Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 516
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(4): e2210611120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36649412

ABSTRACT

Growing reliance on animal and plant domestication in the Near East and beyond during the Pre-Pottery Neolithic B (PPNB) (the ninth to eighth millennium BC) has often been associated with a "revolutionary" social transformation from mobility toward more sedentary lifestyles. We are able to yield nuanced insights into the process of the Neolithization in the Near East based on a bioarchaeological approach integrating isotopic and archaeogenetic analyses on the bone remains recovered from Nevali Çori, a site occupied from the early PPNB in Turkey where some of the earliest evidence of animal and plant domestication emerged, and from Ba'ja, a typical late PPNB site in Jordan. In addition, we present the archaeological sequence of Nevali Çori together with newly generated radiocarbon dates. Our results are based on strontium (87Sr/86Sr), carbon, and oxygen (δ18O and δ13Ccarb) isotopic analyses conducted on 28 human and 29 animal individuals from the site of Nevali Çori. 87Sr/86Sr results indicate mobility and connection with the contemporaneous surrounding sites during the earlier PPNB prior to an apparent decline in this mobility at a time of growing reliance on domesticates. Genome-wide data from six human individuals from Nevali Çori and Ba'ja demonstrate a diverse gene pool at Nevali Çori that supports connectedness within the Fertile Crescent during the earlier phases of Neolithization and evidence of consanguineous union in the PPNB Ba'ja and the Iron Age Nevali Çori.


Subject(s)
Carbon , Domestication , Animals , Humans , History, Ancient , Turkey , Jordan , Archaeology , DNA
2.
Plant Cell Environ ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189985

ABSTRACT

Understanding the dynamics of δ13C and δ18O in modern resin is crucial for interpreting (sub)fossilized resin records and resin production dynamics. We measured the δ13C and δ18O offsets between resin acids and their precursor molecules in the top-canopy twigs and breast-height stems of mature Pinus sylvestris trees. We also investigated the physiological and environmental signals imprinted in resin δ13C and δ18O at an intra-seasonal scale. Resin δ13C was c. 2‰ lower than sucrose δ13C, in both twigs and stems, likely due to the loss of 13C-enriched C-1 atoms of pyruvate during isoprene formation and kinetic isotope effects during diterpene synthesis. Resin δ18O was c. 20‰ higher than xylem water δ18O and c. 20‰ lower than δ18O of water-soluble carbohydrates, possibly caused by discrimination against 18O during O2-based diterpene oxidation and 35%-50% oxygen atom exchange with water. Resin δ13C and δ18O recorded a strong signal of soil water potential; however, their overall capacity to infer intraseasonal environmental changes was limited by their temporal, within-tree and among-tree variations. Future studies should validate the potential isotope fractionation mechanisms associated with resin synthesis and explore the use of resin δ13C and δ18O as a long-term proxy for physiological and environmental changes.

3.
Glob Chang Biol ; 30(3): e17213, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38436125

ABSTRACT

Paddy fields serve as significant reservoirs of soil organic carbon (SOC) and their potential for terrestrial carbon (C) sequestration is closely associated with changes in SOC pools. However, there has been a dearth of comprehensive studies quantifying changes in SOC pools following extended periods of rice cultivation across a broad geographical scale. Using 104 rice paddy sampling sites that have been in continuous cultivation since the 1980s across China, we studied the changes in topsoil (0-20 cm) labile organic C (LOC I), semi-labile organic C (LOC II), recalcitrant organic C (ROC), and total SOC. We found a substantial increase in both the content (48%) and density (39%) of total SOC within China's paddy fields between the 1980s to the 2010s. Intriguingly, the rate of increase in content and density of ROC exceeded that of LOC (I and II). Using a structural equation model, we revealed that changes in the content and density of total SOC were mainly driven by corresponding shifts in ROC, which are influenced both directly and indirectly by climatic and soil physicochemical factors; in particular temperature, precipitation, phosphorous (P) and clay content. We also showed that the δ13 CLOC were greater than δ13 CROC , independent of the rice cropping region, and that there was a significant positive correlation between δ13 CSOC and δ13 Cstraw . The δ13 CLOC and δ13 CSOC showed significantly negative correlation with soil total Si, suggesting that soil Si plays a part in the allocation of C into different SOC pools, and its turnover or stabilization. Our study underscores that the global C sequestration of the paddy fields mainly stems from the substantial increase in ROC pool.


Subject(s)
Oryza , Soil , Carbon , China , Geography
4.
Glob Chang Biol ; 30(1): e16999, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921241

ABSTRACT

Peatlands are globally important stores of soil carbon (C) formed over millennial timescales but are at risk of destabilization by human and climate disturbance. Pools are ubiquitous features of many peatlands and can contain very high concentrations of C mobilized in dissolved and particulate organic form and as the greenhouses gases carbon dioxide (CO2 ) and methane (CH4 ). The radiocarbon content (14 C) of these aquatic C forms tells us whether pool C is generated by contemporary primary production or from destabilized C released from deep peat layers where it was previously stored for millennia. We present novel 14 C and stable C (δ13 C) isotope data from 97 aquatic samples across six peatland pool locations in the United Kingdom with a focus on dissolved and particulate organic C and dissolved CO2 . Our observations cover two distinct pool types: natural peatland pools and those formed by ditch blocking efforts to rewet peatlands (restoration pools). The pools were dominated by contemporary C, with the majority of C (~50%-75%) in all forms being younger than 300 years old. Both pool types readily transform and decompose organic C in the water column and emit CO2 to the atmosphere, though mixing with the atmosphere and subsequent CO2 emissions was more evident in natural pools. Our results show little evidence of destabilization of deep, old C in natural or restoration pools, despite the presence of substantial millennial-aged C in the surrounding peat. One possible exception is CH4 ebullition (bubbling), with our observations showing that millennial-aged C can be emitted from peatland pools via this pathway. Our results suggest that restoration pools formed by ditch blocking are effective at preventing the release of deep, old C from rewetted peatlands via aquatic export.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Humans , Aged , Carbon Dioxide/analysis , Carbon Cycle , Soil , Climate Change
5.
Environ Sci Technol ; 58(23): 10368-10377, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38814143

ABSTRACT

The insect Tenebrio molitor exhibits ultrafast efficiency in biodegrading polystyrene (PS). However, the generation and fate of nanoplastics (NPs) in the intestine during plastic biodegradation remain unknown. In this study, we investigated the biodegradation of PS microplastics (MPs) mediated by T. molitor larvae over a 4-week period and confirmed biodegradation by analyzing Δδ13C in the PS before and after biotreatment (-28.37‰ versus -24.88‰) as an effective tool. The ·OH radicals, primarily contributed by gut microbiota, and H2O2, primarily produced by the host, both increased after MP digestion. The size distribution of residual MP particles in excrements fluctuated within the micrometer ranges. PS NPs were detected in the intestine but not in the excrements. At the end of Weeks 1, 2, 3, and 4, the concentrations of PS NPs in gut tissues were 3.778, 2.505, 2.087, and 2.853 ng/lava, respectively, while PS NPs in glands were quantified at 0.636, 0.284, and 0.113 ng/lava and eventually fell below the detection limit. The PS NPs in glands remained below the detection limit at the end of Weeks 5 and 6. This indicates that initially, NPs generated in the gut entered glands, then declined gradually and eventually disappeared or possibly biodegraded after Week 4, associated with the elevated plastic-degrading capacities of T. molitor larvae. Our findings unveil rapid synergistic MP biodegradation by the larval host and gut microbiota, as well as the fate of generated NPs, providing new insights into the risks and fate associated with NPs during invertebrate-mediated plastic biodegradation.


Subject(s)
Biodegradation, Environmental , Larva , Microplastics , Polystyrenes , Tenebrio , Animals , Microplastics/metabolism , Tenebrio/metabolism , Larva/metabolism , Plastics/metabolism , Gastrointestinal Microbiome
6.
Environ Sci Technol ; 58(22): 9731-9740, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38781307

ABSTRACT

Carbonaceous aerosols play an important role in radiative forcing in the remote and climate-sensitive Tibetan Plateau (TP). However, the sources of carbonaceous aerosols to the TP remain poorly defined, in part due to the lack of regionally relevant data about the sources of carbonaceous aerosols. To address this knowledge gap, we present the first comprehensive analysis of the δ13C signatures of carbonaceous aerosol endmembers local to the TP, encompassing total carbon, water-insoluble particle carbon, and elemental carbon originating from fossil fuel combustion, biomass combustion, and topsoil. The δ13C signatures of these local carbonaceous endmembers differ from components collected in other regions of the world. For instance, fossil fuel-derived aerosols from the TP were 13C-depleted relative to fossil fuel-derived aerosols reported in other regions, while biomass fuel-derived aerosols from the TP were 13C-enriched relative to biomass fuel-derived aerosols reported in other regions. The δ13C values of fine-particle topsoil in the TP were related to regional variations in vegetation type. These findings enhance our understanding of the unique features of carbonaceous aerosols in the TP and aid in accurate source apportionment and environmental assessments of carbonaceous aerosols in this climate-sensitive region.


Subject(s)
Aerosols , Carbon Isotopes , Tibet , Carbon , Environmental Monitoring
7.
Oecologia ; 204(1): 13-24, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227253

ABSTRACT

The measurement of stable isotope values of individual compounds, such as amino acids (AAs), has become a powerful tool in animal ecology and ecophysiology. As with any emerging technique, questions remain regarding the capabilities and limitations of this approach, including how metabolism and tissue synthesis impact the isotopic values of individual AAs and subsequent multivariate patterns. We measured carbon isotope (δ13C) values of essential (AAESS) and nonessential (AANESS) AAs in bone collagen, whisker, muscle, and liver from ten southern sea otters (Enhydra lutris nereis) that stranded in Monterey Bay, California. Sea otters in this population exhibit high degrees of individual dietary specialization, making this an excellent dataset to explore differences in AA δ13C values among tissues in a wild population. We found the δ13C values of the AANESS glutamic acid, proline, serine, and glycine and the AAESS threonine differed significantly among tissues, indicating possible isotopic discrimination during tissue synthesis. Threonine δ13C values were higher in liver relative to bone collagen and muscle, which may indicate catabolism of threonine for gluconeogenesis, an interpretation further supported by correlations between the δ13C values of threonine and its gluconeogenic products glycine and serine in liver. This intraindividual isotopic variation yielded different ecological interpretations among tissues; for 6/10 of the sea otter individuals analyzed, at least one tissue indicated reliance on a different primary producer source than the other tissues. Our results highlight the importance of gluconeogenesis in a carnivorous marine mammal and indicate that metabolic processes influence AAESS and AANESS δ13C values and multivariate AA δ13C patterns.


Subject(s)
Otters , Humans , Animals , Carbon Isotopes , Amino Acids , Threonine , Glycine , Serine , Collagen , California
8.
J Food Sci Technol ; 61(5): 939-949, 2024 May.
Article in English | MEDLINE | ID: mdl-38487291

ABSTRACT

The aim of this work was to give characteristic stable carbon and nitrogen isotope ratio (δ13Choney, δ13Cprotein and δ15N) ranges and examine their relation with botanical origin of honey. Despite that δ13C parameter has primary purpose to detect honey adulteration, stable isotopes generally have become important parameter for detection its botanical and geographical origin. The data about stable isotopes are scarce in comparison to other well-known parameters in honey, and in Croatia there is no data about stable isotopes in unifloral honey. This research includes six characteristic honey types (black locust, chestnut, lime, rape, winter savory, and sage honey) from Croatia. Large number of differences between honey types were found in the analyzed IRMS parameters. PCA analysis has successfully separated winter savory from all other honey types, except sage honey, whose samples differed from black locust samples. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05888-9.

9.
New Phytol ; 237(5): 1606-1619, 2023 03.
Article in English | MEDLINE | ID: mdl-36451527

ABSTRACT

Intrinsic water-use efficiency (iWUE), a key index for carbon and water balance, has been widely estimated from tree-ring δ13 C at annual resolution, but rarely at high-resolution intraseasonal scale. We estimated high-resolution iWUE from laser-ablation δ13 C analysis of tree-rings (iWUEiso ) and compared it with iWUE derived from gas exchange (iWUEgas ) and eddy covariance (iWUEEC ) data for two Pinus sylvestris forests from 2002 to 2019. By carefully timing iWUEiso via modeled tree-ring growth, iWUEiso aligned well with iWUEgas and iWUEEC at intraseasonal scale. However, year-to-year patterns of iWUEgas , iWUEiso , and iWUEEC were different, possibly due to distinct environmental drivers on iWUE across leaf, tree, and ecosystem scales. We quantified the modification of iWUEiso by postphotosynthetic δ13 C enrichment from leaf sucrose to tree rings and by nonexplicit inclusion of mesophyll and photorespiration terms in photosynthetic discrimination model, which resulted in overestimation of iWUEiso by up to 11% and 14%, respectively. We thus extended the application of tree-ring δ13 C for iWUE estimates to high-resolution intraseasonal scale. The comparison of iWUEgas , iWUEiso , and iWUEEC provides important insights into physiological acclimation of trees across leaf, tree, and ecosystem scales under climate change and improves the upscaling of ecological models.


Subject(s)
Pinus sylvestris , Ecosystem , Water , Carbon Dioxide , Forests , Carbon Isotopes/analysis
10.
Ann Bot ; 132(4): 869-879, 2023 11 25.
Article in English | MEDLINE | ID: mdl-37256773

ABSTRACT

BACKGROUND AND AIMS: The relative contributions of C3 photosynthesis and crassulacean acid metabolism (CAM) during the earliest stages of development were investigated to assess how much each might contribute to cactus pear (Opuntia ficus-indica) productivity. METHODS: The developmental progression of C3 photosynthesis and CAM was assessed in seedlings and daughter cladodes of mature plants by titratable acidity, δ13C isotopic values and diel gas exchange measurements. KEY RESULTS: Nocturnal acidification was observed in seedling cladodes and cotyledons at the earliest stages of development and became highly significant by 75 days of development. Seedling cotyledons showed mean δ13C values of -21.4 and -17.1 ‰ at 30 and 100 days of age, respectively. Seedling cladodes showed mean δ13C values of -19.4 and -14.5 ‰ at 30 and 100 days of age, respectively. These values are typical of CAM plants. Net CO2 assimilation was negative, then occurred in both the day and the night, with nighttime fixation becoming predominant once the primary cladode reached 5 cm in size. Emergent daughter cladodes growing on mature plants showed nocturnal titratable acidity at the earliest stages of development, which became significant when daughter cladodes were >2.5-5 cm in height. Emergent daughter cladodes showed mean δ13C values of -14.5 to -15.6 ‰, typical of CAM plants. CO2 assimilation studies revealed that net CO2 uptake was negative in daughter cladodes <12 cm in length, but then exhibited net positive CO2 assimilation in both the day and the night, with net nocturnal CO2 assimilation predominating once the daughter cladode grew larger. CONCLUSIONS: Developing O. ficus-indica primary and daughter cladodes begin as respiring sink tissues that transition directly to performing CAM once net positive CO2 fixation is observed. Overall, these results demonstrate that CAM is the primary form of photosynthetic carbon assimilation for O. ficus-indica even at the earliest stages of seedling or daughter cladode development.


Subject(s)
Crassulacean Acid Metabolism , Opuntia , Opuntia/metabolism , Carbon Dioxide/metabolism , Photosynthesis , Seedlings/metabolism
11.
Physiol Plant ; 175(6): e14081, 2023.
Article in English | MEDLINE | ID: mdl-38148203

ABSTRACT

Climate change is expected to decrease water availability in many agricultural production areas around the globe. At the same time renewable energy concepts such as agrivoltaics (AV) are necessary to manage the energy transition. Several studies showed that evapotranspiration can be reduced in AV systems, resulting in increased water availability for crops. However, effects on crop performance and productivity remain unclear to date. Carbon-13 isotopic composition (δ13 C and discrimination against carbon-13) can be used as a proxy for the effects of water availability on plant performance, integrating crop responses over the entire growing season. The aim of this study was to assess these effects via carbon isotopic composition in grains, as well as grain yield of winter wheat in an AV system in southwest Germany. Crops were cultivated over four seasons from 2016-2020 in the AV system and on an unshaded adjacent reference (REF) site. Across all seasons, average grain yield did not significantly differ between AV and REF (4.7 vs 5.2 t ha-1 ), with higher interannual yield stability in the AV system. However, δ13 C as well as carbon-13 isotope discrimination differed significantly across the seasons by 1‰ (AV: -29.0‰ vs REF: -28.0‰ and AV: 21.6‰ vs REF: 20.6‰) between the AV system and the REF site. These drought mitigation effects as indicated by the results of this study will become crucial for the resilience of agricultural production in the near future when drought events will become significantly more frequent and severe.


Subject(s)
Droughts , Triticum , Triticum/physiology , Seasons , Edible Grain , Crops, Agricultural , Water
12.
Environ Sci Technol ; 57(40): 15099-15111, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37751481

ABSTRACT

It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 µm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation.


Subject(s)
Polystyrenes , Tenebrio , Animals , Polyethylene , Tenebrio/metabolism , Plastics , Larva/metabolism , Biodegradation, Environmental , Microplastics
13.
Environ Sci Technol ; 57(37): 13851-13862, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37682017

ABSTRACT

Dehesas are Mediterranean agro-sylvo-pastoral systems sensitive to climate change. Extreme climate conditions forecasted for Mediterranean areas may change soil C turnover, which is of relevance for soil biogeochemistry modeling. The effect of climate change on soil organic matter (SOM) is investigated in a field experiment mimicking environmental conditions of global change scenarios (soil temperature increase, +2-3 °C, W; rainfall exclusion, 30%, D; a combination of both, W+D). Pyrolysis-compound-specific isotope analysis (Py-CSIA) is used for C and H isotope characterization of SOM compounds and to forecast trends exerted by the induced climate shift. After 2.5 years, significant δ13C and δ2H isotopic enrichments were detected. Observed short- and mid-chain n-alkane δ13C shifts point to an increased microbial SOM reworking in the W treatment; a 2H enrichment of up to 40‰ of lignin methoxyphenols was found when combining W+D treatments under the tree canopy, probably related to H fractionation due to increased soil water evapotranspiration. Our findings indicate that the effect of the tree canopy drives SOM dynamics in dehesas and that, in the short term, foreseen climate change scenarios will exert changes in the SOM dynamics comprising the biogeochemical C and H cycles.


Subject(s)
Climate Change , Pyrolysis , Alkanes , Isotopes , Soil , Trees
14.
Environ Sci Technol ; 57(40): 14983-14993, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37774105

ABSTRACT

Dissolved organic matter (DOM) contributes to forest C cycling. We assessed temporal variability, sources, and transformations of DOM during four years in a tropical montane forest with the help of stable C isotope ratios (δ13C values). We measured δ13C values of DOM in rainfall (RF), throughfall (TF), stemflow (SF), litter leachate (LL), soil solutions at the 0.15 and 0.30 m depths (SS15, SS30), and streamflow (ST) with TOC-IRMS. The δ13C values of DOM did not vary seasonally. We detected an event with a high δ13C value likely attributable to black carbon from local pasture fires. The mean δ13C values of DOM outside the event decreased in the order, RF (-26.0 ± 1.3‰) > TF (-28.7 ± 0.3‰) > SF (-29.2 ± 0.2‰) > LL (-29.6 ± 0.2‰) because of increasing leaching of C-isotopically light compounds. The higher δ13C values of DOM in SS15 (-27.8 ± 1.0‰), SS30 (-27.6 ± 1.1‰), and ST (-27.9 ± 1.1‰) than in the above-ground solutions suggested that roots and root exudates are major belowground DOM sources. Although in DOM the C/N ratios correlated with the δ13C values when all solutions were considered, this was not the case for SS15, SS30, and ST alone. Thus, the δ13C values of DOM provide an additional tool to assess the sources and turnover of DOM.

15.
Eur J Nutr ; 62(1): 433-441, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36087137

ABSTRACT

PURPOSE: Dietary biomarkers can potentially overcome the limitations of self-reported dietary data. While in ecology and archaeology, stable isotope ratios of carbon and nitrogen are widely used as biomarkers, this is not the case in nutrition research. Since the abundance of the 13C and the 15N isotope differ in food sources from plant and animal origin, stable isotope ratios of carbon and nitrogen (δ13C and δ15N) may differ in human biological material. Here, we investigated the stable isotope ratios of nitrogen and carbon in serum and urine from vegans and omnivores. METHOD: Measurement of δ15N and δ13C in serum and 24 h urine was performed by Elemental Analyzer-Isotope Ratio Mass Spectrometer in the cross-sectional study "Risks and Benefits of a Vegan Diet". The study included 36 vegans and 36 omnivores with a median age of 37.5 years (matched for age and sex), who adhered to their diet for at least 1 year. RESULTS: Both δ15N and δ13C were significantly lower in both the serum and 24 h urine of vegans compared to omnivores. δ15N either in serum or urine had 100% specificity and sensitivity to discriminate between vegans and omnivores. Specificity of δ13C was also > 90%, while sensitivity was 93% in serum and 77% in urine. CONCLUSION: δ15N both in serum and urine was able to accurately identify vegans and thus appears to be a promising marker for dietary habits.


Subject(s)
Carbon , Nitrogen , Animals , Humans , Adult , Diet, Vegan , Cross-Sectional Studies , Carbon Isotopes , Nitrogen Isotopes , Diet , Biomarkers
16.
Am Econ Rev ; 113(1): 98-135, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37168104

ABSTRACT

We examine multi-generational impacts of positive in utero health interventions using a new research design that exploits sharp increases in prenatal Medicaid eligibility that occurred in some states. Our analyses are based on U.S. Vital Statistics Natality files, which enables linkages between individuals' early life Medicaid exposure and the next generation's health at birth. We find evidence that the health benefits associated with treated generations' early life program exposure extend to later offspring. Our results suggest that the returns on early life health investments may be substantively underestimated.

17.
Proc Natl Acad Sci U S A ; 117(8): 3974-3982, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32041889

ABSTRACT

Global perturbations to the Early Jurassic environment (∼201 to ∼174 Ma), notably during the Triassic-Jurassic transition and Toarcian Oceanic Anoxic Event, are well studied and largely associated with volcanogenic greenhouse gas emissions released by large igneous provinces. The long-term secular evolution, timing, and pacing of changes in the Early Jurassic carbon cycle that provide context for these events are thus far poorly understood due to a lack of continuous high-resolution δ13C data. Here we present a δ13CTOC record for the uppermost Rhaetian (Triassic) to Pliensbachian (Lower Jurassic), derived from a calcareous mudstone succession of the exceptionally expanded Llanbedr (Mochras Farm) borehole, Cardigan Bay Basin, Wales, United Kingdom. Combined with existing δ13CTOC data from the Toarcian, the compilation covers the entire Lower Jurassic. The dataset reproduces large-amplitude δ13CTOC excursions (>3‰) recognized elsewhere, at the Sinemurian-Pliensbachian transition and in the lower Toarcian serpentinum zone, as well as several previously identified medium-amplitude (∼0.5 to 2‰) shifts in the Hettangian to Pliensbachian interval. In addition, multiple hitherto undiscovered isotope shifts of comparable amplitude and stratigraphic extent are recorded, demonstrating that those similar features described earlier from stratigraphically more limited sections are nonunique in a long-term context. These shifts are identified as long-eccentricity (∼405-ky) orbital cycles. Orbital tuning of the δ13CTOC record provides the basis for an astrochronological duration estimate for the Pliensbachian and Sinemurian, giving implications for the duration of the Hettangian Stage. Overall the chemostratigraphy illustrates particular sensitivity of the marine carbon cycle to long-eccentricity orbital forcing.

18.
Int J Biometeorol ; 67(6): 1017-1030, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37072578

ABSTRACT

Climate warming may induce growth decline in warm-temperate areas subjected to seasonal soil moisture deficit, whereas increasing atmospheric CO2 concentration (Ca) is expected to enhance tree growth. An accurate understanding of tree growth and physiological processes responding to climate warming and increasing Ca is critical. Here, we analyzed tree-ring stable carbon isotope and wood anatomical traits of Pinus tabuliformis from Qinling Mountains in China to understand how lumen diameter (LD) determining potential hydraulic conductivity and cell-wall thickness (CWT) determining carbon storage responded to climate and Ca. The effects of climate and Ca on intrinsic water-use efficiency (iWUE) were isolated, and iWUE values due to only-climate (iWUEClim) and only-CO2 effects (iWUECO2) were obtained. During a low-iWUE period, the influences of climate on earlywood (EW) LD and latewood (LW) CWT prevailed. During a high-iWUE period, CO2 fertilization promoted cell enlargement and carbon storage but this was counteracted by a negative influence of climate warming. The limiting direct effects of iWUEClim and indirect effects of climate on EW LD were greater than on LW CWT. P. tabuliformis in temperate forests will face a decline of growth and carbon fixation, but will produce embolism-resistant tracheids with narrow lumen responding to future hotter droughts.


Subject(s)
Water , Wood , Carbon Dioxide , Climate , Trees , Forests , Carbon , Droughts
19.
J Environ Manage ; 344: 118573, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37459811

ABSTRACT

Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7‰, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 µg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.


Subject(s)
Greenhouse Gases , Soil , Ecosystem , Brazil , Carbon Sequestration , Carbon Dioxide/analysis , Manure , Carbon/analysis , Forests , Trees
20.
Environ Monit Assess ; 196(1): 102, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38158434

ABSTRACT

Planted forest soils can have great potential for CO2-C sequestration, mainly due to belowground C inputs, which impact deep soil C (DSC) accumulation. However, there are still gaps in understanding the CO2 emission dynamics in eucalypt plantations. Therefore, we used isotopic techniques to investigate the dynamics of the soil surface CO2-C flux and CO2-C concentration with depth for a eucalypt plantation influenced by different C inputs (above- and belowground). The gas evaluations were carried in depth the root to valuation of root priming effect (RPE) was calculated. In addition, measurements of the plant (C-fine root and C-litterfall) and soil (total organic carbon - TOC, total nitrogen - TN, soil moisture - SM, and soil temperature - ST) were performed. After planting the eucalypt trees, there was an increase in the soil surface CO2-C flux with plant growth. Root growth contributed greatly to the soil surface CO2-C flux, promoting greater surface RPE over time. In comparison to the other factors, SM had a greater influence on litterfall decomposition and root respiration. It was not possible to detect losses in TOC and TN in the different soil layers for the 31-month-old eucalypt. However, the 40-month-old eucalypt showed a positive RPE with depth, indicating possible replacement of DSC ("old C") by rhizodeposition-C ("new C") in the soil. Thus, in eucalyptus plantations, aboveground plant growth influences CO2 emissions on the soil surface, while root growth and activity influence C in deeper soil layers. This information indicates the need for future changes in forest management, with a view to reducing CO2 emissions.


Subject(s)
Carbon Dioxide , Soil , Carbon Dioxide/analysis , Environmental Monitoring , Forests , Trees , Carbon/analysis
SELECTION OF CITATIONS
SEARCH DETAIL