Human papillomavirus 11 , Papillomavirus E7 Proteins , Papillomavirus Infections , Respiratory Tract Infections , Adult , Female , Humans , Male , Epithelial Cells/virology , Epithelial Cells/immunology , Human papillomavirus 11/genetics , Human papillomavirus 11/immunology , Immune Evasion , Immunity, Innate , Interferon-beta/metabolism , Interferon-beta/immunology , Interferon-beta/genetics , Macrophages/immunology , Macrophages/virology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Respiratory Tract Infections/virology , Respiratory Tract Infections/immunology
18.
J Virol ; 98(7): e0073524, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38874360

ABSTRACT

Oncogenic HPV E6 proteins have a PDZ-binding motif (PBM) which plays important roles in both the viral life cycle and tumor development. The PBM confers interaction with a large number of different PDZ domain-containing substrates, one of which is Sorting Nexin 27. This protein is part of the retromer complex and plays an important role in endocytic sorting pathways. It has been shown that at least two SNX27 interacting partners, GLUT1 and TANC2, are aberrantly trafficked due to the E6 PBM-dependent interaction with SNX27. To investigate further which other components of the endocytic trafficking pathway might be affected by the SNX27-HPV E6 interaction, we analyzed the SNX27 proteome interaction profile in a previously described HeLa cell line expressing GFP-SNX27, both in the presence and absence of the HPV-18 E6 oncoprotein. In this study, we identify a novel interacting partner of SNX27, secreted glycoprotein EMILIN2, whose release is blocked by HPV18 E6 in a PBM-dependent manner. Mechanistically, E6 can block EMILIN2 interaction with the WNT1 ligand, thereby enhancing WNT1 signaling and promoting cell proliferation. IMPORTANCE: This study demonstrates that HPV E6 blocks EMILIN2 inhibition of WNT1 signaling, thereby enhancing cell proliferation in HPV-positive tumor cells. This involves a novel mechanism whereby the E6 PBM actually contributes toward enhancing the interaction between SNX27 and EMILIN2, suggesting that the mode of recognition of SNX27 by E6 and EMILIN2 is different. This is the first example of the E6 PBM altering a PDZ domain-containing protein to enhance potential substrate recognition.


Subject(s)
Human papillomavirus 18 , Oncogene Proteins, Viral , Sorting Nexins , Wnt Signaling Pathway , Humans , DNA-Binding Proteins , HEK293 Cells , HeLa Cells , Human papillomavirus 18/metabolism , Human papillomavirus 18/genetics , Oncogene Proteins, Viral/metabolism , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/virology , Papillomavirus Infections/metabolism , PDZ Domains , Protein Binding , Repressor Proteins/metabolism , Repressor Proteins/genetics , Sorting Nexins/metabolism , Sorting Nexins/genetics
19.
J Virol ; 98(10): e0067724, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39258910

ABSTRACT

Juvenile-onset recurrent respiratory papillomatosis (JORRP) is caused by persistent infection of epithelial cells by low-risk human papillomavirus (HPV) types 6 and 11. While multiple infiltrated immune cells have been reported to mediate disease progress, knowledge of HPV-reactive T-cell subsets in papillomas remains elusive. Through single-cell RNA sequencing and RNA microarray, we found that CD8+ tissue-resident memory T (CD8+ TRM) cells with strong interferon-gamma (IFN-γ) production expanded, and were negatively correlated to the disease severity in the frequency of surgery. These IFN-γ+ CD8+ memory T cells were readily activated and expanded in vitro by autologous dendritic cells loaded with HPV11 E7 peptide pool. Moreover, T cell receptor (TCR) clonal expansion was observed in JORRP papilloma tissues, indicating a biased TCR repertoire toward HPV-specific recognition. Finally, we identified and characterized HPV11 E7-specific candidate TCR clonotypes from IFN-γ+ CD8+ memory T cells, suggesting their potential application in TCR-engineered T cells (TCR-T) therapy for HPV11-related diseases. Our findings provided insights into the specific local immune response to HPV6/11 infection and highlighted the importance of IFN-γ+ CD8+ TRM cells in anti-HPV6/11 T-cell immunity.IMPORTANCEThe persistent recurrence of human papillomavirus (HPV) 6/11 infection in papillomas underscores the failure of local immune responses in patients with juvenile-onset recurrent respiratory papillomatosis (JORRP). Our previous study demonstrated that T cells constitute the predominant immune cell population in JORRP papilloma tissues. Understanding the T-cell-mediated immune responses within JORRP papilloma tissues is crucial for disease control. In the present study, we characterized CD8+ tissue-resident memory T (CD8+ TRM) cells as the primary T-cell subset responsible for local anti-HPV6/11 immunity. Moreover, we identified two HPV11 E7-specific candidate T cell receptor (TCR) clonotypes out of IFN-γ+ CD8+ memory T cells. Overall, our findings provided insights into the local immune responses to HPV6/11 infection and offered information for developing more effective immunotherapeutic strategies against JORRP.


Subject(s)
CD8-Positive T-Lymphocytes , Human papillomavirus 11 , Human papillomavirus 6 , Interferon-gamma , Papillomavirus Infections , Receptors, Antigen, T-Cell , Respiratory Tract Infections , Humans , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Human papillomavirus 11/immunology , Human papillomavirus 6/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , CD8-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Male , T-Lymphocyte Subsets/immunology , Female , Child , Papilloma/immunology , Papilloma/virology , Papilloma/pathology , Memory T Cells/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus E7 Proteins/genetics , Child, Preschool
20.
J Virol ; 98(10): e0099524, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39291960

ABSTRACT

Epstein-Barr virus (EBV) co-infections with human papillomavirus (HPV) have been observed in oropharyngeal squamous cell carcinoma. Modeling EBV/HPV co-infection in organotypic epithelial raft cultures revealed that HPV16 E7 inhibited EBV productive replication through the facilitated degradation of the retinoblastoma protein pRb/p105. To further understand how pRb is required for EBV productive replication, we generated CRISPR-Cas9 pRb knockout (KO) normal oral keratinocytes (NOKs) in the context of wild-type and mutant K120E p53. EBV replication was examined in organotypic rafts as a physiological correlate for epithelial differentiation. In pRb KO rafts, EBV DNA copy number was statistically decreased compared to vector controls, regardless of p53 context. Loss of pRb did not affect EBV binding or internalization of calcium-treated NOKs or early infection of rafts. Rather, the block in EBV replication correlated with impaired immediate early gene expression. An EBV infection time course in rafts with mutant p53 demonstrated that pRb-positive basal cells were initially infected with delayed replication occurring in differentiated layers. Loss of pRb showed increased S-phase progression makers and elevated activator E2F activity in raft tissues. Complementation with a panel of pRb/E2F binding mutants showed that wild type or pRb∆685 mutant capable of E2F binding reduced S-phase marker gene expression, rescued EBV DNA replication, and restored BZLF1 expression in pRb KO rafts. However, pRb KO complemented with pRb661W mutant, unable to bind E2Fs, failed to rescue EBV replication in raft culture. These findings suggest that EBV productive replication in differentiated epithelium requires pRb inhibition of activator E2Fs to restrict S-phase progression.IMPORTANCEA subset of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma is co-positive for Epstein-Barr virus (EBV). Potential oncogenic viral interactions revealed that HPV16 E7 inhibited productive EBV replication within the differentiated epithelium. As E7 mediates the degradation of pRb, we aimed to establish how pRb is involved in EBV replication. In the context of differentiated epithelium using organotypic raft culture, we evaluated how the loss of pRb affects EBV lytic replication to better comprehend EBV contributions to carcinogenesis. In this study, ablation of pRb interfered with EBV replication at the level of immediate early gene expression. Loss of pRb increased activator E2Fs and associated S-phase gene expression throughout the differentiated epithelium. Complementation studies showed that wild type and pRb mutant capable of binding to E2F rescued EBV replication, while pRb mutant lacking E2F binding did not. Altogether, these studies support that in differentiated tissues, HPV16 E7-mediated degradation of pRb inhibits EBV replication through unregulated E2F activity.


Subject(s)
E2F Transcription Factors , Herpesvirus 4, Human , Keratinocytes , Retinoblastoma Protein , Virus Replication , Herpesvirus 4, Human/physiology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Humans , Keratinocytes/virology , Keratinocytes/metabolism , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , E2F Transcription Factors/metabolism , E2F Transcription Factors/genetics , Cell Differentiation , Papillomavirus E7 Proteins/metabolism , Papillomavirus E7 Proteins/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Epithelial Cells/virology , Epithelial Cells/metabolism , Papillomavirus Infections/virology , Papillomavirus Infections/metabolism , Papillomavirus Infections/genetics , Human papillomavirus 16/physiology , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL