ABSTRACT
Melanoma tumors are highly metastatic partly due to the ability of melanoma cells to transition between invasive and proliferative states. However, the mechanisms underlying this plasticity are still not fully understood. To identify new epigenetic regulators of melanoma plasticity, we combined data mining, tumor models, proximity proteomics, and CUT&RUN sequencing. We focus on the druggable family of bromodomain epigenetic readers and identify TRIM28 as a new regulator of melanoma plasticity. We find that TRIM28 promotes the expression of pro-invasive genes and that TRIM28 controls the balance between invasiveness and growth of melanoma cells. We demonstrate that TRIM28 acts via the transcription factor JUNB that directly regulates the expression of pro-invasive and pro-growth genes. Mechanistically, TRIM28 controls the expression of JUNB by negatively regulating its transcriptional elongation by RNA polymerase II. In conclusion, our results demonstrate that a TRIM28-JUNB axis controls the balance between invasiveness and growth in melanoma tumors and suggest that the bromodomain protein TRIM28 could be targeted to reduce tumor spread.
Subject(s)
Gene Expression Regulation , Melanoma , Humans , Cell Line, Tumor , Tripartite Motif-Containing Protein 28/genetics , Melanoma/geneticsABSTRACT
Affective reactivity to stress is a person-level measurement of how well an individual copes with daily stressors. A common method of measuring affective reactivity entails the estimation of within-person differences of either positive or negative affect on days with and without stressors present. Individuals more reactive to common stressors, as evidenced by affective reactivity measurements, have been shown to have increased levels of circulating pro-inflammatory markers. While affective reactivity has previously been associated with inflammatory markers, the upstream mechanistic links underlying these associations are unknown. Using data from the Midlife in the United States (MIDUS) Refresher study (N = 195; 52% female; 84% white), we quantified daily stress processes over 10 days and determined individuals' positive and negative affective reactivities to stressors. We then examined affective reactivity association with peripheral blood mononuclear cell (PBMC) gene expression of the immune-related conserved transcriptional response to adversity. Results indicated that individuals with a greater decrease in positive affect to daily stressors exhibited heightened PBMC JUNB expression after Bonferroni corrections (p-adjusted < 0.05). JUNB encodes a protein that acts as a transcription factor which regulates many aspects of the immune response, including inflammation and cell proliferation. Due to its critical role in the activation of macrophages and maintenance of CD4+ T-cells during inflammation, JUNB may serve as a potential upstream mechanistic target for future studies of the connection between affective reactivity and inflammatory processes. Overall, our findings provide evidence that affective reactivity to stress is associated with levels of immune cell gene expression.
Subject(s)
Leukocytes, Mononuclear , Stress, Psychological , Humans , Female , United States , Male , Stress, Psychological/genetics , Stress, Psychological/psychology , Inflammation/genetics , Individuality , Gene Expression/genetics , Affect/physiologyABSTRACT
Cadherins are transmembrane proteins that mediate cell-to-cell adhesion and various cellular processes. In Sertoli cells of the testis, Cdh2 contributes to the development of the testis and the formation of the blood-testis barrier, being essential for germ cells' protection. Analyses of chromatin accessibility and epigenetic marks in adult mouse testis have shown that the region from -800 to +900 bp respective to Cdh2 transcription start site (TSS) is likely the active regulatory region of this gene. In addition, the JASPAR 2022 matrix has predicted an AP-1 binding element at about -600 bp. Transcription factors of the activator protein 1 (AP-1) family have been implicated in the regulation of the expression of genes encoding cell-to-cell interaction proteins such as Gja1, Nectin2 and Cdh3. To test the potential regulation of Cdh2 by members of the AP-1 family, siRNAs were transfected into TM4 Sertoli cells. The knockdown of Junb led to a decrease in Cdh2 expression. ChIP-qPCR and luciferase reporter assays with site-directed mutagenesis confirmed the recruitment of Junb to several AP-1 regulatory elements in the proximal region of the Cdh2 promoter in TM4 cells. Further investigation with luciferase reporter assays showed that other AP-1 members can also activate the Cdh2 promoter albeit to a lesser extent than Junb. Taken together, these data suggest that in TM4 Sertoli cells, Junb is responsible for the regulation of Cdh2 expression which requires its recruitment to the proximal region of the Cdh2 promoter.
Subject(s)
Sertoli Cells , Transcription Factor AP-1 , Mice , Male , Animals , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Sertoli Cells/metabolism , Testis/metabolism , Cadherins/genetics , Cadherins/metabolism , Luciferases/metabolism , Transcription Factors/metabolismABSTRACT
In Sertoli cells of the testis, cadherins (Cdh) are important cell-to-cell interaction proteins and contribute to the formation of the blood-testis barrier being essential for germ cells' protection. P-cadherin or Cdh3 is only expressed in Sertoli cells from embryonic to prepubertal development. Interestingly, the expression profile of Cdh3 correlates with that of activating protein-1 (AP-1) transcription factors during Sertoli cells development. To assess their potential implications in the regulation of Cdh3, different AP-1 transcription factors were overexpressed in 15P-1 Sertoli cells. We found that the overexpressions of Junb and Fosl2 activated Cdh3 promoter. ChIP-qPCR assay and luciferase reporter assay with 5' promoter deletions and site-directed mutagenesis confirmed the recruitment of Junb and Fosl2 to an AP-1 regulatory element at -47 bp in the proximal region of Cdh3 promoter in 15P-1 cells. These findings were further supported by histone modification markers and chromatin accessibility surrounding Cdh3 promoter in mouse testis. Moreover, the knockdowns of Junb and/or Fosl2 by siRNA decreased Cdh3 protein levels. Taken together, these data suggest that in 15P-1 Sertoli cells, the AP-1 family members Junb and Fosl2 are responsible for the regulation of Cdh3 expression, which requires the recruitment of both factors to the proximal region of the Cdh3 promoter.
Subject(s)
Sertoli Cells , Transcription Factor AP-1 , Animals , Male , Mice , Cadherins/genetics , Cadherins/metabolism , Promoter Regions, Genetic , Sertoli Cells/metabolism , Testis/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcription Factors/geneticsABSTRACT
Currently, platinum-containing regimens are the most commonly used regimens for advanced gastric cancer patients, and chemotherapy resistance is one of the main reasons for treatment failure. Thus, it is important to reveal the mechanism of oxaliplatin resistance and to seek effective intervention strategies to improve chemotherapy sensitivity, thereby improving the survival and prognosis of gastric cancer patients. To understand the molecular mechanisms of oxaliplatin resistance, we generate an oxaliplatin-resistant gastric cancer cell line and conduct assay for transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) for both parental and oxaliplatin-resistant AGS cells. A total of 3232 genomic regions are identified to have higher accessibility in oxaliplatin-resistant cells, and DNA-binding motif analysis identifies JUNB as the core transcription factor in the regulatory network. JUNB is overexpressed in oxaliplatin-resistant gastric cancer cells, and its upregulation is associated with poor prognosis in gastric cancer patients, which is validated by our tissue microarray data. Moreover, chromatin immunoprecipitation sequencing (ChIP-seq) analysis reveals that JUNB binds to the transcriptional start site of key genes involved in the MAPK signaling pathway. Knockdown of JUNB inhibits the MAPK signaling pathway and restores sensitivity to oxaliplatin. Combined treatment with the ERK inhibitor piperlongumine or MEK inhibitor trametinib effectively overcomes oxaliplatin resistance. This study provides evidence that JUNB mediates oxaliplatin resistance in gastric cancer by activating the MAPK pathway. The combination of MAPK inhibitors with oxaliplatin overcomes resistance to oxaliplatin, providing a promising treatment opportunity for oxaliplatin-resistant gastric cancer patients.
Subject(s)
Stomach Neoplasms , Humans , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Chromatin/genetics , Transcriptome , Signal TransductionABSTRACT
Ischemic/reperfusion (IR) can cause adverse reactions including apoptosis, oxidative stress, and inflammation, but the existing therapeutic strategies have been limited. Moreover, the regulation of microglia plays an important role in brain injury after reperfusion. Hence, it is imperative to find new and effective drugs for modulating microglia to treat IR brain injury. Cyclic peptide compound cyclo-(Phe-Tyr) (Sparganin C, SC) is a compound isolated from Sparganii Rhizoma. However, the protective effects of SC on the central nervous system are rather unclear. In an attempt to elucidate the protective effects and mechanism of SC on cerebral damage induced by the IR, we used a middle cerebral artery occlusion reperfusion (MCAO/R) model in rats and discovered that SC significantly decreased the size of cerebral infarcts, improved neurological scores, and blocked inflammatory and oxidative factor release. Using RNA-Seq and metabolomics association analyses, SC was shown to have a protective impact through the JUNB and SOX5-related pathways. Metabolomic analysis revealed twenty-eight differentially expressed biomarkers. In addition, the detection of SC content in brain tissue using LC/MS revealed that SC had blood-brain barrier penetration. To investigate the mechanism, we established an in vitro BV2 cell oxygen-glucose deprivation/reperfusion (OGD/R) model and used siRNA as well as an inhibitor. The protective effects of SC were dependent on the JUNB and SOX5 to inhibit inflammation and apoptosis in microglia. Our findings revealed for the first that SC against IR injury by reducing inflammation and apoptosis while simultaneously acting as potential therapeutic lead compound for ischemic stroke.
Subject(s)
Brain Injuries , Reperfusion Injury , Animals , Brain/metabolism , Brain Injuries/metabolism , Dipeptides/metabolism , Dipeptides/pharmacology , Dipeptides/therapeutic use , Inflammation/drug therapy , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reperfusion , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolismABSTRACT
Activating transcription factor 4 (ATF4) is known to play an important role in cerebral ischemia through apoptosis and neuron regulation. Histone demethylase JMJD3, specifically removing the methylation of H3K27me3, is highlighted to attenuate cerebral ischemic injury. However, few studies have explored the interaction between ATF4 and JMJD3 in this disease. Thus, we intended to explore the effect of ATF4 on cerebral ischemia. We first constructed a mouse model of middle cerebral artery occlusion (MCAO) and cultured PC12 cells. Specifically, the regulatory function of ATF4 and demethylase JMJD3 on the ischemic injury was explored via using ectopic expression and depletion by determination of modified neurologic severity score, blood-brain barrier, brain water content, apoptosis, infarct size, oxidative stress, and inflammation. Moreover, the interaction among ATF4, JUNB, JMJD3, and ETS1 was assessed by western blot analysis, immunofluorescence, immunoprecipitation, and dual-luciferase reporter gene assay. These data showed that ATF4 and JMJD3 were upregulated in the MCAO model and PC12 cells. In addition, ectopic expression of ATF4 aggravated the ischemic injury through demethylation of JMJD3. Meanwhile, JMJD3 upregulated JUNB expression by inhibiting H3K21me2/3 enrichment and promoted ETS1 expression as well. Altogether, ATF4 could exacerbate cerebral ischemic injury through JMJD3-dependent upregulation of JUNB/ETS1 expression, suggesting a potential theoretical basis of treatment for cerebral ischemic injury.
Subject(s)
Brain Injuries , Brain Ischemia , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/pharmacology , Animals , Apoptosis , Brain Injuries/metabolism , Brain Ischemia/genetics , Methylation , Mice , Neurons/metabolism , Rats , Transcription Factors/metabolismABSTRACT
Capsaicin and zinc have recently been highlighted as potential treatments for glucose metabolism disorders; however, the effect of these two natural compounds on signalling pathways involved in glucose metabolism is still uncertain. In this study, we assessed the capsaicin- or zinc- induced activation of signalling molecules including calcium/calmodulin-dependent protein kinase 2 (CAMKK2), cAMP-response element-binding protein (CREB), and target of rapamycin kinase complex 1 (TORC1). Moreover, the expression status of genes associated with the control of glucose metabolism was measured in treated cells. The activation of cell signalling proteins was then evaluated in capsaicin- or zinc treated cells in the presence or absence of cell-permeant calcium chelator (BAPTA-AM) and the CAMKK inhibitor (STO-609). Finally, capsaicin- and zinc-induced glucose uptake was measured in the cells pre-treated with or without BAPTA-AM. Our results indicate that calcium flux induced by capsaicin or zinc led to activation of calcium signalling molecules and promoting glucose uptake in skeletal muscle cells. Pharmacological inhibition of CAMKK diminished activation of signalling molecules. Moreover, we observed an increase in intracellular cAMP levels in the cells after treatment with capsaicin and zinc. Our data show that capsaicin and zinc mediate glucose uptake in C2C12 skeletal muscle cells through the activation of calcium signalling.
Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Capsaicin/pharmacology , Glucose/metabolism , Muscle Fibers, Skeletal/drug effects , Zinc/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Benzimidazoles/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Carbohydrate Metabolism/drug effects , Cell Line , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Muscle Fibers, Skeletal/metabolism , Naphthalimides/pharmacology , Phosphorylation/drug effectsABSTRACT
Proteasome inhibitor MG132 was shown to enhance the secretion of interleukin 8 (IL-8) by various cells. The enhancement is regulated by the transcription factor activator protein-1 (AP-1) at the transcriptional level. AP-1 is a dimer formed by AP-1 family proteins. The purpose of the present study was to explore the combinations of the AP-1 family proteins that contribute to MG132-driven IL-8 secretion. Oral squamous cell carcinoma-derived cell lines, Ca9-22 and HSC3, were used to demonstrate their response to MG132. IL-8 secretion was augmented by MG132 in both cell lines. c-Jun expression was detected in both the cell lines, whereas c-Fos expression was detected only in the HSC3. The influence of MG132 stimulation on c-Jun and c-Fos expression was further examined by western blot analysis. c-Jun expression was increased by MG132 stimulation, whereas c-Fos expression was not detected even after MG132 stimulation. As JunB is reported to inhibit the transcriptional activity of the AP-1 complex, we speculated that the c-Jun homodimer should contribute to IL-8 enhancement. Expression vectors encoding wild type and c-Jun mutants, M17 and M22-23, respectively, were constructed and transfected into the Ca9-22 cells. In contrast to our expectations, MG132-induced IL-8 secretion was significantly reduced in all the transfectants suggesting that other c-Jun members might form homodimers with c-Jun and contribute to IL-8 enhancement. Transfection of the cells with c-Jun or JunB small hairpin RNA (shRNA) reduced IL-8 secretion up to 50% and 65% of the control shRNA transfectant. Furthermore, cotransfection of both shRNA almost completely inhibited the IL-8 secretion. These results indicate that JunB not only inhibits but also enhances the transcription of c-Jun targets in combination with c-Jun.
Subject(s)
Carcinoma, Squamous Cell/genetics , Interleukin-8/genetics , Mouth Neoplasms/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics , Cell Line, Tumor , Humans , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-jun/genetics , RNA, Messenger/genetics , Transcriptional Activation/genetics , Transfection/methodsABSTRACT
Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.
Subject(s)
Angiogenesis Inducing Agents/metabolism , Cell Movement , Endothelial Cells/metabolism , Neovascularization, Physiologic , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Animals , HumansABSTRACT
Mesenchymal stem cells (MSCs) have been highlighted as promising candidate cells in relation to cutaneous wound healing. The current study aimed to investigate whether MSC-derived extracellular vesicles (EVs) could transfer microRNA-27b (miR-27b) to influence cutaneous wound healing. The miR-27b expression was examined in the established cutaneous wound mouse model, and its correlation with the wound healing rate was evaluated by Pearson's correlation analysis. The identified human umbilical cord MSC-derived EVs were co-cultured with human immortal keratinocyte line HaCaT and human skin fibroblasts (HSFs). The mice with cutaneous wound received injections of MSC-derived EVs. The effects of EVs or miR-27b loaded on wound healing and cellular functions were analysed via gain- and loss-of-function approaches in the co-culture system. Dual-luciferase reporter gene assay was employed to verify the relationship between miR-27b and Itchy E3 ubiquitin protein ligase (ITCH). Rescue experiments were conducted to investigate the underlying mechanisms associated with the ITCH/JUNB/inositol-requiring enzyme 1α (IRE1α) axis. miR-27b was down-regulated in the mouse model, with its expression found to be positively correlated with the wound healing rate. Abundant miR-27b was detected in the MSC-derived EVs, while EV-transferred miR-27b improved cutaneous wound healing in mice and improved proliferation and migration of HaCaT cells and HSFs in vitro. As a target of miR-27b, ITCH was found to repress cell proliferation and migration. ITCH enhanced the JUNB ubiquitination and degradation, ultimately inhibiting JUNB and IRE1α expressions and restraining wound healing. Collectively, MSC-derived EVs transferring miR-27b can promote cutaneous wound healing via ITCH/JUNB/IRE1α signalling, providing insight with clinical implications.
Subject(s)
Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Skin/pathology , Ubiquitin-Protein Ligases/metabolism , Wound Healing , Animals , Cell Movement , Cell Proliferation , Collagen/metabolism , Endoribonucleases/metabolism , Fibroblasts/metabolism , Gene Expression Regulation , HaCaT Cells , Humans , Infant, Newborn , Male , Mice , MicroRNAs/genetics , Models, Biological , Protein Serine-Threonine Kinases/metabolism , Re-Epithelialization , Signal Transduction , Transcription Factors/metabolismABSTRACT
Tumor-associated macrophages (TAMs) are vital constituents in mediating cell-to-cell communication within the tumor microenvironment. However, the molecular mechanisms underlying the interplay between TAMs and tumor cells that guide cell fate are largely undetermined. Extracellular vesicles, also known as exosomes, which are derived from TAMs, are the components exerting regulatory effects. Thus, understanding the underlying mechanism of "onco-vesicles" is of crucial importance for prostate cancer (PCa) therapy. In this study, we analyzed micro RNA sequences in exosomes released by THP-1 and M2 macrophages and found a significant increase in miR-95 levels in TAM-derived exosomes, demonstrating the direct uptake of miR-95 by recipient PCa cells. In vitro and in vivo loss-of-function assays suggested that miR-95 could function as a tumor promoter by directly binding to its downstream target gene, JunB, to promote PCa cell proliferation, invasion, and epithelial-mesenchymal transition. The clinical data analyses further revealed that higher miR-95 expression results in worse clinicopathological features. Collectively, our results demonstrated that TAM-mediated PCa progression is partially attributed to the aberrant expression of miR-95 in TAM-derived exosomes, and the miR-95/JunB axis provides the groundwork for research on TAMs to further develop more-personalized therapeutic approaches for patients with PCa.
Subject(s)
MicroRNAs/genetics , Neoplasms/genetics , Prostatic Neoplasms/genetics , Transcription Factors/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Exosomes/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Neoplasms/pathology , Prostatic Neoplasms/pathology , Tumor Microenvironment/genetics , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathologyABSTRACT
Xenopus tropicalis tadpoles can regenerate an amputated tail, including spinal cord, muscle and notochord, through cell proliferation and differentiation. However, the molecular mechanisms that regulate cell proliferation during tail regeneration are largely unknown. Here we show that JunB plays an important role in tail regeneration by regulating cell proliferation. The expression of junb is rapidly activated and sustained during tail regeneration. Knockout (KO) of junb causes a delay in tail regeneration and tissue differentiation. In junb KO tadpoles, cell proliferation is prevented before tissue differentiation. Furthermore, TGF-ß signaling, which is activated just after tail amputation, regulates the induction and maintenance of junb expression. These findings demonstrate that JunB, a downstream component of TGF-ß signaling, works as a positive regulator of cell proliferation during Xenopus tail regeneration.
Subject(s)
Regeneration/physiology , Tail/physiology , Transcription Factor AP-1/metabolism , Xenopus/physiology , Animals , Cell Proliferation , Down-Regulation/genetics , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Larva/physiology , Signal Transduction , Transforming Growth Factor beta/metabolismABSTRACT
N6-Methyladenosine (m6A) is the most common internal chemical modification of mRNAs involved in many pathological processes including various cancers. In this study, we investigated the role of m6A methyltransferase METTL3 in TGF-ß-induced epithelial-mesenchymal transition (EMT) of lung cancer cell lines. The expression of METTL3 and m6A RNA modification were increased during TGF-ß-induced EMT of A549 and LC2/ad lung cancer cells. Knockdown of METTL3 inhibited TGF-ß-induced morphological conversion of the cells, enhanced cell migration potential and the expression changes of EMT-related marker genes such as CDH1/E-cadherin, FN1/Fibronectin and VIM/Vimentin. Mechanistic investigations revealed that METTL3 knockdown decreased the m6A modification, total mRNA level and mRNA stability of JUNB, one of the important transcriptional regulators of EMT. Over-expression of JUNB partially rescued the inhibitory effects of METTL3 knockdown in the EMT phenotypes. This study demonstrates that m6A methyltransferase METTL3 is indispensable for TGF-ß-induced EMT of lung cancer cells through the regulation of JUNB.
Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Methyltransferases/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta/pharmacology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Lung Neoplasms/genetics , Methyltransferases/genetics , Phenotype , RNA Stability/drug effects , Transcription Factors/geneticsABSTRACT
Induction of cellular senescence in cancerous cells is an important strategy which is used in the treatment of cancer. However, cancer cells are capable of exhibiting resistance to cellular senescence through inactivation of tumor suppressors. Because of this, establishment of a route to cellular senescence induction in cancer cells is a crucial direction for developing future cancer therapies. In this study, we demonstrate the involvement of TSC-22 homologous gene-1 (THG-1, also called TSC22D4) in the suppression of cellular senescence. CRISPR/Cas9 gene editing was used to establish THG-1 knockout (KO) cells in a THG-1 positive esophageal tumor cell line. It was found that THG-1 KO cells exhibited delayed cell proliferation as well as cellular senescence. The elevated expression of the CDK inhibitor P21(CDKN1A) was also identified in senescent cells. Through the investigation of the upstream pathway for induction of P21(CDKN1A), the JUNB pathway was identified to play a critical role in P21(CDKN1A) transcription; in fact, the siRNA-mediated knockdown of JUNB reduced the abundance of P21(CDKN1A) mRNA and cellular senescence in THG-1 KO cells. These findings provide a novel insight into the induction of cellular senescence in THG-1 positive cancer cells.
Subject(s)
Cellular Senescence/genetics , Gene Knockout Techniques , Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Transcription Factors/genetics , Transcription, Genetic , Up-Regulation/geneticsABSTRACT
BACKGROUND: Circulating tumor cells (CTCs) are important for metastatic dissemination of cancer. They can provide useful information, regarding biological features and tumor heterogeneity; however, their detection and characterization are difficult due to their limited number in the bloodstream and their mesenchymal characteristics. Therefore, new biomarkers are needed to address these questions. METHODS: Bioinformatics functional enrichment analysis revealed a subgroup of 24 genes, potentially overexpressed in CTCs. Among these genes, the chemokine receptor CXCR4 plays a central role. After prioritization according to the CXCR4 corresponding pathways, five molecules (JUNB, YWHAB, TYROBP, NFYA, and PRDX1) were selected for further analysis in biological samples. The SKBR3, MDA-MB231, and MCF7 cell lines, as well as PBMCs from normal (n = 10) blood donors, were used as controls to define the expression pattern of all the examined molecules. Consequently, 100 previously untreated metastatic breast cancer (mBC) patients (n = 100) were analyzed using the following combinations of antibodies: CK (cytokeratin)/CXCR4/JUNB, CK/NFYA/ΥWHΑΒ (14-3-3), and CK/TYROBP/PRDX1. A threshold value for every molecule was considered the mean expression in normal PBMCs. RESULTS: Quantification of CXCR4 revealed overexpression of the receptor in SKBR3 and in CTCs, following the subsequent scale (SKBR3>CTCs>Hela>MCF7>MDA-MB231). JUNB was also overexpressed in CTCs (SKBR3>CTCs>MCF7>MDA-MB231>Hela). According to the defined threshold for each molecule, CXCR4-positive CTCs were identified in 90% of the patients with detectable tumor cells in their blood. In addition, 65%, 75%, 14.3%, and 12.5% of the patients harbored JUNB-, TYROBP-, NFYA-, and PRDX-positive CTCs, respectively. Conversely, none of the patients revealed YWHAB-positive CTCs. Interestingly, JUNB expression in CTCs was phenotypically and statistically enhanced compared to patients' blood cells (p = 0.002) providing a possible new biomarker for CTCs. Furthermore, the detection of JUNB-positive CTCs in patients was associated with poorer PFS (p = 0.015) and OS (p = 0.002). Moreover, JUNB staining of 11 primary and 4 metastatic tumors from the same cohort of patients revealed a dramatic increase of JUNB expression in metastasis. CONCLUSIONS: CXCR4, JUNB, and TYROBP were overexpressed in CTCs, but only the expression of JUNB was associated with poor prognosis, providing a new biomarker and a potential therapeutic target for the elimination of CTCs.
Subject(s)
Biomarkers, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Transcription Factors/genetics , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Cell Line, Tumor , Computational Biology/methods , Female , Gene Expression Profiling , Humans , Neoplasm Grading , Neoplasm Staging , Phenotype , Prognosis , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Survival Analysis , Transcription Factors/metabolism , TranscriptomeABSTRACT
Blood vessels and nerve fibers are often closely arranged in parallel throughout the body. Therefore, neurovascular interactions have been suggested to be important for the development of vascular networks. However, the molecular mechanisms and genes regulating this process remain unclear. In the present study, we investigated the genes that are activated in endothelial cells (ECs) following interactions with neurons during vascular development. Microarray analyses of human primary microvascular ECs co-cultured with mouse primary dorsal root ganglion cells showed that JunB is strongly upregulated in ECs by neurovascular interactions. Furthermore, the forced expression of JunB in ECs stimulated a tip-like cell formation and angiogenesis in vitro and induced vascular endothelial growth factor A (VEGFA) and the pro-angiogenic integrin subunit ITGB3 expression. Moreover, in vivo knockdown of JunB in ECs from developing mouse limb skin considerably decreased the parallel alignments of blood vessels and nerve fibers. Taken together, the present data demonstrates for the first time that JunB plays an important role in the formation of embryonic vascular networks. These results contribute to the molecular understanding of neurovascular interactions during embryonic vascular development.
Subject(s)
Embryo, Mammalian/metabolism , Neovascularization, Physiologic , Nervous System/blood supply , Nervous System/metabolism , Skin/embryology , Skin/metabolism , Transcription Factors/metabolism , Animals , Cell Shape , Collagen/metabolism , Endothelial Cells/metabolism , Extremities/embryology , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Infant, Newborn , Male , Mice, Inbred C57BL , Neurons/metabolism , Signal Transduction , Skin/blood supply , Transcription Factors/genetics , Up-RegulationABSTRACT
Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.
Subject(s)
Adrenal Cortex Neoplasms/metabolism , Adrenocortical Carcinoma/metabolism , Cell Proliferation , Fibroblast Growth Factor 2/pharmacology , Proteome/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Transcription Factors/metabolism , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/pathology , Animals , Humans , Mice , Protein Interaction Maps , Proteome/analysis , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Tumor Cells, Cultured , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathologyABSTRACT
Preeclampsia (PE), a pregnancy-specific disorder, is associated with impaired uterine spiral artery remodelling, which is related to the dysfunction of trophoblast cells. Lately, mounting evidence has indicated that aberrant expression of long non-coding RNAs (lncRNAs) is associated with various human diseases. The lncRNA MVIH transcript has been shown to decrease the severity of several diseases. However, the biological function of MVIH, which is down-regulated in placental tissues in PE, has not yet been clarified. Here, we report that MVIH may act as a vital factor in the pathogenesis of PE. In this study, functional analysis revealed that the silencing of MVIH expression via transfection with small interfering RNA (siRNAs) inhibited cell growth, migration, invasion, and angiogenesis in various trophoblast cell lines, and stimulation with MVIH could promote these functions. Mass spectrometry analysis revealed that MVIH could modulate Jun-B protein expression, which has been reported to potentially regulate cell growth and angiogenesis. Further cotransfection assays were performed, revealing that MVIH and Jun-B have a synergistic effect on the regulation of angiogenesis and cell proliferation. Taking these findings together, MVIH could be associated with PE and may be a candidate biomarker for its diagnosis and treatment.
Subject(s)
RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Trophoblasts/metabolism , Trophoblasts/pathology , Adult , Cell Line , Cell Movement , Cell Proliferation , Down-Regulation/genetics , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Neovascularization, Physiologic , Placenta/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Pregnancy , RNA, Long Noncoding/genetics , Transcription Factors/genetics , Up-Regulation/geneticsABSTRACT
BACKGROUND: BATF family transcription factors (BATF, BATF2 and BATF3) form hetero-trimers with JUNB and either IRF4 or IRF8 to regulate cell fate in T cells and dendritic cells in vivo. While each combination of the hetero-trimer has a distinct role, some degree of cross-compensation was observed. The basis for the differential actions of IRF4 and IRF8 with BATF factors and JUNB is still unknown. We propose that the differences in function between these hetero-trimers may be caused by differences in their DNA binding preferences. While all three BATF family transcription factors have similar binding preferences when binding as a hetero-dimer with JUNB, the cooperative binding of IRF4 or IRF8 to the hetero-dimer/DNA complex could change the preferences. We used Spec-seq, which allows for the efficient and accurate determination of relative affinity to a large collection of sequences in parallel, to find differences between cooperative DNA binding of IRF4, IRF8 and BATF family members. RESULTS: We found that without IRF binding, all three hetero-dimer pairs exhibit nearly the same binding preferences to both expected wildtype binding sites TRE (TGA(C/G)TCA) and CRE (TGACGTCA). IRF4 and IRF8 show the very similar DNA binding preferences when binding with any of the three hetero-dimers. No major change of binding preferences was found in the half-sites between different hetero-trimers. IRF proteins bind with substantially lower affinity with either a single nucleotide spacer between IRF and BATF binding site or with an alternative mode of binding in the opposite orientation. In addition, the preference to CRE binding site was reduced with either IRF binding in all BATF-JUNB combinations. CONCLUSIONS: The specificities of BATF, BATF2 and BATF3 are all very similar as are their interactions with IRF4 and IRF8. IRF proteins binding adjacent to BATF sites increases affinity substantially compared to sequences with spacings between the sites, indicating cooperative binding through protein-protein interactions. The preference for the type of BATF binding site, TRE or CRE, is also altered when IRF proteins bind. These in vitro preferences aid in the understanding of in vivo binding activities.