Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Environ Manage ; 362: 121284, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838538

ABSTRACT

Future changes in land use/land cover (LULC) and climate (CC) affect watershed hydrology. Despite past research on estimating such changes, studies on the impacts of both these nonstationary stressors on urban watersheds have been limited. Urban watersheds have several important details such as hydraulic infrastructure that call for fine-scale models to predict the impacts of LULC and CC on watershed hydrology. In this paper, a fine-scale hydrologic model-Personal Computer Storm Water Management Model (PCSWMM)-was applied to predict the individual and joint impacts of LULC changes and CC on surface runoff attributes (peak and volume) in 3800 urban subwatersheds in Midwest Florida. The subwatersheds a range of characteristics in terms of drainage area, surface imperviousness, ground slope and LULC distribution. The PCSWMM also represented several hydraulic structures (e.g., ponds and pipes) across the subwatersheds. We analyzed changes in the runoff attributes to determine which stressor is most responsible for the changes and what subwatersheds are mostly sensitive to such changes. Six 24-h design rainfall events (5- to 200-year recurrence intervals) were studied under historical (2010) and future (year 2070) climate and LULC. We evaluated the response of the subwatersheds in terms of runoff peak and volume to the design rainfall events using the PCSWMM. The results indicated that, overall, CC has a greater impact on the runoff attributes than LULC change. We also found that LULC and climate induced changes in runoff are generally more pronounced in greater recurrence intervals and subwatersheds with smaller drainage areas and milder slopes. However, no relationship was found between the changes in runoff and original subwatershed imperviousness; this can be due to the small increase in urban land cover projected for the study area. This research helps urban planners and floodplain managers identify the required strategies to protect urban watersheds against future LULC change and CC.


Subject(s)
Hydrology , Florida , Climate Change , Models, Theoretical , Water Movements , Climate , Rain
2.
Environ Monit Assess ; 196(7): 609, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861167

ABSTRACT

The phenomenon of urban heat island (UHI) is characterized by industrial, economic development, unplanned and unregulated land use as well as a rapid increase in urban population, resulting a warmer inner core in contrast to the surrounding natural environment, thus requiring immediate attention for a sustainable urban environment. This study examined the land use/land cover (LULC) change, pattern of spectral indices (Normalized Difference Vegetation Index, NDVI; Normalized Difference Water Index, NDWI; Normalized Difference Built-up Index, NDBI and Normalized Difference Bareness Index, NDBaI), retrieval of land surface temperature (LST) and Urban Thermal Field Variance Index (UTFVI) as well as identification of UHI from 2000 to 2022. The relationship among LST and LULC spectral indices was estimated using Pearson's correlation coefficient. The Landsat-5 (TM) and Landsat-8 (OLI/TIRS) satellite data have been used, and all tasks were completed through various geospatial tools like ArcGIS 10.8, Google Earth Engine (GEE), Erdas Imagine 2014 and R-Programming. The result of this study depicts over the period that built-up area and water bodies increased by 119.78 and 35.70%, respectively. On the contrary, fallow and barren decreased by 55.33 and 32.31% respectively over the period. The mean and maximum LST increased by 3.61 °C and 2.62 °C, and the study reveals that a high concentration of UTFVI and UHI in industrial areas, coal mining sites and their surroundings, but the core urban area has observed low LST and intensity of UHI than the peripheral areas due to maintained vegetation cover and water bodies. An inverse relationship has been found among LST, NDVI and NDWI, while adverse relationships were observed among LST, NDBI and NDBaI throughout the period. Sustainable environment planning is needful for the urban area, as well as the periphery region and plantation is one of the controlling measures of LST and UHI increment. This work provides the scientific base for the study of the thermal environment which can be one of the variables for planning of Asansol City and likewise other cities of the country as well as the world.


Subject(s)
Cities , Environmental Monitoring , India , Environmental Monitoring/methods , Satellite Imagery , Hot Temperature , Geographic Information Systems , Urbanization , Temperature
3.
Environ Monit Assess ; 196(2): 124, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195837

ABSTRACT

Urban Heat Islands (UHIs), Land Surface Temperature (LST), and Land Use Land Cover (LULC) changes are critical environmental concerns that require continuous monitoring and assessment, especially in cities within arid and semi-arid (ASA) climates. Despite the abundance of research in tropical, Mediterranean, and cold climates, there is a significant knowledge gap for cities in the Middle East with ASA climates. This study aimed to examine the effects of LULC change, population, and wind speed on LST in the Mashhad Metropolis, a city with an ASA climate, over a 30-year period. The research underscores the importance of environmental monitoring and assessment in understanding and mitigating the impacts of urbanization and climate change. Our research combines spatial regression models, multi-scale and fine-scale analyses, seasonal and city outskirts considerations, and long-term change assessments. We used Landsat satellite imagery, a crucial tool for environmental monitoring, to identify LULC changes and their impact on LST at three scales. The relationships were analyzed using Ordinary Least Squares (OLS) and Spatial Error Model (SEM) regressions, demonstrating the value of these techniques in environmental assessment. Our findings highlight the role of environmental factors in shaping LST. A decrease in vegetation and instability of water bodies significantly increased LST over the study period. Bare lands and rocky terrains had the most substantial effect on LST. At the same time, built-up areas resulted in Urban Cooling Islands (UCIs) due to their lower temperatures compared to surrounding bare lands. The Normalized Difference Vegetation Index (NDVI) and Dry Bare-Soil Index (DBSI) were the most effective indices impacting LST in ASA regions, and the 30×30 m2 micro-scale provides more precise results in regression models, underscoring their importance in environmental monitoring. Our study provided a comprehensive understanding of the relationship between LULC changes and LST in an ASA environment, contributing significantly to the literature on environmental change in arid regions and the methodologies for monitoring such changes. Future research should aim to validate and expand additional LST-affecting factors and test our approach and findings in other ASA regions, considering the unique characteristics of these areas and the importance of tailored environmental monitoring and assessment approaches.


Subject(s)
Hot Temperature , Spatial Regression , Temperature , Cities , Environmental Monitoring , Regression Analysis
4.
J Environ Manage ; 328: 117024, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36525733

ABSTRACT

Soil erosion (SE) is seriously threatening grain production and the ecological environment in the black soil region. Understanding the impact of changes in land use/land cover (LULC) and soil properties on SE is critical for agricultural sustainability and soil management. However, the contribution of soil property changes to SE is often ignored in existing studies. This study analyzed changes in LULC and soil properties from 1980 to 2020 in the black soil region, China. Then, the revised universal soil loss equation was used to explore the spatiotemporal changes of SE from 1980 to 2020. Finally, the contribution of LULC change and soil property change to SE was separated by scenario comparison. The results showed that cropland increased (by 24,157 km2) at the expense of grassland and forest from 1980 to 2020. Sand in cropland decreased by 21.95%, while the silt, clay, and SOC increased by 21.37%, 1.43%, and 15.38%, respectively. Soil erodibility in cropland increased greatly (+9.85%), while in forest and grassland decreased (-6.05% and -4.72%). LULC change and soil properties change together aggravated SE in the black soil region. LULC change and soil property change resulted in a 22% increase in SE, of which LULC change resulted in a 14% increase, and soil property change resulted in an 8% increase. Agricultural development policy was the main reason driving LULC change. The combination of LULC change, climatic factors, and long-term tillage resulted in changes in soil properties. Ecosystem management and policy can reduce SE through vegetation restoration and soil improvement. This study can provide important references for soil conservation and agricultural development in the black soil region.


Subject(s)
Ecosystem , Soil , Soil Erosion , Conservation of Natural Resources/methods , China , Environmental Monitoring/methods
5.
Environ Monit Assess ; 195(11): 1329, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848752

ABSTRACT

Recurrent changes recorded in LULC in Guna Tana watershed are a long-standing problem due to the increase in urbanization and agricultural lands. This research aims at identifying and predicting frequent changes observed using support vector machines (SVM) for supervised classification and cellular automata-based artificial neural network (CA-ANN) models for prediction in the quantum geographic information systems (QGIS) plugin MOLUSCE. Multi-temporal spatial Landsat 5 Thematic Mapper (TM) imageries, Enhanced Thematic Mapper plus 7 (ETM+), and Landsat 8 Operational Land Imager (OLI) images were used to find the acute problem the watershed is facing. Accuracy was assessed using the confusion matrix in ArcGIS 10.4 produced from ground truth data and Google Earth Pro. The results acquired from kappa statistics for 1991, 2007, and 2021 were 0.78, 0.83, and 0.88 respectively. The change detection trend indicates that urban land cover has an increasing trend throughout the entire period. In the future trend, agriculture land may shoot up to 86.79% and 86.78% of land use class in 2035 and 2049. Grassland may attenuate by 0.03% but the forest land will substantially diminish by 0.01% from 2035 to 2049. The increase of land specifically was observed in agriculture from 3128.4 to 3130 km2. Judicious planning and proper execution may resolve the water management issues incurred in the basin to secure the watershed.


Subject(s)
Cellular Automata , Support Vector Machine , Ethiopia , Environmental Monitoring/methods , Geographic Information Systems , Agriculture/methods , Conservation of Natural Resources/methods
6.
Environ Monit Assess ; 196(1): 37, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38093159

ABSTRACT

Soil erosion is a destructive consequence of land degradation caused by deforestation, improper farming practices, overgrazing, and urbanization. This irreversible effect negatively impacts the limited renewable soil resource, causing soil truncation, reduced fertility, and unstable slopes. To address the anticipation of erosion modulus resulting from long-term land use and land cover (LULC) changes, a study was conducted in the Swat District of Khyber Pakhtunkhwa (Kpk), Pakistan. The study aimed to predict and evaluate soil erosion concerning these changes using remote sensing (RS), geographic information systems (GIS), and the Revised Universal Soil Loss Equation (RUSLE) model. We also evaluated the impact of the Billion Tree Tsunami Project (BTTP) on soil erosion in the region. Model inputs, such as rainfall erosivity factor, topography factor, land cover and management factor, and erodibility factor, were used to calculate soil erosion. The results revealed that significant soil loss occurred under 2001, 2011, and 2021 LULC conditions, accounting for 67.26%, 61.78%, and 65.32%, falling within the category of low erosion potential. The vulnerable topographical features of the area indicated higher erosion modulus. The maximum soil loss rates observed in 2001, 2011, and 2021 were 80 t/ha-1/year-1, 120 t/ha-1/year-1, and 96 t/ha-1/year-1, respectively. However, the observed reduction in soil loss in 2021 as compared to 2001 and 2011 suggests a positive influence of the BTTP on soil conservation efforts. This study underscores the potential of afforestation initiatives like the BTTP in mitigating soil erosion and highlights the significance of environmental conservation programs in regions with vulnerable topography.


Subject(s)
Environmental Monitoring , Soil , Environmental Monitoring/methods , Conservation of Natural Resources/methods , Geographic Information Systems , Soil Erosion
7.
Environ Monit Assess ; 195(3): 363, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36738365

ABSTRACT

The monitoring and modeling of changes, based on a time-series LULC approach, is fundamental for planning and managing regional environments. The current study analyzed the LULC changes as well as estimated future scenarios for 2027 and 2037. To achieve accuracy in predicting LULC changes, the Land Change Modeler (LCM) was used for the Latian Dam Watershed, which is located approximately in the northeast of Tehran. The LULC time-series technique was specified utilizing four atmospherically endorsed surface reflectance Landsat images for the years t1 (1987), t2 (1998), t3 (2007), and t4 (2017) to authenticate the LULC predictions, so to obtain estimates for t5 (2027) and t6 (2037). The LULC classes identified in the watershed were water bodies, build-up areas, vegetated areas, and bare lands. The dynamic modeling of the LULC was based on a multi-layer perceptron (MLP), the neural network in LCM, which presented good results with an average accuracy rate equivalent to 84.89 percent. The results of the LULC change analysis showed an increase in the build-up area and a decrease in bare lands and vegetated areas within the duration of the study period. The results of this research could help in the formulation of public policies designed to conserve environmental resources in the Latian Dam Watershed and, consequently, minimize the risks of the fragmentation of orchards and vegetated areas. Also, careful regional planning ensuring the preservation of natural landscapes and open spaces is critical to creating a resilient regional environment and sustainable development.


Subject(s)
Environmental Monitoring , Sustainable Development , Iran , Environmental Monitoring/methods , Conservation of Natural Resources/methods
8.
Environ Monit Assess ; 195(9): 1053, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589789

ABSTRACT

Change in land use and land cover (LULC) contributes in worsening ecological issues. Studying the trends of change in land use is highly significant to deal with global climate change and sustainable development. The aim of this paper is to evaluate the spatial-temporal dynamics of LULC of the Bamenda Mountains (BM) in the North West region of Cameroon, over a period of 34 years (1988-2022) and predict 34 years (2022-2056) future land use scenario of this site using time series satellite imagery (MSS, TM, ETM+, and OLI-TIRS) and ancillary data and to comprehend the driving forces of land use/land cover change (LULCC). The trends of LULCC were quantified; LULC maps were derived by classifying time series satellite images. Six LULC categories were identified during the study period (1988-2022). The research revealed a significant LULCC of the BM which can be justified by increase in the human population observed in the study area and the desire to extend agricultural lands to sustain the growing population. Overall, cultivated area 5684 ha (10.47%), 10680 ha (19.57 %), and 15163 ha (27.78%) and built-up area 449 ha (0.83%), 996 ha (1.83%), and 3242 ha (5.94%) for the study years 1988, 2003, and 2022, respectively, were all on the increase throughout the study period at the expense of other land cover types. The predicted figures of 2056 showed a continuous reduction of montane forest and savanna: 2401.92 ha (4.40%) and 25,862.67 ha (47.39%), respectively. Bare area is expected to drop in 2056 (2905.92 ha (5.32%)). The above decrease, when compared to 2022 figures, represents a loss of 3.97%, 4.53%, and 0.57%, respectively. The losses observed are gained by built-up and cultivated land (5.72% and 3.39%, respectively), covering surfaces areas of 6364.89 ha (11.66%) and 17,008.56 ha (31.17%), respectively. The above findings suggest that population growth is likely the major menace to the natural environment. It is thus safe to say that substantial LULCC was observed throughout the study period and will undoubtedly continue if nothing is done. This necessitates urgent measures such as reforestation and afforestation, encouraging off-farm activities and even improving technologies to combat the rate of forest degradation of the BM. Additionally, rebuilding trust between the French and English Cameroons through dialogue is premodial, to end the curent conflictual civil war and lessen the landscape configuration in Bamenda.


Subject(s)
Agriculture , Environmental Monitoring , Humans , Cameroon , Climate Change , Forests
9.
Environ Monit Assess ; 196(1): 29, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066313

ABSTRACT

Evaluation of land use and land cover (LULC) change is among vital tools used for tracking environmental health and proper resource management. Remote sensing data was used to determine LULC change in Bahi (Manyoni) Catchment (BMC) in central Tanzania. Landsat satellite images from Landsat 5 TM and Landsat 8 OLI/TIRS were used, and support vector machine (SVM) algorithm was applied to classify the features of BMC. The obtained kappa values were 0.74, 0.83 and 0.84 for LULC maps of 1985, 2005 and 2021, respectively, which indicates the degree of accuracy from produced being substantial to almost perfect. Classified maps along with geospatial, socio-economic and climatic drivers with sufficient explanatory power were incorporated into MLP-NN to produce transition potential maps. Transition maps were subsequently used in cellular automata (CA)-Markov chain model to predict future LULC for BMC in immediate-future (2035), mid-future (2055) and far-future (2085). The findings indicate BMC is expected to experience significant expansion of agricultural lands and built land from 31.89 to 50.16% and 1.48 to 9.1% from 2021 to 2085 at the expense of open woodland, shrubland and savanna grassland. Low-yield crop production, water scarcity and population growth were major driving forces for rapid expansion of agricultural lands and overall LULC in BMC. The findings are essential for understanding the impact of LULC on hydrological processes and offer insights for the internal drainage basin (IDB) board to make necessary measures to lessen the expected dramatic changes in LULC in the future while sustaining harmonious balance with livelihood activities.


Subject(s)
Cellular Automata , Conservation of Natural Resources , Conservation of Natural Resources/methods , Markov Chains , Tanzania , Environmental Monitoring/methods , Agriculture/methods , Neural Networks, Computer
10.
Environ Monit Assess ; 195(12): 1470, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962723

ABSTRACT

The dynamic use of land that results from urbanization has an impact on the urban ecosystem. Yola North Local Government Area (Yola North LGA) of Adamawa state, Nigeria, has experienced tremendous changes in its land use and land cover (LULC) over the past two decades due to the influx of people from rural areas seeking for the benefits of its economic activities. The goal of this research is to develop an efficient and accurate framework for continuous monitoring of land use and land cover (LULC) change and quantify the transformation in land use and land cover pattern over a specific period (between 2002 and 2022). Land sat images of 2002, 2012, and 2022 were obtained, and the Support Vector Machine classification method was utilized to stratify the images. Land Change Modeler (LCM) tool in Idrissi Selva software was then used to analyze the LULC change. SVM produced a good classification result for all three years, with 2022 having the highest overall accuracy of 95.5%, followed by 2002 with 90% and 2012 with 87.7% which indicates the validity of the algorithm for future predictions. The results showed that severe land changes have occurred over the course of two decades in built-up (37.32%), vegetation (forest, scrubland, and grassland) (-3.27%), bare surface (-33.47%), and water bodies (-0.59%). Such changes in LULC could lead to agricultural land lost and reduced food supply. This research develops a robust framework for continuous land use monitoring, utilizing machine learning and geo-spatial data for urban planning, natural resource management, and environmental conservation. In conclusion, this study underscores the efficacy of support vector machine algorithm in analyzing complex land use and land cover changes.


Subject(s)
Algorithms , Environmental Monitoring , Machine Learning , Ecosystem , Local Government , Nigeria
11.
Environ Manage ; 69(2): 333-352, 2022 02.
Article in English | MEDLINE | ID: mdl-34748069

ABSTRACT

The environmental impacts of cannabis cultivation have been an issue of growing concern, with legalization often framed as a means to introduce regulations that hinder damaging practices. However, the concept of frontier expansion presents the possibility that the widespread establishment of this new industry may institute an additional source of habitat encroachment. Here, through geospatial analysis, we employ Colorado as a case study to investigate the distribution of licensed recreational cannabis cultivators, potential habitat infringement of threatened and endangered species, and LULC change. From 2011 to 2016, licensed cannabis cultivation has resulted in over 67 ha of LULC change toward more developed land uses. In addition, nearly 15 km of new fencing was constructed establishing over 38 ha of fenced areas, and nearly 60 ha of vegetation was cleared. Much of this cannabis-driven LULC change is identified within the habitats of threatened and endangered species, as well as areas recognized as containing high biodiversity values with the potential for conservation. Thus, notable cannabis-driven frontier expansion is evident. Cannabis-driven LULC change is found to be primarily produced by outdoor and greenhouse facilities, as well as operations utilizing mixed-cultivation methods in rural areas. Therefore, policy instruments that inter alia encourage indoor cannabis cultivation in urban areas are recommended and discussed.


Subject(s)
Agriculture , Cannabis , Endangered Species , Biodiversity , Colorado , Ecosystem
12.
Environ Monit Assess ; 194(10): 717, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050517

ABSTRACT

Watershed-scale hydrology and soil erosion are the main environmental components that are greatly affected by environmental perturbations such as climate and land use and land cover (LULC) changes. The purpose of this study is to assess the impacts of scenario-based LULC change and climate change on hydrology and sediment at the watershed scale in Rib watershed, Ethiopia, using the empirical land-use change model, dynamic conversion of land use and its effects (Dyna-CLUE), and soil and water assessment tool (SWAT). Regional climate model (RCM) with Special Report on Emission Scenarios (SRES) and Representative Concentration Pathway (RCP) outputs were bias-corrected and future climate from 2025 to 2099 was analyzed to assess climate changes. Analysis of the LULC change indicated that there has been a high increase in cultivated land at the expense of mixed forest and shrublands and a low and gradual increase in plantation and urban lands in the historical periods (1984-2016) and in the predictions (2016-2049). In general, the predicted climate change indicated that there will be a decrease in precipitation in all of the SRES and RCP scenarios except in the Bega (dry) season and an increase in temperature in all of the scenarios. The impact analysis indicated that there might be an increase in runoff, evapotranspiration (ET), sediment yield, and a decrease in lateral flow, groundwater flow, and water yield. The changing climate and LULC result in an increase in soil erosion and changes in surface and groundwater flow, which might have an impact on reducing crop yield, the main source of livelihood in the area. Therefore, short- and long-term watershed-scale resource management activities have to be designed and implemented to minimize erosion and increase groundwater recharge.


Subject(s)
Climate Change , Hydrology , Environmental Monitoring , Ethiopia , Ribs , Water
13.
Environ Monit Assess ; 193(11): 723, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34648093

ABSTRACT

During the last two decades, Port Sudan City has witnessed major environmental stresses resulting from urban expansion and port extensions. This research aims at analysing land water changes (LWCs), land use land cover (LULC) changes and urban expansion of Port Sudan using remote sensing and GIS. For that purpose, an integrated remote sensing and GIS approach was designed to analyse two Enhanced Thematic Mapper (ETM) and an Operational Land Imager (OLI) Landsat images covering the period from 1999 to 2018. LWCs were detected using mathematical remote sensing and GIS-based procedures, while LULC changes were analysed through a post-classification comparison (PCC) approach using a support vector machine (SVM) classifier for classification. Major detected LWCs include landfill activities in the port area and north lagoon of Kilo Tamanya, and dredging activities in Khor Mog. Areas gained by landfill may have improved the port and transport functions but buried coral reefs and caused environmental problems as well. Furthermore, the urban areas were twice doubled, which was mostly rapid and uncontrolled, adding more pressure to the already stressed services and administrative sectors. Threats to the agricultural and mangrove areas were also analysed. The agricultural and mangrove areas were decreased by 40% each, which has been shown to have negative impacts on society, food security and biodiversity. Sadly, the lost agricultural lands were changed into bare soil, slums and other industrial uses. In contrast, mesquite forests were naturally increased by 74%. Mesquites have a major role in combating desertification and providing energy for domestic use. The driving forces and constraints of the urban expansion were highlighted. The change information provided by the applied approach will support decision-makers in adopting integrated and compatible land and coast management planning in the studied coastal city.


Subject(s)
Geographic Information Systems , Remote Sensing Technology , Conservation of Natural Resources , Environmental Monitoring , Indian Ocean , Sudan
14.
Environ Monit Assess ; 192(11): 711, 2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33070264

ABSTRACT

The escalating demand for anthropic needs and urban development has highlighted the importance of monitoring and change detection of land use land cover (LULC). With an increase in agricultural expansion and infrastructural development, every land surface on earth calls for a long-term investigation of land modification patterns and their underlying contributory factors. The present investigation monitors the LULC changes and assesses the process controls in Kohima and Dimapur districts of Nagaland, India. Currently, these two districts encompassing the main urban cities of the hilly state are experiencing rapid urbanization and unplanned developmental activities. Alike any other LULC changes observed in unplanned and developing cities, these districts are likely to face environmental degradation, and particularly, the occurrence of frequent landslides and flash floods. The study has three objectives-(i) LULC mapping of Kohima and Dimapur districts for three periods (1998, 2008, and 2018), (ii) comparative analysis of LULC change patterns in the two districts during the three epochs (1998-2008, 2008-2018, and 1998-2018), and (iii) assessment of the contributory factors. For the study, remotely sensed LANDSAT images (TM and OLI) in Geographical Information System (GIS) platform were utilized along with field surveys. Supervised classification technique was employed and four major LULC classes were identified using Landsat level-1 classification system. The overall accuracy of the classification varied between 91 and 98%. Results showed that Built Up areas have increased significantly in both the districts at the rate of 322.6 ha/year in Kohima and 301.9 ha/year in Dimapur during 1998-2018. On the other hand, Agricultural Land and Forest Land declined in both districts. Changes in LULC were mainly due to marginalization of shifting cultivation, deforestation, infrastructural development, urban migration, and flourishing of aquaculture farming. This study furnishes baseline information on LULC in the data-scarce region of Northeast India and is an insinuation to the policy-makers to ensure sustainable land use planning in the face of rapid urbanization.


Subject(s)
Environmental Monitoring , Urbanization , Agriculture , Cities , India
15.
Glob Chang Biol ; 20(6): 1707-22, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24399778

ABSTRACT

Land-use and land-cover (LULC) change is one of the largest drivers of biodiversity loss and carbon emissions globally. We use the tropical rainforests of the Amazon, the Congo basin and South-East Asia as a case study to investigate spatial predictive models of LULC change. Current predictions differ in their modelling approaches, are highly variable and often poorly validated. We carried out a quantitative review of 48 modelling methodologies, considering model spatio-temporal scales, inputs, calibration and validation methods. In addition, we requested model outputs from each of the models reviewed and carried out a quantitative assessment of model performance for tropical LULC predictions in the Brazilian Amazon. We highlight existing shortfalls in the discipline and uncover three key points that need addressing to improve the transparency, reliability and utility of tropical LULC change models: (1) a lack of openness with regard to describing and making available the model inputs and model code; (2) the difficulties of conducting appropriate model validations; and (3) the difficulty that users of tropical LULC models face in obtaining the model predictions to help inform their own analyses and policy decisions. We further draw comparisons between tropical LULC change models in the tropics and the modelling approaches and paradigms in other disciplines, and suggest that recent changes in the climate change and species distribution modelling communities may provide a pathway that tropical LULC change modellers may emulate to further improve the discipline. Climate change models have exerted considerable influence over public perceptions of climate change and now impact policy decisions at all political levels. We suggest that tropical LULC change models have an equally high potential to influence public opinion and impact the development of land-use policies based on plausible future scenarios, but, to do that reliably may require further improvements in the discipline.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Models, Theoretical , Africa, Central , Asia, Southeastern , Rainforest , Reproducibility of Results , South America , Tropical Climate
16.
Sci Rep ; 14(1): 3214, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332171

ABSTRACT

In recent decades, rising air temperatures (AT) and apparent temperatures (AP) have posed growing health risks. In the context of China's rapid urbanization and global climate change, it is crucial to understand the impact of urban land use/land cover (LULC) changes on AP. This study investigates the spatial distribution and long-term variation patterns of AT and AP, using data from 834 meteorological stations across China from 1996 to 2020. It also explores the relationship between AT, AP, and LULC in the urban core areas of 30 major cities. Study reveals that AT and AP exhibit overall high spatial similarity, albeit with greater spatial variance in AP. Notably, regions with significant disparities between the two have been identified. Furthermore, it's observed that the spatial range of high AP change rates is wider than that of AT. Moreover, the study suggests a potential bivariate quadratic function relationship between ΔT (the difference between AT and AP) and Wa_ratio and Ar_ratio, indicating the presence of a Least Suitable Curve (LSC), [Formula: see text]. Urban LULC planning should carefully avoid intersecting with this curve. These findings can provide valuable insights for urban LULC planning, ultimately enhancing the thermal comfort of urban residents.

17.
Environ Sci Pollut Res Int ; 30(1): 1023-1038, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35907068

ABSTRACT

At the current times, soil erosion is the major problem that affects land and water resources, especially in Ethiopia's highlands. Due to the dynamics of land use land cover change, land degradation, and soil erosion increase significantly and result in a loss of fertile soil every year and lead reduction in agricultural production. This study was therefore designed to explore the land use land cover (LULC) dynamics from 1986 to 2020, to estimate mean annual soil erosion rates and identify erosion hotspot areas from 1986 to 2020, and finally, to evaluate the impacts of land use land cover change on soil loss of 1986 to 2020. For this, Landsat imageries of 4 years from 1986 to 2020 were used. Maximum likelihood supervised classification methods were used to classify LULCs. The dynamics of LULC change were used as an input for measuring soil loss by employing the combination of geospatial technologies with the revised universal soil loss equation (RUSLE). The LULC maps of 1986, 1997, 2009, and 2020 were used for identifying crop management (C) factor and conservation practice (P) factor. Rainfall erosivity factor (R), soil erodibility factor (K), and slope length and steepness factor (LS) were also used as sources of data. Based on the five factors, soil erosion intensity maps were prepared for each year. Results showed that the annual soil loss in the watershed ranged from 0 to 3938.66 t/ha/year in 1986, 0 to 4550.94 t/ha/year in 1997, 0 to 5011.21 t/ha/year in 2009, and 0 to 6953.23 t/ha/year in 2020. The annual soil loss for the entire watershed was estimated at 36.889, 42.477, 47.805, and 48.048 t/ha/year in 1986, 1997, 2009, and 2020, respectively. The mean soil loss of 1986, 1997, 2009, and 2020 was higher in cultivated land followed by shrub land, grazing land, and forest land. Mean soil loss increased from 1986 to 1997, from 1997 to 2009, and from 2009 to 2020. This is because of the expansion of agricultural land at the expense of grazing land and shrub land. Therefore, urgent soil and water conservation practices should be made in hotspot areas.


Subject(s)
Geographic Information Systems , Soil Erosion , Ethiopia , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Soil
18.
Sci Total Environ ; 829: 154669, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35314237

ABSTRACT

The land use/land cover (LULC) change in the fast-developing city clusters of China exhibits impacts on both the meteorology and air quality. However, this effect, especially in the Yangtze River Delta (YRD), has not been well quantified. In this study, the LULC data are extracted from Landsat satellite imageries for year 2000 and 2018 for the YRD region. The Weather Research and Forecasting with Chemistry (WRF/Chem) model is applied to investigate the impact of historical LULC change on regional meteorology and air pollution over the YRD region during the past two decades. Two simulation scenarios are performed with two sets of LULC data to represent the pre-urbanization (LULC of year 2000) and the most recent urban pattern (LULC of year 2018). Results indicate that rapid urbanization leads to an increase of monthly mean 2-m temperature by 0.4-2.1 °C but decrease of the 10-m wind speed by 0.5-1.3 m/s in urban areas; the maximum increase of daytime planetary boundary layer height (PBLH) in July and November is 289 and 132 m, respectively. Affected by favorable changes in the meteorological conditions due to LULC change, the PM2.5 concentrations in most urban areas show a decreasing trend, especially during the nighttime in summer. On the contrary, surface ozone (O3) concentration in urban areas has increased by 7.2-9.8 ppb in summer and 1.9-2.1 ppb in winter. Changes in O3 concentration are inversely proportional to changes in NOx and the spatial distribution of PM2.5. Areas with higher O3 concentration are consistent with areas of higher temperature and lower wind speed. Our findings reveal that LULC changes during the past years bring observable changes in air pollutant concentrations, which should not be neglected in the YRD region regarding air quality trends as well as policy evaluations under the warming threat.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Monitoring/methods , Meteorology , Particulate Matter/analysis
19.
Heliyon ; 8(3): e09071, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35287322

ABSTRACT

Understanding land use/cover (LULC) changes and their impacts on the catchment are imperative for proper land management. Hence, useful information concerning responses to LULC changes becomes important to minimize negative impacts on future land uses. The aim of the study was to evaluate the LULC changes and consequences of the change at Bilate catchment from 1986 to 2018. The LULC change evaluations were undertaken by using Landsat images of 1986, 2002 and 2018. Supervised image classification was employed to map the land cover classes. Informant interviews and group discussions with field observations were used to identify the consequences of the changes. Over the past periods, built-up areas, water bodies, cultivation, and barren lands have increased by 0.97, 0.13, 9.27, and 1.36%, respectively. However, the forest and grazing lands have decreased by 8.56 and 3.18% respectively. Exhaustive land cultivation without appropriate management and cultivation of sloppy lands have increased soil erosion and sediment yield to water bodies. A decline in crop yields, livestock products and numbers, and fish population in Lake Abaya are the major implications of LULC change in the catchment. Therefore, to ensure sustainable land use, responsible bodies commit and work closely with communities through participatory approaches.

20.
Sci Total Environ ; 818: 151670, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34843793

ABSTRACT

Increasing nutrient loads from land use and land cover (LULC) change degrade water quality through eutrophication of aquatic ecosystems globally. The Vaal River Catchment in South Africa is an agriculturally and economically important area where eutrophication has been a problem for decades. Effective mitigation strategies of eutrophication in this region require an understanding of the relationship between LULC change and water quality. This study assessed the long-term impacts of LULC changes on nitrate (NO3-N) and orthophosphate (PO4-P) pollution in the lower Vaal River Catchment between 1980 and 2018. Multi-year LULC was mapped from Landsat imagery and changes were determined. Long-term trends in NO3-N and PO4-P loads and concentrations in river water samples were analysed, while multi-year LULC data were ingested into the Soil and Water Assessment Tool (SWAT) to simulate the impacts of LULC changes in NO3-N and PO4-P loads. Main LULC changes included an increase in the irrigated area by 262% and in built-up area by 33%. This occurred at the expense of cultivated dryland fields and rangelands. In situ data analysis showed that at the catchment inlet, PO4-P concentration and loads significantly increased, while NO3-N concentration and loads decreased between 1980 and 2018. At the catchment outlet, only PO4-P loads increased, while NO3-N loads and concentrations remained the same. SWAT simulations at the Hydrologic Response Unit scale showed that irrigated land was the largest contributor to NO3-N leaching per ha. Aggregation of nutrient loads by LULC type showed increased nutrient loads from irrigated and built-up areas over time, while loads from dryland areas decreased. At catchment scale, dryland remained an important contributor of the annual nutrient loads total because of its large area. In future, research efforts should focus on crop management practices to reduce nutrient loads.


Subject(s)
Environmental Monitoring , Water Quality , Ecosystem , Rivers , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL