Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.633
Filter
Add more filters

Publication year range
1.
Cell ; 185(24): 4526-4540.e18, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36347253

ABSTRACT

Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.


Subject(s)
Ergothioneine , Humans , Ergothioneine/metabolism , Antioxidants/metabolism , Oxidation-Reduction , Sulfhydryl Compounds , Molecular Weight
2.
Immunity ; 52(4): 635-649.e4, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32240600

ABSTRACT

The intestinal microbiota shapes and directs immune development locally and systemically, but little is known about whether commensal microbes in the stomach can impact their immunological microenvironment. Here, we report that group 2 innate lymphoid cells (ILC2s) were the predominant ILC subset in the stomach and show that their homeostasis and effector functions were regulated by local commensal communities. Microbes elicited interleukin-7 (IL-7) and IL-33 production in the stomach, which in turn triggered the propagation and activation of ILC2. Stomach ILC2s were also rapidly induced following infection with Helicobacter pylori. ILC2-derived IL-5 resulted in the production of IgA, which coated stomach bacteria in both specific pathogen-free (SPF) and H. pylori-infected mice. Our study thus identifies ILC2-dependent IgA response that is regulated by the commensal microbiota, which is implicated in stomach protection by eliminating IgA-coated bacteria including pathogenic H. pylori.


Subject(s)
Gastrointestinal Microbiome/immunology , Helicobacter Infections/immunology , Helicobacter pylori/pathogenicity , Immunoglobulin A/biosynthesis , Interleukin-5/immunology , Stomach/immunology , T-Lymphocyte Subsets/immunology , Animals , Cell Lineage/genetics , Cell Lineage/immunology , Female , Gene Expression Regulation , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/growth & development , Helicobacter pylori/immunology , Immunity, Humoral , Immunity, Innate , Interleukin-33/genetics , Interleukin-33/immunology , Interleukin-5/genetics , Interleukin-7/genetics , Interleukin-7/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Signal Transduction , Stomach/microbiology , Symbiosis/immunology , T-Lymphocyte Subsets/classification
3.
Mol Cell ; 80(2): 210-226.e7, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33002424

ABSTRACT

Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.


Subject(s)
Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , RNA, Bacterial/genetics , Repetitive Sequences, Nucleic Acid/genetics , Virulence Factors/metabolism , Bacterial Proteins/metabolism , Base Sequence , Colony Count, Microbial , Endocytosis/drug effects , Gene Deletion , Gene Expression Regulation, Bacterial/drug effects , Helicobacter pylori/drug effects , Host-Pathogen Interactions/drug effects , Nickel/pharmacology , Phenotype , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects
4.
EMBO J ; 41(13): e109996, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35767364

ABSTRACT

Helicobacter pylori is a pathogen that colonizes the stomach and causes chronic gastritis. Helicobacter pylori can colonize deep inside gastric glands, triggering increased R-spondin 3 (Rspo3) signaling. This causes an expansion of the "gland base module," which consists of self-renewing stem cells and antimicrobial secretory cells and results in gland hyperplasia. The contribution of Rspo3 receptors Lgr4 and Lgr5 is not well explored. Here, we identified that Lgr4 regulates Lgr5 expression and is required for H. pylori-induced hyperplasia and inflammation, while Lgr5 alone is not. Using conditional knockout mice, we reveal that R-spondin signaling via Lgr4 drives proliferation of stem cells and also induces NF-κB activity in the proliferative stem cells. Upon exposure to H. pylori, the Lgr4-driven NF-κB activation is responsible for the expansion of the gland base module and simultaneously enables chemokine expression in stem cells, resulting in gland hyperplasia and neutrophil recruitment. This demonstrates a connection between R-spondin-Lgr and NF-κB signaling that links epithelial stem cell behavior and inflammatory responses to gland-invading H. pylori.


Subject(s)
Helicobacter pylori , Animals , Hyperplasia/metabolism , Hyperplasia/pathology , Inflammation/pathology , Mice , NF-kappa B/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Stem Cells/metabolism , Stomach
5.
Annu Rev Physiol ; 84: 485-506, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34672717

ABSTRACT

The body depends on its physical barriers and innate and adaptive immune responses to defend against the constant assault of potentially harmful microbes. In turn, successful pathogens have evolved unique mechanisms to adapt to the host environment and manipulate host defenses. Helicobacter pylori (Hp), a human gastric pathogen that is acquired in childhood and persists throughout life, is an example of a bacterium that is very successful at remodeling the host-pathogen interface to promote a long-term persistent infection. Using a combination of secreted virulence factors, immune subversion, and manipulation of cellular mechanisms, Hp can colonize and persist in the hostile environment of the human stomach. Here, we review the most recent and relevant information regarding how this successful pathogen overcomes gastric epithelial host defense responses to facilitate its own survival and establish a chronic infection.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Gastric Mucosa/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/physiology , Humans , Immunity
6.
Mol Microbiol ; 121(2): 260-274, 2024 02.
Article in English | MEDLINE | ID: mdl-38173305

ABSTRACT

There is growing evidence that bacterial morphology is closely related to their lifestyle. The helical Helicobacter pylori relies on its unique shape for survival and efficient colonization of the human stomach. Yet, they have been observed to transform into another distinctive morphology, the spherical coccoid. Despite being hypothesized to be involved in the persistence and transmission of this species, years of effort in deciphering the roles of the coccoid form remain fruitless since contrasting observations regarding its lifestyle were reported. Here, we discuss the two forms of H. pylori with a focus on the coccoid form, the molecular mechanism behind its morphological transformation, and experimental approaches to further develop our understanding of this phenomenon. We also propose a putative mechanism of the coccoid formation in H. pylori through induction of a type-I toxin-antitoxin (TA) system recently shown to influence the morphology of this species.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Stomach/microbiology , Helicobacter Infections/microbiology
7.
Gastroenterology ; 166(4): 605-619, 2024 04.
Article in English | MEDLINE | ID: mdl-38176660

ABSTRACT

BACKGROUND & AIMS: We aimed to assess the secular trend of the global prevalence of Helicobacter pylori (H pylori) infection in adults and children/adolescents and to show its relation to that of gastric cancer incidence. METHODS: We performed a systematic review and meta-analysis to calculate overall prevalence, adjusted by multivariate meta-regression analysis. The incidence rates of gastric cancer were derived from the Global Burden of Disease Study and Cancer Incidence in Five Continents. RESULTS: Of the 16,976 articles screened, 1748 articles from 111 countries were eligible for analysis. The crude global prevalence of H pylori has reduced from 52.6% (95% confidence interval [CI], 49.6%-55.6%) before 1990 to 43.9% (95% CI, 42.3%-45.5%) in adults during 2015 through 2022, but was as still as high as 35.1% (95% CI, 30.5%-40.1%) in children and adolescents during 2015 through 2022. Secular trend and multivariate regression analyses showed that the global prevalence of H pylori has declined by 15.9% (95% CI, -20.5% to -11.3%) over the last 3 decades in adults, but not in children and adolescents. Significant reduction of H pylori prevalence was observed in adults in the Western Pacific, Southeast Asian, and African regions. However, H pylori prevalence was not significantly reduced in children and adolescents in any World Health Organization regions. The incidence of gastric cancer has decreased globally and in various countries where the prevalence of H pylori infection has declined. CONCLUSIONS: The global prevalence of H pylori infection has declined during the last 3 decades in adults, but not in children and adolescents. The results raised the hypothesis that the public health drive to reduce the prevalence of H pylori as a strategy to reduce the incidence of gastric cancer in the population should be confirmed in large-scale clinical trials.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Adult , Child , Adolescent , Humans , Incidence , Stomach Neoplasms/epidemiology , Stomach Neoplasms/etiology , Helicobacter Infections/drug therapy , Prevalence
8.
Gastroenterology ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38513743

ABSTRACT

BACKGROUND & AIMS: Helicobacter pylori infection is associated with a decreased risk of esophageal adenocarcinoma, and the decreasing prevalence of such infection might contribute to the increasing incidence of this tumor. We examined the hypothesis that eradication treatment of H pylori increases the risk of esophageal adenocarcinoma. METHODS: This population-based multinational cohort, entitled "Nordic Helicobacter Pylori Eradication Project (NordHePEP)," included all adults (≥18 years) receiving H pylori eradication treatment from 1995-2018 in any of the 5 Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden) with follow-up throughout 2019. Data came from national registers. We calculated standardized incidence ratios (SIRs) with 95% confidence intervals (CIs) by dividing the cancer incidence in the exposed cohort by that of the entire Nordic background populations of the corresponding age, sex, calendar period, and country. Analyses were stratified by factors associated with esophageal adenocarcinoma (ie, education, comorbidity, gastroesophageal reflux, and certain medications). RESULTS: Among 661,987 participants who contributed 5,495,552 person-years after eradication treatment (median follow-up, 7.8 years; range, 1-24 years), 550 cases of esophageal adenocarcinoma developed. The overall SIR of esophageal adenocarcinoma was not increased (SIR = 0.89; 95% CI, 0.82-0.97). The SIR did not increase over time after eradication treatment, but rather decreased and was 0.73 (95% CI, 0.61-0.86) at 11-24 years after treatment. There were no major differences in the stratified analyses. The overall SIR of esophageal squamous cell carcinoma, calculated for comparison, showed no association (SIR = 0.99; 95% CI, 0.89-1.11). CONCLUSIONS: This absence on an increased risk of esophageal adenocarcinoma after eradication treatment of H pylori suggests eradication is safe from a cancer perspective.

9.
Gastroenterology ; 166(2): 267-283, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37806461

ABSTRACT

Helicobacter pylori is the most common chronic bacterial infection worldwide and the most significant risk factor for gastric cancer, which remains a leading cause of cancer-related death globally. H pylori and gastric cancer continue to disproportionately impact racial and ethnic minority and immigrant groups in the United States. The approach to H pylori case-finding thus far has relied on opportunistic testing based on symptoms or high-risk indicators, such as racial or ethnic background and family history. However, this approach misses a substantial proportion of individuals infected with H pylori who remain at risk for gastric cancer because most infections remain clinically silent. Moreover, individuals with chronic H pylori infection are at risk for gastric preneoplastic lesions, which are also asymptomatic and only reliably diagnosed using endoscopy and biopsy. Thus, to make a significant impact in gastric cancer prevention, a systematic approach is needed to better identify individuals at highest risk of both H pylori infection and its complications, including gastric preneoplasia and cancer. The approach to H pylori eradication must also be optimized given sharply decreasing rates of successful eradication with commonly used therapies and increasing antimicrobial resistance. With growing acceptance that H pylori should be managed as an infectious disease and the increasing availability of susceptibility testing, we now have the momentum to abandon empirical therapies demonstrated to have inadequate eradication rates. Molecular-based susceptibility profiling facilitates selection of a personalized eradication regimen without necessitating an invasive procedure. An improved approach to H pylori eradication coupled with population-level programs for screening and treatment could be an effective and efficient strategy to prevent gastric cancer, especially in minority and potentially marginalized populations that bear the heaviest burden of H pylori infection and its complications.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Ethnicity , Stomach Neoplasms/diagnosis , Stomach Neoplasms/epidemiology , Stomach Neoplasms/prevention & control , Minority Groups , Risk Factors , Helicobacter Infections/complications , Helicobacter Infections/diagnosis , Helicobacter Infections/drug therapy , Anti-Bacterial Agents/therapeutic use
10.
Eur J Immunol ; 54(3): e2350662, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366919

ABSTRACT

Helicobacter pylori is one of the main predisposing factors for gastric cancer, causing chronic inflammation and proper glands atrophy in the gastric mucosa. Although H. pylori-induced inflammation is a key inducer of precancerous lesions in the gastric mucosa, it remains unclear which precise immune cell subsets are responsible for the progression of H. pylori-induced gastritis. Here, we observed an abundance of CD4+ IL-17A+ FOXP3+ T cells exhibiting a Th17-like phenotype within the microenvironment of H. pylori-induced gastritis. Mechanistically, H. pylori upregulated the expression of IL-6 in Dendritic cells and macrophages, by activating NF-κB signaling through the virulence factor CagA and thus, induced IL-17A expression in FOXP3+ T cells. Moreover, CD4+ IL-17A+ FOXP3+ T cells were positively associated with advanced precancerous lesions. Therefore, these findings offer essential insights into how FOXP3+ T cells sense inflammatory signals from the environment, such as IL-6, during H. pylori infections, thereby guiding the effector immune response and aggravating the gastritis.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Humans , Interleukin-17/metabolism , Interleukin-6 , Gastritis/metabolism , Gastritis/pathology , Inflammation , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/metabolism , Tumor Microenvironment
11.
J Virol ; 98(3): e0192323, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38358289

ABSTRACT

Helicobacter pylori is a human pathogen that infects almost half of the population. Antibiotic resistance in H. pylori threatens health and increases the demand for prophylactic and therapeutic vaccines. Traditional oral vaccine research faces considerable challenges because of the epithelial barrier, potential enterotoxicity of adjuvants, and the challenging conditions of the gastric environment. We developed an intranasal influenza A virus (IAV) vector vaccine based on two live attenuated influenza viruses with modified acidic polymerase protein (PA) genes encoding the A subunit of H. pylori neutrophil-activating protein (NapA), named IAV-NapA, including influenza virus A/WSN/33 (WSN)-NapA and A/Puerto Rico/8/34 (PR8)-NapA. These recombinant influenza viruses were highly attenuated and exhibited strong immunogenicity in mice. Vaccination with IAV-NapA induced antigen-specific humoral and mucosal immune responses while stimulating robust Th1 and Th17 cell immune responses in mice. Our findings suggest that prophylactic and therapeutic vaccination with influenza virus vector vaccines significantly reduces colonization of H. pylori and inflammation in the stomach of mice.IMPORTANCEHelicobacter pylori is the most common cause of chronic gastritis and leads to severe gastroduodenal pathology in some patients. Many studies have shown that Th1 and Th17 cellular and gastric mucosal immune responses are critical in reducing H. pylori load. IAV vector vaccines can stimulate these immune responses while overcoming potential adjuvant toxicity and antigen dosing issues. To date, no studies have demonstrated the role of live attenuated IAV vector vaccines in preventing and treating H. pylori infection. Our work indicates that vaccination with IAV-NapA induces antigen-specific humoral, cellular, and mucosal immunity, producing a protective and therapeutic effect against H. pylori infection in BALB/c mice. This undescribed H. pylori vaccination approach may provide valuable information for developing vaccines against H. pylori infection.


Subject(s)
Helicobacter pylori , Influenza Vaccines , Animals , Humans , Mice , Adjuvants, Immunologic , Bacterial Vaccines/immunology , Helicobacter pylori/physiology , Influenza A virus/physiology , Influenza Vaccines/administration & dosage , Mice, Inbred BALB C , Helicobacter Infections/prevention & control , Administration, Intranasal
12.
BMC Biol ; 22(1): 125, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807090

ABSTRACT

BACKGROUND: Bacterial epigenetics is a rapidly expanding research field. DNA methylation by diverse bacterial methyltransferases (MTases) contributes to genomic integrity and replication, and many recent studies extended MTase function also to global transcript regulation and phenotypic variation. Helicobacter pylori is currently one of those bacterial species which possess the highest number and the most variably expressed set of DNA MTases. Next-generation sequencing technologies can directly detect DNA base methylation. However, they still have limitations in their quantitative and qualitative performance, in particular for cytosine methylation. RESULTS: As a complementing approach, we used enzymatic methyl sequencing (EM-Seq), a technology recently established that has not yet been fully evaluated for bacteria. Thereby, we assessed quantitatively, at single-base resolution, whole genome cytosine methylation for all methylated cytosine motifs in two different H. pylori strains and isogenic MTase mutants. EM-Seq reliably detected both m5C and m4C methylation. We demonstrated that three different active cytosine MTases in H. pylori provide considerably different levels of average genome-wide single-base methylation, in contrast to isogenic mutants which completely lost specific motif methylation. We found that strain identity and changed environmental conditions, such as growth phase and interference with methyl donor homeostasis, significantly influenced quantitative global and local genome-wide methylation in H. pylori at specific motifs. We also identified significantly hyper- or hypo-methylated cytosines, partially linked to overlapping MTase target motifs. Notably, we revealed differentially methylated cytosines in genome-wide coding regions under conditions of methionine depletion, which can be linked to transcript regulation. CONCLUSIONS: This study offers new knowledge on H. pylori global and local genome-wide methylation and establishes EM-Seq for quantitative single-site resolution analyses of bacterial cytosine methylation.


Subject(s)
DNA Methylation , Genome, Bacterial , Helicobacter pylori , Helicobacter pylori/genetics , Genome, Bacterial/genetics , Homeostasis , Cytosine/metabolism , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods
13.
Gut ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906695

ABSTRACT

BACKGROUND AND AIMS: This study aimed to evaluate the efficacy and safety of vonoprazan and tetracycline (VT) dual therapy as first-line treatment for Helicobacter pylori infection in patients with penicillin allergy. METHODS: In this randomised controlled trial, treatment-naïve adults with H. pylori infection and penicillin allergy were randomised 1:1 to receive either open-label VT dual therapy (vonoprazan 20 mg two times per day+tetracycline 500 mg three times a day) or bismuth quadruple therapy (BQT; lansoprazole 30 mg two times per day+colloidal bismuth 150 mg three times a day+tetracycline 500 mg three times a day+metronidazole 400 mg three times a day) for 14 days. The primary outcome was non-inferiority in eradication rates in the VT dual group compared with the BQT group. Secondary outcomes included assessing adverse effects. RESULTS: 300 patients were randomised. The eradication rates in the VT group and the BQT group were: 92.0% (138/150, 95% CI 86.1% to 95.6%) and 89.3% (134/150, 95% CI 83.0% to 93.6%) in intention-to-treat analysis (difference 2.7%; 95% CI -4.6% to 10.0%; non-inferiority p=0.000); 94.5% (138/146, 95% CI 89.1% to 97.4%) and 93.1% (134/144, 95% CI 87.3% to 96.4%) in modified intention-to-treat analysis (difference 1.5%; 95% CI -4.9% to 8.0%; non-inferiority p=0.001); 95.1% (135/142, 95% CI 89.7% to 97.8%) and 97.7% (128/131, 95% CI 92.9% to 99.4%) in per-protocol analysis (difference 2.6%; 95% CI -2.9% to 8.3%; non-inferiority p=0.000). The treatment-emergent adverse events (TEAEs) were significantly lower in the VT group (14.0% vs 48.0%, p=0.000), with fewer treatment discontinuations due to TEAEs (2.0% vs 8.7%, p=0.010). CONCLUSIONS: VT dual therapy demonstrated efficacy and safety as a first-line treatment for H. pylori infection in the penicillin-allergic population, with comparable efficacy and a lower incidence of TEAEs compared with traditional BQT. TRIAL REGISTRATION NUMBER: ChiCTR2300074693.

14.
Gut ; 73(2): 255-267, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37751933

ABSTRACT

OBJECTIVE: The presence of intestinal metaplasia (IM) is a risk factor for gastric cancer. However, it is still controversial whether IM itself is precancerous or paracancerous. Here, we aimed to explore the precancerous nature of IM by analysing epigenetic alterations. DESIGN: Genome-wide DNA methylation analysis was conducted by EPIC BeadArray using IM crypts isolated by Alcian blue staining. Chromatin immunoprecipitation sequencing for H3K27ac and single-cell assay for transposase-accessible chromatin by sequencing were conducted using IM mucosa. NOS2 was induced using Tet-on gene expression system in normal cells. RESULTS: IM crypts had a methylation profile unique from non-IM crypts, showing extensive DNA hypermethylation in promoter CpG islands, including those of tumour-suppressor genes. Also, the IM-specific methylation profile, namely epigenetic footprint, was present in a fraction of gastric cancers with a higher frequency than expected, and suggested to be associated with good overall survival. IM organoids had remarkably high NOS2 expression, and NOS2 induction in normal cells led to accelerated induction of aberrant DNA methylation, namely epigenetic instability, by increasing DNA methyltransferase activity. IM mucosa showed dynamic enhancer reprogramming, including the regions involved in higher NOS2 expression. NOS2 had open chromatin in IM cells but not in gastric cells, and IM cells had frequent closed chromatin of tumour-suppressor genes, indicating their methylation-silencing. NOS2 expression in IM-derived organoids was upregulated by interleukin-17A, a cytokine secreted by extracellular bacterial infection. CONCLUSIONS: IM cells were considered to have a precancerous nature potentially with an increased chance of converting into cancer cells, and an accelerated DNA methylation induction due to abnormal NOS2 expression.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Stomach Neoplasms , Humans , DNA Methylation , Stomach Neoplasms/microbiology , DNA , Chromatin/metabolism , Metaplasia/genetics , Metaplasia/metabolism , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Gastric Mucosa/metabolism , Helicobacter pylori/genetics , Helicobacter Infections/complications
15.
Gut ; 73(3): 407-441, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38383142

ABSTRACT

At the end of the last century, a far-sighted 'working party' held in Sydney, Australia addressed the clinicopathological issues related to gastric inflammatory diseases. A few years later, an international conference held in Houston, Texas, USA critically updated the seminal Sydney classification. In line with these initiatives, Kyoto Global Consensus Report, flanked by the Maastricht-Florence conferences, added new clinical evidence to the gastritis clinicopathological puzzle.The most relevant topics related to the gastric inflammatory diseases have been addressed by the Real-world Gastritis Initiative (RE.GA.IN.), from disease definitions to the clinical diagnosis and prognosis. This paper reports the conclusions of the RE.GA.IN. consensus process, which culminated in Venice in November 2022 after more than 8 months of intense global scientific deliberations. A forum of gastritis scholars from five continents participated in the multidisciplinary RE.GA.IN. consensus. After lively debates on the most controversial aspects of the gastritis spectrum, the RE.GA.IN. Faculty amalgamated complementary knowledge to distil patient-centred, evidence-based statements to assist health professionals in their real-world clinical practice. The sections of this report focus on: the epidemiology of gastritis; Helicobacter pylori as dominant aetiology of environmental gastritis and as the most important determinant of the gastric oncogenetic field; the evolving knowledge on gastric autoimmunity; the clinicopathological relevance of gastric microbiota; the new diagnostic horizons of endoscopy; and the clinical priority of histologically reporting gastritis in terms of staging. The ultimate goal of RE.GA.IN. was and remains the promotion of further improvement in the clinical management of patients with gastritis.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Helicobacter Infections/complications , Helicobacter Infections/diagnosis , Helicobacter Infections/pathology , Gastritis/diagnosis , Gastritis/epidemiology , Gastritis/pathology , Endoscopy , Stomach Neoplasms/pathology , Gastric Mucosa/pathology
16.
J Cell Mol Med ; 28(9): e18358, 2024 May.
Article in English | MEDLINE | ID: mdl-38693868

ABSTRACT

Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.


Subject(s)
Helicobacter pylori , Isoflavones , Molecular Docking Simulation , Molecular Dynamics Simulation , Helicobacter pylori/drug effects , Helicobacter pylori/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/metabolism , Humans , Hydrogen Bonding , Ligands , Protein Binding , Principal Component Analysis , Helicobacter Infections/microbiology , Helicobacter Infections/drug therapy , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Stomach Neoplasms/microbiology , Stomach Neoplasms/drug therapy
17.
Infect Immun ; 92(1): e0029223, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38014948

ABSTRACT

Activation of Th17 cell responses, including the production of IL-17A and IL-21, contributes to host defense and inflammatory responses by coordinating adaptive and innate immune responses. IL-17A and IL-17F signal through a multimeric receptor, which includes the IL-17 receptor A (IL-17RA) subunit and the IL-17RC subunit. IL-17RA is expressed by many cell types, and data from previous studies suggest that loss of IL-17 receptor is required to limit immunopathology in the Helicobacter pylori model of infection. Here, an Il17ra-/- mouse was generated on the FVB/n background, and the role of IL-17 signaling in the maintenance of barrier responses to H. pylori was investigated. Generating the Il17ra-/- on the FVB/n background allowed for the examination of responses in the paragastric lymph node and will allow for future investigation into carcinogenesis. While uninfected Il17ra-/- mice do not develop spontaneous gastritis following H. pylori infection, Il17ra-/- mice develop severe gastric inflammation accompanied by lymphoid follicle production and exacerbated production of Th17 cytokines. Increased inflammation in the tissue, increased IgA levels in the lumen, and reduced production of Muc5ac in the corpus correlate with increased H. pylori-induced paragastric lymph node activation. These data suggest that the cross talk between immune cells and epithelial cells regulates mucin production, IgA production, and translocation, impacting the integrity of the gastric mucosa and therefore activating of the adaptive immune response.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Mice , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Helicobacter pylori/physiology , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/metabolism , Gastric Mucosa/metabolism , Inflammation/metabolism , Immunoglobulin A/metabolism
18.
Immunology ; 171(2): 212-223, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37899627

ABSTRACT

Since Helicobacter pylori (H. pylori) resistance to antibiotic regimens has increased, vaccination is becoming an increasingly important alternative therapy to control H. pylori infection. UreB, FlaA, AlpB, SabA, and HpaA proteins of H. pylori were previously proved to be used as candidate vaccine antigens. Here, we developed an engineered antigen based on a recombinant chimeric protein containing a structural scaffold from UreB and B cell epitopes from FlaA, AlpB, SabA, and HpaA. The multi-epitope chimeric antigen, named MECU, could generate a broadly reactive antibody response including antigen-specific antibodies and neutralising antibodies against H. pylori urease and adhesins. Moreover, therapeutic immunisation with MECU could reduce H. pylori colonisation in the stomach and protect the stomach in BALB/c mice. This study not only provides promising immunotherapy to control H. pylori infection but also offers a reference for antigen engineering against other pathogens.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Animals , Mice , Epitopes, B-Lymphocyte , Antibody Formation , Bacterial Vaccines , Urease , Helicobacter Infections/prevention & control , Antibodies, Bacterial , Mice, Inbred BALB C
19.
J Cell Biochem ; 125(3): e30527, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332574

ABSTRACT

The presence of Helicobacter pylori (H. pylori) infection poses a substantial risk for the development of gastric adenocarcinoma. The primary mechanism through which H. pylori exerts its bacterial virulence is the cytotoxin CagA. This cytotoxin has the potential to induce inter-epithelial mesenchymal transition, proliferation, metastasis, and the acquisition of stem cell-like properties in gastric cancer (GC) cells infected with CagA-positive H. pylori. Cancer stem cells (CSCs) represent a distinct population of cells capable of self-renewal and generating heterogeneous tumor cells. Despite evidence showing that CagA can induce CSCs-like characteristics in GC cells, the precise mechanism through which CagA triggers the development of GC stem cells (GCSCs) remains uncertain. This study reveals that CagA-positive GC cells infected with H. pylori exhibit CSCs-like properties, such as heightened expression of CD44, a specific surface marker for CSCs, and increased ability to form tumor spheroids. Furthermore, we have observed that H. pylori activates the PI3K/Akt signaling pathway in a CagA-dependent manner, and our findings suggest that this activation is associated with the CSCs-like characteristics induced by H. pylori. The cytotoxin CagA, which is released during H. pylori infection, triggers the activation of the PI3K/Akt signaling pathway in a CagA-dependent manner. Additionally, CagA inhibits the transcription of FOXO3a and relocates it from the nucleus to the cytoplasm by activating the PI3K/Akt pathway. Furthermore, the regulatory function of the Akt/FOXO3a axis in the transformation of GC cells into a stemness state was successfully demonstrated.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Cytotoxins/metabolism , Gastric Mucosa/metabolism , Helicobacter Infections/pathology , Neoplastic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Stomach Neoplasms/metabolism
20.
Lab Invest ; 104(1): 100262, 2024 01.
Article in English | MEDLINE | ID: mdl-37839639

ABSTRACT

With advancements in the field of digital pathology, there has been a growing need to compare the diagnostic abilities of pathologists using digitized whole slide images against those when using traditional hematoxylin and eosin (H&E)-stained glass slides for primary diagnosis. One of the most common specimens received in pathology practices is an endoscopic gastric biopsy with a request to rule out Helicobacter pylori (H. pylori) infection. The current standard of care is the identification of the organisms on H&E-stained slides. Immunohistochemical or histochemical stains are used selectively. However, due to their small size (2-4 µm in length by 0.5-1 µm in width), visualization of the organisms can present a diagnostic challenge. The goal of the study was to compare the ability of pathologists to identify H. pylori on H&E slides using a digital platform against the gold standard of H&E glass slides using routine light microscopy. Diagnostic accuracy rates using glass slides vs digital slides were 81% vs 72% (P = .0142) based on H&E slides alone. When H. pylori immunohistochemical slides were provided, the diagnostic accuracy was significantly improved to comparable rates (96% glass vs 99% digital, P = 0.2199). Furthermore, differences in practice settings (academic/subspecialized vs community/general) and the duration of sign-out experience did not significantly impact the accuracy of detecting H. pylori on digital slides. We concluded that digital whole slide images, although amenable in different practice settings and teaching environments, does present some shortcomings in accuracy and precision, especially in certain circumstances and thus is not yet fully capable of completely replacing glass slide review for identification of H. pylori. We specifically recommend reviewing glass slides and/or performing ancillary stains, especially when there is a discrepancy between the degree of inflammation and the presence of microorganisms on digital images.


Subject(s)
Helicobacter pylori , Hematoxylin , Eosine Yellowish-(YS) , Coloring Agents , Microscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL