Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(5): 107201, 2024 May.
Article in English | MEDLINE | ID: mdl-38508313

ABSTRACT

The salt-inducible kinases (SIKs) 1 to 3, belonging to the AMPK-related kinase family, serve as master regulators orchestrating a diverse set of physiological processes such as metabolism, bone formation, immune response, oncogenesis, and cardiac rhythm. Owing to its key regulatory role, the SIK kinases have emerged as compelling targets for pharmacological intervention across a diverse set of indications. Therefore, there is interest in developing SIK inhibitors with defined selectivity profiles both to further dissect the downstream biology and for treating disease. However, despite a large pharmaceutical interest in the SIKs, experimental structures of SIK kinases are scarce. This is likely due to the challenges associated with the generation of proteins suitable for structural studies. By adopting a rational approach to construct design and protein purification, we successfully crystallized and subsequently solved the structure of SIK3 in complex with HG-9-91-01, a potent SIK inhibitor. To enable further SIK3-inhibitor complex structures we identified an antibody fragment that facilitated crystallization and enabled a robust protocol suitable for structure-based drug design. The structures reveal SIK3 in an active conformation, where the ubiquitin-associated domain is shown to provide further stabilization to this active conformation. We present four pharmacologically relevant and distinct SIK3-inhibitor complexes. These detail the key interaction for each ligand and reveal how different regions of the ATP site are engaged by the different inhibitors to achieve high affinity. Notably, the structure of SIK3 in complex with a SIK3 specific inhibitor offers insights into isoform selectivity.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Crystallography, X-Ray , Protein Binding , Protein Conformation , Models, Molecular , Protein Kinases
2.
Acta Pharmacol Sin ; 45(2): 238-247, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803138

ABSTRACT

The γ isoform of Class I PI3Ks (PI3Kγ) is primarily found in leukocytes and is essential for the function of myeloid cells, as it regulates the migration, differentiation, and activation of myeloid-lineage immune cells. Thus, PI3Kγ has been identified as a promising drug target for the treatment of inflammation, autoimmune disease, and immuno-oncology. Due to the high incidence of serious adverse events (AEs) associated with PI3K inhibitors, in the development of PI3Kγ inhibitors, isoform selectivity was deemed crucial. In this review, an overview of the development of PI3Kγ selective inhibitors in the past years is provided. The isoform selectivity of related drugs was achieved by different strategies, including inducing a specificity pocket by a propeller-shape structure, targeting steric differences in the solvent channel, and modulating the conformation of the Asp-Phe-Gly DFG motif, which have been demonstrated feasible by several successful cases. The insights in this manuscript may provide a potential direction for rational drug design and accelerate the discovery of PI3Kγ selective inhibitors.


Subject(s)
Autoimmune Diseases , Phosphatidylinositol 3-Kinases , Humans , Phosphoinositide-3 Kinase Inhibitors/chemistry , Autoimmune Diseases/drug therapy , Protein Isoforms , Inflammation/drug therapy
3.
Arch Pharm (Weinheim) ; 357(6): e2300718, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466120

ABSTRACT

A new series of isatin-linked benzenesulfonamide derivatives (9a-w) were synthesized using the tail approach and assayed for their inhibitory potency against four different human carbonic anhydrase (hCA) isoforms, hCA I, II, IX, and XII. Most of these synthesized compounds exhibited interesting inhibition potency against isoforms hCA I, IX, and XII in the nanomolar range and by taking the standard drug acetazolamide. The most potent compounds in the case of hCA I were 9c (435.8 nM) and 9s (956.4 nM), for hCA IX, 9a (60.5 nM), 9d (95.6 nM), 9g (92.1 nM), and 9k (75.4 nM), and for hCA XII, 9p (84.5 nM). However, these compounds showed more selectivity toward hCA IX over hCA I, II, and XII. Thus, these compounds can be further developed as potential lead molecules for the development of isoform-selective hCA IX inhibitors with further structural modifications.


Subject(s)
Benzenesulfonamides , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Drug Design , Sulfonamides , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Humans , Structure-Activity Relationship , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Carbonic Anhydrases/metabolism , Molecular Structure , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Isatin/pharmacology , Isatin/chemistry , Isatin/chemical synthesis , Dose-Response Relationship, Drug
4.
Angew Chem Int Ed Engl ; : e202411037, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276356

ABSTRACT

c-Jun N-terminal kinases (JNKs) including JNK1/2/3 are key members of mitogen-activated protein kinase family. Wherein JNK3 is specifically expressed in brain and emerges as therapeutic target, especially for neurodegenerative diseases. However, developing JNK3 selective inhibitors as chemical probes to investigate its therapeutic potential in diseases remains challenging. Here, we adopted the covalent strategy for identifying JNK3-selective covalent inhibitorJC16I, with high inhibitory activity against JNK3. Despite targeting a conserved cysteine the vicinity of ATP pocket in JNK family, JC16I exerted a greater than 160-fold selectivity for JNK3 over JNK1/2. Importantly, even at low concentration, JC16I showed enhanced and long-lasting inhibition against cellular JNK3. In addition, its alkyne-containing probe JC-P1 could label JNK3 in SH-SY5Y cell lysate and living cells, with goodproteome-wide selectivity. Furthermore, JC16I selectively suppressed the abnormal activation of JNK3 signaling and sufficiently exhibited neuroprotective effect in Parkinson's diseases (PD) models. Overall, our findings highlight the potential of developing isoform-selective and cell-active JNK3 inhibitors by covalent drug design strategy targeting a conserved cysteine. This work not only provides a valuable chemical probe for JNK3-targeted investigations in vitro and in vivo but also opens new avenues for the treatment of PD.

5.
Semin Cancer Biol ; 86(Pt 3): 899-913, 2022 11.
Article in English | MEDLINE | ID: mdl-34998944

ABSTRACT

The primary physiological process of respiration produces carbon dioxide (CO2) that reacts with water molecules which subsequently liberates bicarbonate (HCO-3) and protons. Carbonic anhydrases (CAs) are the primary catalyst involved in this conversion. More than 16 isoforms of human CAs show organ or subcellular specific activity. Dysregulation of each CA is associated with multiple pathologies. Out of these members, the overexpression of membrane-bound carbonic anhydrase IX (CAIX) is associated explicitly with hypoxic tumors or various solid cancers. CAIX helps tumors deal with higher CO2 by sequestering it with bicarbonate ions and helping cancer cells to grow in a comparatively hypoxic or acidic environment, thus acting as a pH adaptation switch. CAIX-mediated adaptations in cancer cells include angiogenesis, metabolic alterations, tumor heterogeneity, drug resistance, and regulation of cancer-specific chemokines. This review comprehensively collects and describe the cancer-specific expression mechanism and role of CAIX in cancer growth, progression, heterogeneity, and its structural insight to develop future combinatorial targeted cancer therapies.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase IX/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/therapeutic use , Carbonic Anhydrases/genetics , Neoplasms/pathology , Antigens, Neoplasm/metabolism , Hydrogen-Ion Concentration , Chemokines/therapeutic use
6.
J Enzyme Inhib Med Chem ; 38(1): 2201402, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37073528

ABSTRACT

Vibrio cholerae causes life-threatening infections in low-income countries due to the rise of antibacterial resistance. Innovative pharmacological targets have been investigated and carbonic anhydrases (CAs, EC: 4.2.1.1) encoded by V. cholerae (VchCAs) emerged as a valuable option. Recently, we developed a large library of para- and meta-benzenesulfonamides characterised by moieties with a different flexibility degree as CAs inhibitors. Stopped flow-based enzymatic assays showed strong inhibition of VchαCA for this library, while lower affinity was detected against the other isoforms. In particular, cyclic urea 9c emerged for a nanomolar inhibition of VchαCA (KI = 4.7 nM) and high selectivity with respect to human isoenzymes (SI≥ 90). Computational studies revealed the influence of moiety flexibility on inhibitory activity and isoform selectivity and allowed accurate SARs. However, although VchCAs are involved in the bacterium virulence and not in its survival, we evaluated the antibacterial activity of such compounds, resulting in no direct activity.


Subject(s)
Carbonic Anhydrases , Vibrio cholerae , Humans , Structure-Activity Relationship , Molecular Structure , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Carbonic Anhydrases/metabolism , Benzenesulfonamides
7.
Angew Chem Int Ed Engl ; 62(11): e202217532, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36625768

ABSTRACT

Casein kinases 1 (CK1) are key signaling molecules that have emerged recently as attractive therapeutic targets in particular for the treatment of hematological malignancies. Herein, we report the identification of a new class of potent and highly selective inhibitors of CK1α, δ and ϵ. Based on their optimal in vitro and in vivo profiles and their exclusive selectivity, MU1250, MU1500 and MU1742 were selected as quality chemical probes for those CK1 isoforms. At proper concentrations, MU1250 and MU1500 allow for specific targeting of CK1δ or dual inhibition of CK1δ/ϵ in cells. The compound MU1742 also efficiently inhibits CK1α and, to our knowledge, represents the first potent and highly selective inhibitor of this enzyme. In addition, we demonstrate that the central 1H-pyrrolo[2,3-b]pyridine-imidazole pharmacophore can be used as the basis of highly selective inhibitors of other therapeutically relevant protein kinases, e.g. p38α, as exemplified by the compound MU1299.


Subject(s)
Casein Kinase I , Signal Transduction , Casein Kinase I/metabolism , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemistry , Humans
8.
Molecules ; 27(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432129

ABSTRACT

A novel series of twenty-five rhodamine-linked benzenesulfonamide derivatives (7a-u and 9a-d) were synthesized and screened for their inhibitory action against four physiologically relevant human (h) carbonic anhydrase (CA) isoforms, namely hCA I, hCA II, hCA IX, and hCA XII. All the synthesized molecules showed good to excellent inhibition against all the tested isoforms in the nanomolar range due to the presence of the sulfonamide as a zinc binding group. The target compounds were developed from indol-3-ylchalcone-linked benzenesulfonamide where the indol-3-ylchalcone moiety was replaced with rhodanine-linked aldehydes or isatins to improve the inhibition. Interestingly, the molecules were slightly more selective towards hCA IX and XII compared to hCA I and II. The most potent and efficient ones against hCA I were 7h (KI 22.4 nM) and 9d (KI 35.8 nM) compared to the standard drug AAZ (KI 250.0 nM), whereas in case of hCA II inhibition, the derivatives containing the isatin nucleus as a tail were preferred. Collectively, all compounds were endowed with better inhibition against hCA IX compared to AAZ (KI 25.8 nM) as well as strong potency against hCA XII. Finally, these newly synthesized molecules could be taken as potential leads for the development of isoform selective hCA IX and XII inhibitors.


Subject(s)
Carbonic Anhydrase Inhibitors , Rhodanine , Humans , Carbonic Anhydrase Inhibitors/chemistry , Rhodanine/pharmacology , Structure-Activity Relationship , Molecular Structure , Isoenzymes/metabolism , Sulfonamides/chemistry , Benzenesulfonamides
9.
Angew Chem Int Ed Engl ; 61(39): e202203560, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35904863

ABSTRACT

Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a key enzyme involved in the trimming of antigenic peptides presented by Major Histocompatibility Complex class I. It is a target of growing interest for the treatment of autoimmune diseases and in cancer immunotherapy. However, the discovery of potent and selective ERAP2 inhibitors is highly challenging. Herein, we have used kinetic target-guided synthesis (KTGS) to identify such inhibitors. Co-crystallization experiments revealed the binding mode of three different inhibitors with increasing potency and selectivity over related enzymes. Selected analogues engage ERAP2 in cells and inhibit antigen presentation in a cellular context. 4 d (BDM88951) displays favorable in vitro ADME properties and in vivo exposure. In summary, KTGS allowed the discovery of the first nanomolar and selective highly promising ERAP2 inhibitors that pave the way of the exploration of the biological roles of this enzyme and provide lead compounds for drug discovery efforts.


Subject(s)
Aminopeptidases , Antigen Presentation , Aminopeptidases/metabolism , Histocompatibility Antigens Class I , Peptides/metabolism
10.
Bioorg Med Chem Lett ; 43: 128051, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33887441

ABSTRACT

Successes have been achieved in developing human monoamine oxidase B (hMAO-B) inhibitors as anti-Parkinson's disease (PD) drugs. However, low efficiency and unwanted side effects of the marketed hMAO-B inhibitors hamper their medical applications, therefore, novel potent selective hMAO-B inhibitors are still of great interest. Herein we report 1-(prop-2-yn-1-ylamino)-2,3-dihydro-1H-indene-4-thiol derivatives as hMAO-B inhibitors, which were designed by employing a fragment-based drug design strategy to link rasagiline to hydrophobic fragments. Among the synthesized 31 compounds, K8 and K24 demonstrated very encouraging hMAO-B inhibitory activities and selectivity over hMAO-A, better than rasagiline and safinamide. In vitro studies indicated that K8 and K24 are nontoxic to nervous tissue cells and they have considerable effects against ROS formation and potential neuroprotective activity. Further mice behavioral tests demonstrated these two compounds have good therapeutic effects on MPTP-induced PD model mice. All these experiment results suggest that compounds K8 and K24 can be promising candidates for further research for treatment of PD.


Subject(s)
Drug Design , Indenes/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Sulfhydryl Compounds/pharmacology , Dose-Response Relationship, Drug , Humans , Indenes/chemical synthesis , Indenes/chemistry , Models, Molecular , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry
11.
J Enzyme Inhib Med Chem ; 36(1): 1056-1060, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34000969

ABSTRACT

The non-nucleoside reverse transcriptase inhibitor VM1500A is approved for the treatment of HIV/AIDS in its N-acyl sulphonamide prodrug form elsulfavirine (Elpida®). Biochemical profiling against twelve human carbonic anhydrase (CA, EC 4.2.1.1) isoforms showed that while elsulfavirine was a weak inhibitor of all isoforms, VM1500A potently and selectively inhibited human (h) hCA VII isoform, a proven target for the therapy of neuropathic pain. The latter is a common neurologic complication of HIV infection and we hypothesise that by using Elpida® in patients may help alleviate this debilitating symptom.


Subject(s)
Amides/pharmacology , Anti-HIV Agents/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , HIV/drug effects , Prodrugs/pharmacology , Sulfones/pharmacology , Amides/chemistry , Anti-HIV Agents/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Microbial Sensitivity Tests , Molecular Structure , Prodrugs/chemistry , Structure-Activity Relationship , Sulfones/chemistry
12.
Molecules ; 26(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885917

ABSTRACT

After being rather neglected as a research field in the past, carbonic anhydrase activators (CAAs) were undoubtedly demonstrated to be useful in diverse pharmaceutical and industrial applications. They also improved the knowledge of the requirements to selectively interact with a CA isoform over the others and confirmed the catalytic mechanism of this class of compounds. Amino acid and amine derivatives were the most explored in in vitro, in vivo and crystallographic studies as CAAs. Most of them were able to activate human or non-human CA isoforms in the nanomolar range, being proposed as therapeutic and industrial tools. Some isoforms are better activated by amino acids than amines derivatives and the stereochemistry may exert a role. Finally, non-human CAs have been very recently tested for activation studies, paving the way to innovative industrial and environmental applications.


Subject(s)
Carbonic Anhydrases/metabolism , Enzyme Activation/drug effects , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Amines/chemistry , Amines/pharmacology , Amino Acids/chemistry , Amino Acids/pharmacology , Animals , Humans , Models, Molecular , Protein Isoforms/agonists , Protein Isoforms/metabolism
13.
Angew Chem Int Ed Engl ; 60(19): 10547-10551, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33621416

ABSTRACT

The 90 kDa heat shock protein (Hsp90) is a molecular chaperone that processes nascent polypeptides into their biologically active conformations. Many of these proteins contribute to the progression of cancer, and consequently, inhibition of the Hsp90 protein folding machinery represents an innovative approach toward cancer chemotherapy. However, clinical trials with Hsp90 N-terminal inhibitors have encountered deleterious side effects and toxicities, which appear to result from the pan-inhibition of all four Hsp90 isoforms. Therefore, the development of isoform-selective Hsp90 inhibitors is sought to delineate the pathological role played by each isoform. Herein, we describe a structure-based approach that was used to design the first Hsp90α-selective inhibitors, which exhibit >50-fold selectivity versus other Hsp90 isoforms.


Subject(s)
Antineoplastic Agents/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Neoplasms/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism
14.
Bioorg Med Chem ; 28(5): 115261, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31987694

ABSTRACT

4-Aryl-4H-Chromene derivatives have been previously shown to exhibit anti-proliferative, apoptotic and anti-angiogenic activity in a variety of tumor models in vitro and in vivo generally via activation of caspases through inhibition of tubulin polymerisation. We have previously identified by Virtual Screening (VS) a 4-aryl-4H-chromene scaffold, of which two examples were shown to bind Estrogen Receptor α and ß with low nanomolar affinity and <20-fold selectivity for α over ß and low micromolar anti-proliferative activity in the MCF-7 cell line. Thus, using the 4-aryl-4H-chromene scaffold as a starting point, a series of compounds with a range of basic arylethers at C-4 and modifications at the C3-ester substituent of the benzopyran ring were synthesised, producing some potent ER antagonists in the MCF-7 cell line which were highly selective for ERα (compound 35; 350-fold selectivity) or ERß (compound 42; 170-fold selectivity).


Subject(s)
Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Antineoplastic Agents/chemistry , Benzopyrans/chemistry , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Models, Molecular , Molecular Structure
15.
Bioorg Chem ; 95: 103514, 2020 01.
Article in English | MEDLINE | ID: mdl-31887473

ABSTRACT

Three series of 2-oxindole benzenesulfonamide conjugates with different linkers were prepared by the condensation reaction of isatin derivatives 1a-e with different benzenesulfonamides. They were screened for their ability to inhibit human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, hCA II, hCA IX and hCA XII. Many compounds revealed promising activity and selectivity toward CAI, CAII and CAIX compared to acetazolamide (AAZ) especially compounds 2b (KI = 97.6, 8.0 nM against hCA I, hCA II, respectively) and 3a (KI = 90.2, 6.5 and 21.4 nM against hCA I, hCA II and hCA IX, respectively) relative to AAZ (KI = 250, 12 and 25 nM). Additionally, compound 4a revealed the highest activity against hCA II and hCA IX with KI of 3.0 and 13.9 nM, respectively. Docking of 2b, 3a and 4a into the active site of CA I, II, IX and XII revealed binding mode comparable to AAZ confirming the inhibition results.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Oxindoles/pharmacology , Sulfonamides/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Docking Simulation , Molecular Structure , Oxindoles/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Benzenesulfonamides
16.
Angew Chem Int Ed Engl ; 59(8): 3307-3314, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31854058

ABSTRACT

Cyclooxygenase-2 (COX-2) overexpression is prominent in inflammatory diseases, neurodegenerative disorders, and cancer. Directly monitoring COX-2 activity within its native environment poses an exciting approach to account for and illuminate the effect of the local environments on protein activity. Herein, we report the development of CoxFluor, the first activity-based sensing approach for monitoring COX-2 within live cells with confocal microscopy and flow cytometry. CoxFluor strategically links a natural substrate with a dye precursor to engage both the cyclooxygenase and peroxidase activities of COX-2. This catalyzes the release of resorufin and the natural product, as supported by molecular dynamics and ensemble docking. CoxFluor enabled the detection of oxygen-dependent changes in COX-2 activity that are independent of protein expression within live macrophage cells.


Subject(s)
Biosensing Techniques/methods , Cyclooxygenase 2/chemistry , Humans , Molecular Dynamics Simulation
17.
Bioorg Med Chem Lett ; 29(8): 1012-1018, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30792039

ABSTRACT

Herein we report our efforts of developing reversible selective hMAO-B inhibitors based on isatin, a fragment in an X-ray crystal structure. Five different scaffolds were designed and many compounds were synthesized. Among them, compound A3 demonstrated very high potency and isoform selectivity against hMAO-B, 11 and 13 times more potent (IC50 = 3 nM) and 23.64 and 6.8 times more selective than the marked drugs, selegiline and safinamide. However, the endeavors to modify the polar 3-one group of isatin, that is in a hydrophobic environment in the binding site of hMAO-B, to small nonpolar hydrophobic groups did not bring about improved hMAO-B inhibitors, which may challenge our understanding of molecular interactions and molecular recognition in biological systems.


Subject(s)
Drug Design , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Humans , Isatin/chemistry , Isatin/metabolism , Molecular Dynamics Simulation , Monoamine Oxidase/chemistry , Monoamine Oxidase Inhibitors/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Structure-Activity Relationship
18.
Bioorg Med Chem ; 27(7): 1382-1390, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30819619

ABSTRACT

ROCK1 and ROCK2 are highly homologous isoforms. Accumulated studies indicate that they have distinct different functions, and the development of isoform selective ROCK inhibitors will pave new roads for the treatment of various diseases. In this work, a series of amide-chroman derivatives were synthesized and biologically evaluated in order to develop potent and isoform selective ROCK2 inhibitors. Remarkably, (S)-6-methoxy-chroman-3-carboxylic acid (4-pyridin-4-yl-phenyl)-amide ((S)-7c) possessed ROCK2 inhibitory activity with an IC50 value of 3 nM and 22.7-fold isoform selectivity (vs. ROCK1). Molecular docking indicated that hydrophobic interactions were the key element for the high potency and isoform selectivity of (S)-7c. The binding free energies predicted by MM/GBSA were in good agreement with the experimental bioactivities, and the analysis of individual energy terms suggested that residue Lys105 in ROCK1 or Lys121 in ROCK2 was the key residue for the isoform selectivity of (S)-7c.


Subject(s)
Carboxylic Acids/pharmacology , Chromans/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Chromans/chemical synthesis , Chromans/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , rho-Associated Kinases/metabolism
19.
Bioorg Med Chem ; 27(6): 1056-1064, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30755348

ABSTRACT

Chemical optimization of the 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine (THPP) scaffold was conducted with a focus on cellular potency while maintaining high selectivity against PI3K isoforms. Compound 11f was identified as a potent, highly selective and orally available PI3Kδ inhibitor. In addition, 11f exhibited efficacy in an in vivo antibody production model. The desirable drug-like properties and in vivo efficacy of 11f suggest its potential as a drug candidate for the treatment of autoimmune diseases and leukocyte malignancies.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Animals , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/metabolism , Female , Humans , Mice, Inbred BALB C , Molecular Docking Simulation , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Pyrrolidines/pharmacokinetics
20.
Bioorg Chem ; 91: 103130, 2019 10.
Article in English | MEDLINE | ID: mdl-31374520

ABSTRACT

Starting from the molecular simplification of (R) 4-(3,4-dibenzylpiperazine-1-carbonyl)benzenesulfonamide 9a, a compound endowed with selectivity for human Carbonic Anhydrase (hCA) IV, a series of piperazines and 4-aminopiperidines carrying a 4-sulfamoylbenzamide moiety as Zn-binding group have been designed and tested on human isoforms hCA I, II, IV and IX, using a stopped flow CO2 hydrase assay. The aim of the work was to derive structure-activity relationships useful for designing isoform selective compounds. These structural modifications changed the selectivity profile of the analogues from hCA IV to hCA I and II, and improved potency. Several of the new compounds showed subnanomolar activity on hCA II. X-ray crystallography of ligand-hCAII complexes was used to compare the binding modes of the new piperazines and the previously synthesized 2-benzyl-piperazine analogues, explaining the inhibition profiles.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Piperazines/pharmacology , Sulfonamides/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/metabolism , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Catalytic Domain , Crystallography, X-Ray , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , Molecular Structure , Piperazines/chemical synthesis , Piperazines/metabolism , Protein Binding , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL