Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Herz ; 48(2): 123-133, 2023 Mar.
Article in German | MEDLINE | ID: mdl-36700949

ABSTRACT

Heart failure is characterized by defects in excitation-contraction coupling, energetic deficit and oxidative stress. The energy for cardiac contraction and relaxation is provided in mitochondria, whose function is tightly regulated by excitation-contraction coupling in cardiac myocytes. In heart failure with reduced ejection fraction (HFrEF), alterations in the ion balance in cardiac myocytes impair mitochondrial Ca2+ uptake, which is required for activation of the Krebs cycle, causing an energetic deficit and oxidative stress in mitochondria. Recent clinical studies suggest that in heart failure with preserved ejection fraction (HFpEF), in stark contrast to HFrEF, hypercontractility often occurs as an attempt to compensate for a pathological increase in systemic and pulmonary vascular resistance. This hypercontractility increases cardiac energy and oxygen demands at rest and reduces the contractile, diastolic and coronary reserves, preventing an adequate increase in cardiac output during exercise. Moreover, increased contractility causes long-term maladaptive remodeling processes due to oxidative stress and redox-sensitive prohypertrophic signaling pathways. As overweight and diabetes, particularly in the interplay with hemodynamic stress, are important risk factors for the development of HFpEF, interventions targeting metabolism in particular could ameliorate the development and progression of HFpEF.


Subject(s)
Heart Failure , Humans , Stroke Volume , Myocytes, Cardiac , Oxidative Stress , Excitation Contraction Coupling
2.
Plant Mol Biol ; 110(3): 287-300, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35918559

ABSTRACT

KEY MESSAGE: Association genetic analysis empowered us to identify candidate genes underlying natural variation of morpho-physiological, antioxidants, and grain yield-related traits in barley. Novel intriguing genomic regions were identified and dissected. Salinity stress is one of the abiotic stresses that influence the morpho-physiological, antioxidants, and yield-related traits in crop plants. The plants of a core set of 138 diverse barley accessions were analyzed after exposure to salt stress under field conditions during the reproductive phase. A genome-wide association scan (GWAS) was then conducted using 19,276 single nucleotide polymorphisms (SNPs) to uncover the genetic basis of morpho-physiological and grain-related traits. A wide range of responses to salt stress by the accessions was explored in the current study. GWAS detected 263 significantly associated SNPs with the antioxidants, K+/Na+ content ratio, and agronomic traits. Five genomic regions harbored interesting putative candidate genes within LD ± 1.2 Mbp. Choromosome 2H harbored many candidate genes associated with the antioxidants ascorbic acid (AsA) and glutathione (GSH), such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), under salt stress. Markedly, an A:C SNP at 153,773,211 bp on chromosome 7H is located inside the gene HORVU.MOREX.r3.7HG0676830 (153,772,300-153,774,057 bp) that was annotated as L-gulonolactone oxidase, regulating the natural variation of SOD_S and APX_S. The allelic variation at this SNP reveals a negative selection of accessions carrying the C allele, predominantly found in six-rowed spring landraces originating from Far-, Near-East, and central Asia carrying photoperiod sensitive alleles having lower activity of enzymatic antioxidants. The SNP-trait associations detected in the current study constitute a benchmark for developing molecular selection tools for antioxidant compound selection in barley.


Subject(s)
Hordeum , Antioxidants , Ascorbate Peroxidases/genetics , Ascorbic Acid , Edible Grain/genetics , Genome-Wide Association Study , Glutathione , Glutathione Reductase/genetics , Hordeum/genetics , L-Gulonolactone Oxidase/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Salt Stress/genetics , Superoxide Dismutase/genetics
3.
Artif Organs ; 46(11): 2215-2225, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35652561

ABSTRACT

BACKGROUND: Determining the optimal dialysate sodium remains one of the challenges of hemodialysis prescription. Several arguments suggest that the dialysate sodium should be individually adjusted according to the patient's natremia. This strategy is greatly facilitated by using an algorithm. Only three such algorithms have been embedded in hemodialysis machines for the widespread generalization of this strategy in clinical routine: the Diacontrol (Hospal-Baxter Healthcare Corp., Deerfield, IL, USA), the HFR-Aequilibrium (Bellco-Medtronic, Dublin, Ireland), and the Na-control (Fresenius Medical Care, Bad-Homburg, Germany). METHODS: Model the solute mass-transfer across the dialyzer membrane in online hemodiafiltration and adapt the Diacontrol algorithm based on a single-pool kinetic model of sodium balance for quantifying ionic balance and managing tonicity. RESULTS: (1) Substituting sodium measurements with conductivity measurements allows the control of tonicity which is a more physiological parameter than natremia. (2) Consideration of all ion exchanges as a whole and not just sodium exchange avoids some of the assumptions required by kinetic modeling of sodium balance. (3) Equations provided by the model are applicable to both hemodialysis and online hemodiafiltration. (4) The differences between this model used by Diacontrol and the models on which the other two software's (HFR-Aequilibrium and Na-control) are based are highlighted. CONCLUSIONS: The single-pool kinetic model developed for the management of natremia in hemodialysis is also valid for the management of tonicity for both conventional hemodialysis and all online hemodiafiltration procedures.


Subject(s)
Hemodiafiltration , Humans , Hemodiafiltration/methods , Dialysis Solutions , Sodium , Renal Dialysis/methods , Water-Electrolyte Balance
4.
Article in English | MEDLINE | ID: mdl-35032658

ABSTRACT

The physiological and behavioral responses of Pomacea canaliculata exposed to different pH values (4, 5, 6, 7, 8, 9, and 10) were evaluated. Survival, behavior (avoidance), metabolites (mantle), net ion fluxes (Na+ and K+), and ATPase activity (gills) were the parameters analyzed. The final survival rates were 100% (pH 4-9) and 90% (pH 10), and the groups did not differ significantly. Avoidance behavior was not identified in animals exposed to an extreme pH compared to pH 7. The main changes observed in the metabolites were in those exposed to an alkaline pH. Glucose (pH 9) and total protein (pH 9 and 10) levels increased, and lactate decreased (pH 9 and 10) compared to a neutral pH. There was an increase in Na+ efflux at pH 4, 5, and 8 and an influx at pH 9 and 10. Extreme pH values (4 and 10) also caused an increase in K+ efflux. At pH values outside the neutrality range (pH 7), there was a significant decrease in the activities of Na+/K+-ATPase (4, 5, 6, 9, and 10) and H+-ATPase (pH 4, 5, 9, and 10). Variations in environmental pH did not cause statistically significant mortality or avoidance behavior in P. canaliculata at the analyzed times. However, due to changes in energy metabolism (glucose and lactate, mainly) and ionoregulation, these can be considered sensitive biomarkers of stress in this species.


Subject(s)
Gills , Snails , Animals , Hydrogen-Ion Concentration
5.
Environ Monit Assess ; 192(11): 697, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33043403

ABSTRACT

Environmental change is one of the primary issues faced by the farming community. Low rainfall and high temperature in arid and semiarid regions lead to the development of secondary salinisation, thus making the problem more severe. Under saline conditions, sodium is the most crucial cation that competes with potassium (K) and adversely affects plant metabolism by inhibiting plant enzymatic activities. Potassium-solubilising bacteria (KSB) play a vital role in solubilising fixed potassium and making it accessible to plants. In the current study, 42 KSB strains were isolated from paddy rhizosphere soil grown under salt-affected conditions. The plant-growth-promoting (PGP) properties of these rhizobacteria were also evaluated. Thirteen KSB strains, positive for all tested PGP traits, were evaluated for potassium solubilisation under sodium stress, namely, 0%, 3%, 5% and 7% NaCl stress. The five best strains (Acinetobacter pittii strain L1/4, A. pittii strain L3/3, Rhizobium pusense strain L3/4, Cupriavidus oxalaticus strain L4/12 and Ochrobactrum ciceri strain L5/1) based on the K-solubilising potential were identified by amplification, sequencing and bioinformatic analysis of the 16S rDNA sequences. The maximum potassium solubilisation was measured at 30 °C and pH 7 with glucose as carbon source. The application of these KSB strains significantly improved the shoot length, fresh weight, dry weight and chlorophyll contents of paddy plants grown under saline conditions. Hence, these strains could be halotolerant KSB bioinoculants that can be used to protect plants against salt stress.


Subject(s)
Potassium , Soil Microbiology , Acinetobacter , Cupriavidus , Environmental Monitoring , Ochrobactrum , Rhizobium
6.
Sci Rep ; 14(1): 21375, 2024 09 13.
Article in English | MEDLINE | ID: mdl-39271951

ABSTRACT

Plant growth regulators are cost-effective and efficient methods for enhancing plant defenses under stress conditions. This study investigates the ability of two plant growth-regulating substances, thiourea (TU) and arginine (Arg), to mitigate salinity stress in wheat. The results show that both TU and Arg, particularly when used together, modify plant growth under salinity stress. Their application significantly increases the activities of antioxidant enzymes while decreasing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and relative electrolyte leakage (REL) in wheat seedlings. Additionally, these treatments significantly reduce the concentrations of Na+ and Ca2+ and the Na+/K+ ratio, while significantly increasing K+ levels, thereby preserving ionic osmotic balance. Importantly, TU and Arg markedly enhance the chlorophyll content, net photosynthetic rate, and gas exchange rate in wheat seedlings under salinity stress. The use of TU and Arg, either individually or in combination, results in a 9.03-47.45% increase in dry matter accumulation, with the maximum increase observed when both are used together. Overall, this study highlights that maintaining redox homeostasis and ionic balance are crucial for enhancing plant tolerance to salinity stress. Furthermore, TU and Arg are recommended as potential plant growth regulators to boost wheat productivity under such conditions, especially when applied together.


Subject(s)
Arginine , Homeostasis , Oxidation-Reduction , Salt Stress , Seedlings , Thiourea , Triticum , Triticum/metabolism , Triticum/drug effects , Triticum/growth & development , Thiourea/pharmacology , Thiourea/analogs & derivatives , Arginine/metabolism , Seedlings/metabolism , Seedlings/drug effects , Seedlings/growth & development , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Photosynthesis/drug effects , Chlorophyll/metabolism , Plant Growth Regulators/metabolism
7.
Article in English | MEDLINE | ID: mdl-38963236

ABSTRACT

Aging results into disruptive physiological functioning and cellular processes that affect the composition and structure of the plasma membrane. The plasma membrane is the major regulator of ionic homeostasis that regulates the functioning of membrane transporters and exchangers. Coenzyme Q10 is a lipid-soluble antioxidant molecule that declines during aging and age-associated diseases. The present study aims to explore the role of Coenzyme Q10 supplementation to rats during aging on membrane transporters and redox biomarkers. The study was conducted on young and old male Wistar rats supplemented with 20 mg/kg b.w. of Coenzyme Q10 per day. After a period of 28 days, rats were sacrificed and erythrocyte membrane was isolated. The result exhibits significant decline in biomarkers of oxidative stress in old control rats when compared with young control. The effect of Coenzyme Q10 supplementation was more pronounced in old rats. The functioning of membrane transporters and Na+/H+ exchanger showed potential return to normal levels in the Coenzyme Q10 treated rats. Overall, the results demonstrate that Coenzyme Q10 plays an important role in maintaining redox balance in cells which interconnects with membrane integrity. Thus, Coenzyme Q10 supplementation may play an important role in protecting age related alterations in erythrocyte membrane physiology.

8.
Front Plant Sci ; 13: 1093529, 2022.
Article in English | MEDLINE | ID: mdl-36570958

ABSTRACT

Nanomaterials, including multiwalled carbon nanotubes (MWCNTs), have been recently applied in agriculture to improve stress resistance, leading to contradictory findings for antioxidant responses and mineral nutrient uptake. A pot experiment involving maize in low-salinity sandy loam soils was conducted with the application of different concentrations (0, 20, 50 mg/L) of MWCNTs and the growth-promoting rhizobacterium Bacillus subtilis (B. subtilis). The dose-dependent effects of MWCNTs were confirmed: 20 mg/L MWCNTs significantly promoted the accumulation of osmolytes in maize, particularly K+ in the leaves and roots, increased the leaf indoleacetic acid content, decreased the leaf abscisic acid content; but the above-mentioned promoting effects decreased significantly in 50 mg/L MWCNTs-treated plants. We observed a synergistic effect of the combined application of MWCNTs and B. subtilis on plant salt tolerance. The increased lipid peroxidation and antioxidant-like proline, peroxidase (POD), and catalase (CAT) activities suggested that MWCNTs induced oxidative stress in maize growing in low-salinity soils. B. subtilis reduced the oxidative stress caused by MWCNTs, as indicated by a lower content of malondialdehyde (MDA). The MWCNTs significantly increased the leaf Na+ content and leaf Na+/K+ ratio; however, when applied in combination with B. subtilis, the leaf Na+/K+ ratio decreased sharply to 69% and 44%, respectively, compared to those of the control (CK) group, the contents of which were partially regulated by abscisic acid and nitrate, according to the results of the structural equation model (SEM). Overall, the increased osmolytes and well-regulated Na+/K+ balance and transport in plants after the combined application of MWCNTs and B. subtilis reveal great potential for their use in combating abiotic stress.

9.
Front Plant Sci ; 13: 840900, 2022.
Article in English | MEDLINE | ID: mdl-35645994

ABSTRACT

Salinity stress is one of the major global problems that negatively affect crop growth and productivity. Therefore, ecofriendly and sustainable strategies for mitigating salinity stress in agricultural production and global food security are highly demandable. Sugarcane press mud (PM) is an excellent source of the organic amendment, and the role of PM in mitigating salinity stress is not well understood. Therefore, this study was aimed to investigate how the PM mitigates salinity stress through the regulation of rice growth, yield, physiological properties, and antioxidant enzyme activities in fine rice grown under different salinity stress conditions. In this study, different levels of salinity (6 and 12 dS m-1) with or without different levels of 3, 6, and 9% of SPM, respectively were tested. Salinity stress significantly increased malondialdehyde (MDA, 38%), hydrogen peroxide (H2O2, 74.39%), Na+ (61.5%), electrolyte leakage (40.32%), decreased chlorophyll content (32.64%), leaf water content (107.77%), total soluble protein (TSP, 72.28%), and free amino acids (FAA, 75.27%). However, these negative effects of salinity stress were reversed mainly in rice plants after PM application. PM application (9%) remained the most effective and significantly increased growth, yield, TSP, FAA, accumulation of soluble sugars, proline, K+, and activity of antioxidant enzymes, namely, ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD). Thus, these findings suggest a PM-mediated eco-friendly strategy for salinity alleviation in agricultural soil could be useful for plant growth and productivity in saline soils.

10.
Antibiotics (Basel) ; 11(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35453260

ABSTRACT

Rifampicin is a critical first-line antibiotic for treating mycobacterial infections such as tuberculosis, one of the most serious infectious diseases worldwide. Rifampicin resistance in mycobacteria is mainly caused by mutations in the rpoB gene; however, some rifampicin-resistant strains showed no rpoB mutations. Therefore, alternative mechanisms must explain this resistance in mycobacteria. In this work, a library of 11,000 Mycobacterium smegmatis mc2 155 insertion mutants was explored to search and characterize new rifampicin-resistance determinants. A transposon insertion in the MSMEG_1945 gene modified the growth rate, pH homeostasis and membrane potential in M. smegmatis, producing rifampicin resistance and collateral susceptibility to other antitubercular drugs such as isoniazid, ethionamide and aminoglycosides. Our data suggest that the M. smegmatis MSMEG_1945 protein is an ion channel, dubbed MchK, essential for maintaining the cellular ionic balance and membrane potential, modulating susceptibility to antimycobacterial agents. The functions of this new gene point once again to potassium homeostasis impairment as a proxy to resistance to rifampicin. This study increases the known repertoire of mycobacterial ion channels involved in drug susceptibility/resistance to antimycobacterial drugs and suggests novel intervention opportunities, highlighting ion channels as druggable pathways.

11.
Plants (Basel) ; 11(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36501238

ABSTRACT

Spermine (SPM) and salicylic acid (SA), plant growth stimulators, are involved in various biological processes and responses to environmental cues in plants. However, the function of their combined treatment on wheat salt tolerance is unclear. In this study, wheat (Triticum aestivum L. cvs. Shandawel 1 and Sids 14) plants were grown under non-saline and saline (6.0 and 12.0 dS m-1) conditions and were foliar sprayed with 100 mgL-1 SA and/or 30 mgL-1 SPM. Exogenously applied SA and/or SPM relieved the adverse effects caused by salt stress and significantly improved wheat growth and production by inducing higher photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content, nutrient (N, P, K+, Ca2+, Mg2+, Fe, Zn, Cu) acquisition, ionic (K+/Na+, Ca2+/Na+, Mg2+/Na+) homeostatics, osmolyte (soluble sugars, free amino acids, proline, glycinebetaine) accumulation, protein content, along with significantly lower Na+ accumulation and chlorophyll a/b ratio. The best response was registered with SA and SPM combined treatment, especially in Shandawel 1. This study highlighted the recovery impact of SA and SPM combined treatment on salinity-damaged wheat plants. The newly discovered data demonstrate that this treatment significantly improved the photosynthetic pigment content, mineral homeostasis, and osmoprotector solutes buildup in salinity-damaged wheat plants. Therefore, it can be a better strategy for ameliorating salt toxicity in sustainable agricultural systems.

12.
Plants (Basel) ; 11(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35161252

ABSTRACT

Soil salinity, a major environmental concern, significantly reduces plant growth and production all around the world. Finding solutions to reduce the salinity impacts on plants is critical for global food security. In recent years, the priming of plants with organic chemicals has shown to be a viable approach for the alleviation of salinity effects in plants. The current study examined the effects of exogenous ethanol in triggering salinity acclimatization responses in soybean by investigating growth responses, and numerous physiological and biochemical features. Foliar ethanol application to saline water-treated soybean plants resulted in an enhancement of biomass, leaf area, photosynthetic pigment contents, net photosynthetic rate, shoot relative water content, water use efficiency, and K+ and Mg2+ contents, leading to improved growth performance under salinity. Salt stress significantly enhanced the contents of reactive oxygen species (ROS), malondialdehyde, and electrolyte leakage in the leaves, suggesting salt-induced oxidative stress and membrane damage in soybean plants. In contrast, ethanol treatment of salt-treated soybean plants boosted ROS-detoxification mechanisms by enhancing the activities of antioxidant enzymes, including peroxidase, ascorbate peroxidase, catalase, and glutathione S-transferase. Ethanol application also augmented the levels of proline and total free amino acids in salt-exposed plants, implying a role of ethanol in maintaining osmotic adjustment in response to salt stress. Notably, exogenous ethanol decreased Na+ uptake while increasing K+ and Mg2+ uptake and their partitioning to leaves and roots in salt-stressed plants. Overall, our findings reveal the protective roles of ethanol against salinity in soybean and suggest that the use of this cost-effective and easily accessible ethanol in salinity mitigation could be an effective approach to increase soybean production in salt-affected areas.

13.
Plants (Basel) ; 10(4)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921328

ABSTRACT

Seed priming with sorghum water extract (SWE) enhances crop tolerance to salinity stress; however, the application of SWE under salinity for camelina crop has not been documented so far. This study evaluated the potential role of seed priming with SWE in improving salt stress tolerance in camelina. Primed (with 5% SWE and distilled water-hydropriming) and nonprimed seeds were sown under control (no salt) and salt stress (10 dS m-1) conditions. Salinity reduced camelina's emergence and growth, while seed priming with SWE improved growth under control and stress conditions. Under salt stress, seed priming with SWE enhanced emergence percentage (96.98%), increased root length (82%), shoot length (32%), root dry weight (75%), shoot dry weight (33%), α-amylase activity (66.43%), chlorophyll content (60-92%), antioxidant enzymes activity (38-171%) and shoot K+ ion (60%) compared with nontreated plants. Similarly, under stress conditions, hydrogen peroxide, malondialdehyde (MDA) content, and shoot Na+ ion were reduced by 60, 31, and 40% by seed priming with SWE, respectively, over the nonprimed seeds. Therefore, seed priming with SWE may be used to enhance the tolerance against salt stress in camelina.

14.
Biomolecules ; 11(7)2021 07 09.
Article in English | MEDLINE | ID: mdl-34356629

ABSTRACT

Soil salinity is the major limiting factor restricting plant growth and development. Little is known about the comparative and combined effects of gibberellic acid (GA3) seed priming and foliar application on maize under salt stress. The current study determined the impact of different application methods of GA3 on morpho-physiological, biochemical and molecular responses of maize seedlings under three salinity stress treatments (no salinity, moderate salinity-6 dS m-1, and severe salinity-12 dS m-1). The GA3 treatments consisted of control, hydro-priming (HP), water foliar spray (WFS), HP + WFS, seed priming with GA3 (GA3P, 100 mg L-1), foliar spray with GA3 (GA3FS, 100ppm) and GA3P + GA3FS. Salt stress particularly at 12 dS m-1 reduced the length of shoots and roots, fresh and dry weights, chlorophyll, and carotenoid contents, K+ ion accumulation and activities of antioxidant enzymes, while enhanced the oxidative damage and accumulation of the Na+ ion in maize plants. Nevertheless, the application of GA3 improved maize growth, reduced oxidative stress, and increased the antioxidant enzymes activities, antioxidant genes expression, and K+ ion concentration under salt stress. Compared with control, the GA3P + GA3FS recorded the highest increase in roots and shoots length (19-37%), roots fresh and dry weights (31-43%), shoots fresh and dry weights (31-47%), chlorophyll content (21-70%), antioxidant enzymes activities (73.03-150.74%), total soluble protein (13.05%), K+ concentration (13-23%) and antioxidants genes expression levels under different salinity levels. This treatment also reduced the H2O2 content, and Na+ ion concentration. These results indicated that GA3P + GA3FS could be used as an effective tool for improving the maize growth and development, and reducing the oxidative stress in salt-contaminated soils.


Subject(s)
Antioxidants/metabolism , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Salt Tolerance/drug effects , Zea mays , Salt Tolerance/genetics , Zea mays/genetics , Zea mays/growth & development
15.
PeerJ ; 9: e10577, 2021.
Article in English | MEDLINE | ID: mdl-33575122

ABSTRACT

BACKGROUND: The benefits of trees in urban areas include the following: an increase in ecosystem health, an increase in human health, the mitigation of the effects of heat and drought at microclimate level, the storage and sequestration of carbon, and a reduction in air pollution and noise. These ecosystem services can be provided only by trees that are in good health. The main cause of salt stress in urban environments is the use of de-icing salts on the streets in winter. Salt stress is a complex process that includes changes in plants on the physiological, histological, cellular and molecular levels, leading to limitations in nutrient uptake, disrupting the ionic balance of trees and resulting in the death of roadside trees. In response to salinity, trees have developed a variety of defence mechanisms that allow them to minimize the effects of stress and maintain homeostasis. METHODOLOGY: The reactions of two species Acer species: A. platanoides and A. campestre, which have different sensitivities to the unfavourable conditions of the urban environments (mainly salt stress), were investigated. The research included two experiments: a field experiment with city trees and a controlled pot experiment with young trees treated with increasing doses of salt. In both experiments, the following were performed: an assessment of the health condition of the trees and the content of macroelements as well as the Cl and Na in leaves and a qualitative and quantitative analysis of polyprenols. RESULTS: A. campestre had a more specific strategy than A. platanoides for dealing with Na and Cl, which resulted in undamaged leaves. Under the same conditions, A. platanoides leaves contained more Cl and Na and were severely damaged. The disruption of the ion balance due to salt stress was lower in A. campestre than in A. platanoides. Compared with A. platanoides, A. campestre synthesized more polyprenols in the field experiment. This ability was acquired during the process of acclimation, because it occurred only in the mature trees in the field experiment and not in the young trees in the pot experiment. CONCLUSIONS: The use of two experimental methods (i.e., the field and pot experiments) allowed for a more complete assessment of tree strategies to mitigate salt stress. A. campestre displayed a more specific strategy than A. platanoides. This strategy was based on several elements. A. campestre limited Cl and Na transport to the leaves, which resulted in a lack of damage to those organs. Under the same conditions, A. platanoides individuals contained more Cl and Na in their leaves and were seriously damaged. A. campestre synthesized larger amounts of polyprenols, which probably have the ability to mitigate salt stress. This ability was acquired during the process of acclimation, because it occurred only in the mature trees in the field experiment and was not observed in the young trees in the pot experiment.

16.
Redox Biol ; 41: 101884, 2021 05.
Article in English | MEDLINE | ID: mdl-33561740

ABSTRACT

DJ-1 is a multifaceted protein with pleiotropic functions that has been implicated in multiple diseases, ranging from neurodegeneration to cancer and ischemia-reperfusion injury. Ischemia is a complex pathological state arising when tissues and organs do not receive adequate levels of oxygen and nutrients. When the blood flow is restored, significant damage occurs over and above that of ischemia alone and is termed ischemia-reperfusion injury. Despite great efforts in the scientific community to ameliorate this pathology, its complex nature has rendered it challenging to obtain satisfactory treatments that translate to the clinic. In this review, we will describe the recent findings on the participation of the protein DJ-1 in the pathophysiology of ischemia-reperfusion injury, firstly introducing the features and functions of DJ-1 and, successively highlighting the therapeutic potential of the protein.


Subject(s)
Reperfusion Injury , Animals , Disease Models, Animal , Ischemia , Protein Deglycase DJ-1 , Reactive Oxygen Species
17.
Toxicol Rep ; 7: 788-794, 2020.
Article in English | MEDLINE | ID: mdl-32642445

ABSTRACT

Diazepam is a medicine of the family benzodiazepine, used to treat various CNS disorders. To date, no study is available for biochemical analysis of diazepam in cardiac dysfunction. This study aimed to determine the effect of diazepam in stress-induced cardiac dysfunctions in rats. Male Wistar Albino rats were divided into four groups with six animals in each group for 90 days of the experimental protocol. Group1 served as a Normal Control (NC), Groups 2, as a Disease Control (DC), Group 3 as a Diazepam Control (DIC), and Group 4 as a Disease + Diazepam Treatment (DDT). Disease Control and Disease + Diazepam Treatment animals exposed to regular stress by forced swimming exercise method for 3 months. Diazepam Control and Disease + Diazepam Treatment received 5 mg/kg/p.o the daily dose of diazepam. At the end of the protocol, animals were sacrificed, heart preserved, blood collected, and utilized for biochemical estimations. Heart weight was increased in DC as compared to NC. Serum levels of cardiac biomarkers, creatine phosphokinase (CPK), creatine kinase-MB (CPK-MB), lactate dehydrogenase (LDH), High sensitivity C-reactive protein (hs-CRP) and troponin I (TnI) were significantly increased in DC as compared to NC. Heart tissue examined for histological changes. The altered serum levels of CPK, CPK-MB, LDH, hs-CRP, and TnI were significantly restored by the treatment of diazepam. Serum levels of Sodium, Potassium, Calcium, and Magnesium was increased in DC animals as compared to NC. The altered ionic level was also restored by the treatment of diazepam. Level of various cardiac markers and ions in the plasma were also slightly elevated in DIC. Histopathological studies are also in agreement with serological examinations and bonafide cardioprotective influences of diazepam in cardiac dysfunction. Conclusively research findings endorse the cardioprotective effect of diazepam in stress-induced cardiac dysfunction in rats.

18.
Environ Sci Pollut Res Int ; 23(2): 1254-64, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26358207

ABSTRACT

Soil salinity is a stringent abiotic constraint limiting crop growth and productivity. The present study was carried out to appraise the role of xylo-oligosaccharides (XOSs) in improving the salinity tolerance of Chinese cabbage. Salinity stress (0.5% NaCl solution) and four levels (0, 40, 80, 120 mg L(-1)) of XOSs were imposed on 20-day-old plants cultured under controlled conditions. Salinity stress decreased the aboveground fresh biomass, photosynthesis, transpiration rate, stomatal conductance, internal CO2 concentration, water use efficiency, and chlorophyll contents but increased the stomatal limitation value of Chinese cabbage compared with control. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Chinese cabbage were significantly alleviated by the addition of XOSs under salinity stress. Under salinity stress, application of XOSs significantly enhanced the activities of enzymatic (superoxide dismutase, peroxidase, catalase) and non-enzymatic (ascorbate, carotene) antioxidants and reduced the malondialdehyde content in the leaves of Chinese cabbage. The XOS-applied plants under salinity stress also recorded higher soluble sugars, proline, and soluble protein content in their leaves. Exposure of salinity stress increased the ratio of Na(+)/K(+), Na(+)/Ca(2+), and Na(+)/Mg(2+) in shoot as well as root of Chinese cabbage, however, XOS application significantly reduced these ratios particularly in shoot. Lower levels of XOSs (40 or 80 mg L(-1)) were more effective for most of the studied attributes. The greater salinity tolerance and better growth in these treatments were related with enhanced antioxidative defense system, reduced lipid peroxidation, increased osmolyte accumulation, and maintenance of ionic balance.


Subject(s)
Brassica/drug effects , Brassica/metabolism , Glucuronates/pharmacology , Oligosaccharides/pharmacology , Sodium Chloride/metabolism , Antioxidants/metabolism , Brassica/growth & development , Catalase/metabolism , Chlorophyll/metabolism , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Peroxidases/metabolism , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Proline/metabolism , Salt Tolerance , Sodium Chloride/analysis , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL