Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Photochem Photobiol Sci ; 23(1): 153-162, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38066379

ABSTRACT

Photophysics and photochemistry of a potential light-activated cytotoxic dirhodium complex [Rh2(µ-O2CCH3)2(bpy)(dppz)](O2CCH3)2, where bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine (Complex 1 or Rh2) in aqueous solutions was studied by means of stationary photolysis and time-resolved methods in time range from hundreds of femtoseconds to microseconds. According to the literature, Complex 1 demonstrates both oxygen-dependent (due to singlet oxygen formation) and oxygen-independent cytotoxicity. Photoexchange of an acetate ligand to a water molecule was the only observed photochemical reaction, which rate was increased by oxygen removal from solutions. Photoexcitation of Complex 1 results in the formation of the lowest triplet electronic excited state, which lifetime is less than 10 ns. This time is too short for diffusion-controlled quenching of the triplet state by dissolved oxygen resulting in 1O2 formation. We proposed that singlet oxygen is produced by photoexcitation of weakly bound van der Waals complexes [Rh2…O2], which are formed in solutions. If this is true, no oxygen-independent light-induced cytotoxicity of Complex 1 exists. Residual cytotoxicity deaerated solutions are caused by the remaining [Rh2…O2] complexes.


Subject(s)
Antineoplastic Agents , Singlet Oxygen , Photochemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Oxygen
2.
Photochem Photobiol Sci ; 23(4): 747-755, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430371

ABSTRACT

Photochemistry of the (n-Bu4N)2[Pt(NO3)6] complex in acetonitrile was studied by means of stationary photolysis and nanosecond laser flash photolysis. The primary photochemical process was found to be an intramolecular electron transfer followed by an escape of an •NO3 radical to the solution bulk. The spectra of two successive Pt(III) intermediates were detected in the microsecond time domain, and their spectral and kinetic characteristics were determined. These intermediates were identified as PtIII(NO3)52- and PtIII(NO3)4- complexes. Disproportionation of Pt(III) species resulted in formation of final Pt(II) products.

3.
Environ Sci Technol ; 58(40): 17886-17897, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39344971

ABSTRACT

Hydroxyl radical (HO•) and chlorine atom (Cl•) are common reactive species in aqueous environments. However, the intrinsic difference in their reactions with organic compounds has not been revealed. This study compared the reaction mechanisms of HO• and Cl• with 13 aromatic and 11 aliphatic compounds by quantum chemical calculation and laser flash photolysis. Both HO• and Cl• can spontaneously react with aromatic compounds via radical adduct formation (RAF), hydrogen atom transfer (HAT), and single electron transfer (SET) pathways. The SET reactions of Cl• were more thermodynamically favorable than HO•, but contrary results were obtained for HAT reactions. According to the free energy of activation (ΔGaq‡), the dominant oxidation mechanisms of aromatic compounds were RAF and SET by HO• and SET by Cl•. The important role of SET in the HO• reactions with aromatic compounds was further verified by accurately calculating the solvation free energy of HO•/HO- and experimentally tracking the radical cations, which were generally neglected in previous studies. Meanwhile, the ΔGaq‡ value of each reaction pathway of Cl• was lower than that of HO•, resulting in higher rate constants of Cl• with aromatic compounds than HO•. For saturated aliphatic compounds, HAT was found to be the only mechanism accounting for their transformation by HO• and Cl•. This study proposed general rules for the reaction mechanisms of HO• and Cl• and unraveled their differences in the aspects of thermodynamics and kinetics, providing fundamental information for understanding contaminant transformation in processes involving HO• and Cl•.


Subject(s)
Chlorine , Hydroxyl Radical , Organic Chemicals , Thermodynamics , Hydroxyl Radical/chemistry , Chlorine/chemistry , Kinetics , Organic Chemicals/chemistry , Oxidation-Reduction
4.
Environ Sci Technol ; 58(14): 6425-6434, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38554136

ABSTRACT

Hydrated electron (eaq-) treatment processes show great potential in remediating recalcitrant water contaminants, including perfluoroalkyl and polyfluoroalkyl substances (PFAS). However, treatment efficacy depends upon many factors relating to source water composition, UV light source characteristics, and contaminant reactivity. Here, we provide critical insights into the complex roles of solution parameters on contaminant abatement through application of a UV-sulfite kinetic model that incorporates first-principles information on eaq- photogeneration and reactivity. The model accurately predicts decay profiles of short-chain perfluoroalkyl acids (PFAAs) during UV-sulfite treatment and facilitates quantitative interpretation of the effects of changing solution composition on PFAS degradation rates. Model results also confirm that the enhanced degradation of PFAAs observed under highly alkaline pH conditions results from changes in speciation of nontarget eaq- scavengers. Reverse application of the model to UV-sulfite data collected for longer chain PFAAs enabled estimation of bimolecular rate constants (k2, M-1 s-1), providing an alternative to laser flash photolysis (LFP) measurements that are not feasible due to the water solubility limitations of these compounds. The proposed model links the disparate means of investigating eaq- processes, namely, UV photolysis and LFP, and provides a framework to estimate UV-sulfite treatment efficacy of PFAS in diverse water sources.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Sulfites/chemistry , Water/chemistry
5.
Angew Chem Int Ed Engl ; 63(22): e202403886, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38545689

ABSTRACT

The photocatalytic reduction of carbon dioxide (CO2) represents an attractive approach for solar-energy storage and leads to the production of renewable fuels and valuable chemicals. Although some osmium (Os) photosensitizers absorb long wavelengths in the visible-light region, a self-photosensitized, mononuclear Os catalyst for red-light-driven CO2 reduction has not yet been exploited. Here, we discovered that the introduction of an Os metal to a PNNP-type tetradentate ligand resulted in the absorption of light with longer-wavelength (350-700 nm) and that can be applied to a panchromatic self-photosensitized catalyst for CO2 reduction to give mainly carbon monoxide (CO) with a total turnover number (TON) of 625 under photoirradiation (λ≥400 nm). CO2 photoreduction also proceeded under irradiation with blue (λ0=405 nm), green (λ0=525 nm), or red (λ0=630 nm) light to give CO with >90 % selectivity. The quantum efficiency using red light was determined to be 12 % for the generation of CO. A catalytic mechanism is proposed based on the detection of intermediates using various spectroscopic techniques, including transient absorption, electron paramagnetic resonance, and UV/Vis spectroscopy.

6.
Chemphyschem ; 24(10): e202200902, 2023 May 16.
Article in English | MEDLINE | ID: mdl-36806423

ABSTRACT

Time-resolved studies of germylene, GeH2 , generated by laser flash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene at 193 nm and monitored by laser absorption, have been carried out to obtain rate constants for its bimolecular reaction with HCl. The reaction was studied in the gas phase, mainly at a total pressure of 10 Torr (in SF6 bath gas) at five temperatures in the range 295-558 K. Experiments at other pressures showed that these rate constants were unaffected by pressure. The second-order rate constants at 10 Torr (SF6 bath gas) fitted the Arrhenius equation: log(k/cm3 molecule-1 s-1 )=(-12.06±0.14)+(2.58±1.03 kJ mol-1 )/RTln10 where the uncertainties are single standard deviations. Quantum chemical calculations at G4 level support a mechanism in which an initial weakly bound donor-acceptor complex is formed. This can then rearrange and decompose to give H2 and HGeCl (chlorogermylene). The enthalpy barrier (36 kJ mol-1 ) is too high to allow rearrangement of the complex to GeH3 Cl (chlorogermane).

7.
Environ Sci Technol ; 57(20): 7849-7857, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37170785

ABSTRACT

Advanced reduction processes (ARPs) that generate hydrated electrons (eaq-; e.g., UV-sulfite) have emerged as a promising remediation technology for recalcitrant water contaminants, including per- and polyfluoroalkyl substances (PFASs). The effectiveness of ARPs in different natural water matrices is determined, in large part, by the presence of non-target water constituents that act to quench eaq- or shield incoming UV photons from the applied photosensitizer. This study examined the pH-dependent quenching of eaq- by ubiquitous dissolved carbonate species (H2CO3*, HCO3-, and CO32-) and quantified the relative importance of carbonate species to other abundant quenching agents (e.g., H2O, H+, HSO3-, and O2(aq)) during ARP applications. Analysis of laser flash photolysis kinetic data in relation to pH-dependent carbonate acid-base speciation yields species-specific bimolecular rate constants for eaq- quenching by H2CO3*, HCO3-, and CO32- (kH2CO3* = 2.23 ± 0.42 × 109 M-1 s-1, kHCO3- = 2.18 ± 0.73 × 106 M-1 s-1, and kCO32- = 1.05 ± 0.61 × 105 M-1 s-1), with quenching dominated by H2CO3* (which includes both CO2(aq) and H2CO3) at moderately alkaline pH conditions despite it being the minor species. Attempts to apply previously reported rate constants for eaq- quenching by CO2(aq), measured in acidic solutions equilibrated with CO2(g), overpredict quenching observed in this study at higher pH conditions typical of ARP applications. Moreover, kinetic simulations reveal that pH-dependent trends reported for UV-sulfite ARPs that have often been attributed to eaq- quenching by varying [H+] can instead be ascribed to variable acid-base speciation of dissolved carbonate and the sulfite sensitizer.


Subject(s)
Electrons , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Sulfites/chemistry , Carbonates , Water/chemistry
8.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108745

ABSTRACT

The irradiation of 2-aryl-4-(E-3'-aryl-allylidene)-5(4H)-oxazolones 1 with blue light (456 nm) in the presence of [Ru(bpy)3](BF4)2 (bpy = 2,2'-bipyridine, 5% mol) gives the unstable cyclobutane-bis(oxazolones) 2 by [2+2]-photocycloaddition of two oxazolones 1. Each oxazolone contributes to the formation of 2 with a different C=C bond, one of them reacting through the exocyclic C=C bond, while the other does so through the styryl group. Treatment of unstable cyclobutanes 2 with NaOMe/MeOH produces the oxazolone ring opening reaction, affording stable styryl-cyclobutane bis(amino acids) 3. The reaction starts with formation of the T1 excited state of the photosensitizer 3[Ru*(bpy)3]2+, which reacts with S0 of oxazolones 1 through energy transfer to give the oxazolone T1 state 3(oxa*)-1, which is the reactive species and was characterized by transient absorption spectroscopy. Measurement of the half-life of 3(oxa*)-1 for 1a, 1b and 1d shows large values for 1a and 1b (10-12 µs), while that of 1d is shorter (726 ns). Density functional theory (DFT) modeling displays strong structural differences in the T1 states of the three oxazolones. Moreover, study of the spin density of T1 state 3(oxa*)-1 provides clues to understanding the different reactivity of 4-allylidene-oxazolones described here with respect to the previously reported 4-arylidene-oxazolones.


Subject(s)
Cyclobutanes , Oxazolone , Amino Acids , Cycloaddition Reaction , Photosensitizing Agents
9.
Environ Sci Technol ; 56(6): 3699-3709, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35226468

ABSTRACT

The addition of iodide (I-) in the UV/sulfite system (UV/S) significantly accelerated the reductive degradation of perfluorosulfonates (PFSAs, CnF2n+1SO3-) and perfluorocarboxylates (PFCAs, CnF2n+1COO-). Using the highly recalcitrant perfluorobutane sulfonate (C4F9SO3-) as a probe, we optimized the UV/sulfite + iodide system (UV/S + I) to degrade n = 1-7 PFCAs and n = 4, 6, 8 PFSAs. In general, the kinetics of per- and polyfluoroalkyl substance (PFAS) decay, defluorination, and transformation product formations in UV/S + I were up to three times faster than those in UV/S. Both systems achieve a similar maximum defluorination. The enhanced reaction rates and optimized photoreactor settings lowered the EE/O for PFCA degradation below 1.5 kW h m-3. The relatively high quantum yield of eaq- from I- made the availability of hydrated electrons (eaq-) in UV/S + I and UV/I two times greater than that in UV/S. Meanwhile, the rapid scavenging of reactive iodine species by SO32- made the lifetime of eaq- in UV/S + I eight times longer than that in UV/I. The addition of I- also substantially enhanced SO32- utilization in treating concentrated PFAS. The optimized UV/S + I system achieved >99.7% removal of most PFSAs and PFCAs and >90% overall defluorination in a synthetic solution of concentrated PFAS mixtures and NaCl. We extended the discussion over molecular transformation mechanisms, development of PFAS degradation technologies, and the fate of iodine species.


Subject(s)
Fluorocarbons , Iodine , Water Pollutants, Chemical , Fluorocarbons/analysis , Iodides , Sulfites , Ultraviolet Rays , Water Pollutants, Chemical/analysis
10.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164293

ABSTRACT

Oxidation of methionine (Met) is an important reaction that plays a key role in protein modifications during oxidative stress and aging. The first steps of Met oxidation involve the creation of very reactive and short-lived transients. Application of complementary time-resolved radiation and photochemical techniques (pulse radiolysis and laser flash photolysis together with time-resolved CIDNP and ESR techniques) allowed comparing in detail the one-electron oxidation mechanisms initiated either by ●OH radicals and other one-electron oxidants or the excited triplet state of the sensitizers e.g., 4-,3-carboxybenzophenones. The main purpose of this review is to present various factors that influence the character of the forming intermediates. They are divided into two parts: those inextricably related to the structures of molecules containing Met and those related to external factors. The former include (i) the protection of terminal amine and carboxyl groups, (ii) the location of Met in the peptide molecule, (iii) the character of neighboring amino acid other than Met, (iv) the character of the peptide chain (open vs cyclic), (v) the number of Met residues in peptide and protein, and (vi) the optical isomerism of Met residues. External factors include the type of the oxidant, pH, and concentration of Met-containing compounds in the reaction environment. Particular attention is given to the neighboring group participation, which is an essential parameter controlling one-electron oxidation of Met. Mechanistic aspects of oxidation processes by various one-electron oxidants in various structural and pH environments are summarized and discussed. The importance of these studies for understanding oxidation of Met in real biological systems is also addressed.


Subject(s)
Methionine/chemistry , Peptides/chemistry , Proteins/chemistry , Animals , Electrons , Humans , Methionine/analogs & derivatives , Models, Molecular , Oxidation-Reduction , Photochemical Processes , Pulse Radiolysis
11.
Photochem Photobiol Sci ; 20(3): 421-434, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33721275

ABSTRACT

A new chromophore, 2-(4-nitrophenyl)-1H-indole (NPI), was synthesized as a potential photolabile protecting group. Caged benzoic acids featuring the NPI chromophore were synthesized as model compounds. Benzoic acid was released in moderate yields (~ 40-60%) upon photolysis of the caged benzoic acids without any additional chemical reagents. Interestingly, an aldehyde, 1-(5-(1-formyl-1H-indol-2-yl)-2-nitrophenyl)ethyl benzoate, was isolated in ≈ 20% together with benzoic acid (≈ 40%) in photolysis of a caged benzoic acid, 2-(2-(3-(1-(benzoyloxy)ethyl)-4-nitrophenyl)-1H-indol-1-yl)acetic acid. The functional group, CH2COOH, at the indole nitrogen was transformed into the aldehyde group, CHO, under photolysis conditions in air. The similar photochemical transformation was observed in the photolysis of 2-(2-(4-nitrophenyl)-1H-indol-1-yl)acetic acid, in which the benzoate group is not attached at the nitrophenyl ring. Products analysis, transient absorption spectroscopy, and computational study suggested that intramolecular electron transfer is key for the elimination of CO2 and absorption of O2 for the formation of the aldehyde. The artificial breathing-type reaction can apply to transition metal-free oxidation of amino acids under mild conditions.

12.
Photochem Photobiol Sci ; 20(9): 1109-1124, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34427902

ABSTRACT

Photoionization (PI) and photoinduced electron transfer (PET) dynamics of coumarin 450 (C450) in micelles were investigated in the time domains of micro to femtoseconds using steady-state and time-resolved absorption and fluorescence spectroscopy. The PI of C450 occurs inside the micelles leads to the formation of C450 cation radical (CR) and hydrated electron, which is characterized by the respective transient absorption. The PI of C450 is monophotonic in nature and the yield is dependent on the charge of the micelles. The observation of amine CR in the transient absorption confirms the PET from amine to the excited state of C450 in micelles, which results in the quenching of both fluorescence intensity and lifetime. The decrease in femtosecond fluorescent decay of C450 and the absence of transient C450 radical anion in the presence of amine implies that the concerted ultrafast PET promoted PI and PET to the C450 CR-electron pair. The decrease in the time constant for the formation of relaxed state in the presence of amines is due to the ultrafast PET to the C450 CR-electron pair, which prevents the formation of a relaxed state through recombination at a longer time scale. In the present investigation, the recombination dynamics of the CR-electron pair is justified as one of the origins of the slow solvation in micelles. The influence of amine concentration on the decay of C450 CR indicates ET reaction between C450 CR and amine, which is further confirmed by the bleach recovery of C450 ground state in the presence of amine.

13.
Environ Sci Technol ; 55(13): 8866-8876, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34165300

ABSTRACT

Due to agricultural waste combustion and large-scale biochar application, biochar-derived dissolved black carbon (DBC) is largely released into surface waters. The photogeneration of reactive species (RS) from DBC plays an important role in organic pollutant degradation. However, the mechanistic interactions between RS and pollutants are poorly understood. Here, we investigated the formation of DBC triplet states (3DBC*), singlet oxygen (1O2), and hydroxyl radical (•OH) in straw biochar-derived DBC solutions and photodegradation of typical pharmaceuticals and personal care products (PPCPs). Laser flash photolysis and electron spin resonance spectrometry showed that DBC exhibited higher RS quantum yields than some well-studied dissolved organic matter. The RS caused rapid degradation of atenolol, diphenhydramine, and propylparaben, selected as target PPCPs in this study. The 3DBC* contributed primarily to the oxidation of selected PPCPs via one-electron-transfer interaction, with average reaction rate constants of 1.15 × 109, 1.41 × 109, and 0.51 × 109 M-1 s-1, respectively. •OH also participated in the degradation and accounted for approximately 2.7, 2.5, and 18.0% of the total removal of atenolol, diphenhydramine, and propylparaben, respectively. Moreover, the photodegradation products were identified using high-resolution mass spectrometry, which further confirmed the electron transfer and •OH oxidation mechanisms. These findings suggest that DBC from the combustion process of agricultural biomass can efficiently induce the photodegradation of organic pollutants under sunlight in aquatic environments.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Amines , Charcoal , Photolysis , Water Pollutants, Chemical/analysis
14.
Ecotoxicol Environ Saf ; 211: 111950, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33493723

ABSTRACT

Recently, fragrance ingredients have attracted increasing attention due to their imperceptible risks accompanying the comfortable feeling. To understand transformation mechanisms and toxicity evolution of benzyl formate (BF) in environment, its photochemical degradation in water was thoroughly studied herein. Results showed that 83.5% BF was degraded under ultraviolet (UV) irradiation for 30 min. Laser flash photolysis and quenching experiments demonstrated that triplet excited state (3BF*), O2•-, and 1O2 were three main reactive species found during BF photodegradation. Eight degradation intermediates, including benzaldehyde, benzyl alcohol, o-cresol, bibenzyl, benzyl ether, 1,2-diphenylethanol, benzoic acid, and benzylhemiformal, were mainly formed as identified by LC-Q-TOF/MS and GC-MS analyses. Furthermore, the degradation mechanism was explained as the bond cleavage of 3BF* and BF•+, O2•-/1O2 oxidation, eaq- reduction, and •OH addition reactions. Aquatic assessment suggests that except benzyl alcohol, benzoic acid, and benzylhemiformal, all the products were persistent and could result in increased aquatic toxicity compared to original BF. Consequently, these degradation products may cause more toxicity to organisms if they remain accumulated in water environment for a long time.


Subject(s)
Formates/toxicity , Photochemical Processes , Water Pollutants, Chemical/toxicity , Kinetics , Light , Odorants , Perfume , Photolysis , Ultraviolet Rays , Water/chemistry , Water Pollutants, Chemical/chemistry
15.
J Biol Inorg Chem ; 25(8): 1097-1105, 2020 12.
Article in English | MEDLINE | ID: mdl-33057871

ABSTRACT

Intraprotein interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme centers is an obligatory step in nitric oxide synthase (NOS) enzymes. An isoform-specific pivotal region near Leu406 in the heme domain of human inducible NOS (iNOS) was proposed to mediate the FMN-heme domain-domain alignment (J Inorg Biochem 153:186-196, 2015). The FMN-heme IET rate is a measure of the interdomain FMN/heme complex formation. In this work, the FMN-heme IET kinetics in the wild type (wt) human iNOS oxygenase/FMN (oxyFMN) construct were directly measured by laser flash photolysis with added synthetic peptide related to the pivotal region, in comparison with the wt construct alone. The IET rates were decreased by the iNOS HKL peptide in a dose-saturable fashion, and the inhibitory effect was abolished by a single L406 → E mutation in the peptide. A similar trend in change of the NO synthesis activity of wt iNOS holoenzyme by the peptides was observed. These data, along with the kinetics and modeling results for the L406T and L406F mutant oxyFMN proteins, indicated that the Leu406 residue modulates the FMN-heme IET through hydrophobic interactions. Moreover, the IET rates were analyzed for the wt iNOS oxyFMN protein in the presence of nNOS or eNOS-derived peptide related to the equivalent pivotal heme domain site. These results together indicate that the isoform-specific pivotal region at the heme domain specifically interacts with the conserved FMN domain surface, to facilitate proper interdomain docking for the FMN-heme IET in NOS.


Subject(s)
Flavin Mononucleotide/metabolism , Heme/metabolism , Nitric Oxide Synthase Type II/metabolism , Electron Transport , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Molecular Docking Simulation , Mutation , Nitric Oxide Synthase Type II/chemistry , Nitric Oxide Synthase Type II/genetics , Protein Domains
16.
Chemistry ; 26(22): 5075-5084, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32064675

ABSTRACT

Controlling the conformation and function of biomolecules through photoregulators holds great promise as a spatiotemporally controllable tool for disease control. In addition, introducing photoregulators into biomolecules has also found applications in constructing smart nanomaterials. In spite of the astonishing advances that have been made in the past few years, realizing highly controllable and efficient regulation over the conformation and function of biomolecules under physiological conditions is still challenging. Herein, sulfonated pyrene SPy was synthesized and used as a photoregulator to control the looping of single-stranded DNAs (ssDNAs) in aqueous solution. Due to its water solubility, SPy merits use in the study of biomolecules in aqueous solution. The looping of the doubly SPy-modified ssDNAs is stimulated by irradiation and regulated by SPy. Photoionization generates the radical cation of SPy (SPy.+ ). The association of SPy.+ with its neutral counterpart, SPy, gives rise to the dimer radical cation of SPy (SPy2 .+ ). During the association process, the stabilization energy released to form SPy2 .+ provides a driving force for the looping of ssDNAs. Conversely, the formed loop conformations were trapped by the formation of SPy2 .+ , and this allowed the looping dynamics to be investigated. The results reported herein suggest potential of SPy as a photoregulator for controlling the conformation and function of biomolecules under physiological conditions.


Subject(s)
DNA/metabolism , Pyrenes/chemistry , Sulfhydryl Compounds/chemistry , Cations , DNA/chemistry , DNA, Single-Stranded , Sulfhydryl Compounds/metabolism
17.
Molecules ; 25(4)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079230

ABSTRACT

Laser flash photolysis and high-resolution mass spectrometry were used to investigate the mechanism of one-electron oxidation of two S-alkylglutathiones using 3-carboxybenzophenone (3CB) as a photosensitizer. This report indicates an unexpected reaction pathway of the α-aminoalkyl radical cation (αN+) derived from the oxidation of S-alkylglutathiones. Instead of a common hydrolysis reaction of αN+ reported earlier for methionine and other sulfur-containing aminoacids and peptides, an intramolecular ring-closure reaction was found for S-alkylglutathiones.


Subject(s)
Electrons , Glutathione/chemistry , Alkylation , Lasers , Oxidation-Reduction , Photolysis
18.
Angew Chem Int Ed Engl ; 59(32): 13406-13413, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32365264

ABSTRACT

Guanine radicals are important reactive intermediates in DNA damage. Hydroxyl radical (HO. ) has long been believed to react with 2'-deoxyguanosine (dG) generating 2'-deoxyguanosin-N1-yl radical (dG(N1-H). ) via addition to the nucleobase π-system and subsequent dehydration. This basic tenet was challenged by an alternative mechanism, in which the major reaction of HO. with dG was proposed to involve hydrogen atom abstraction from the N2-amine. The 2'-deoxyguanosin-N2-yl radical (dG(N2-H). ) formed was proposed to rapidly tautomerize to dG(N1-H). . We report the first independent generation of dG(N2-H). in high yield via photolysis of 1. dG(N2-H). is directly observed upon nanosecond laser flash photolysis (LFP) of 1. The absorption spectrum of dG(N2-H). is corroborated by DFT studies, and anti- and syn-dG(N2-H). are resolved for the first time. The LFP experiments showed no evidence for tautomerization of dG(N2-H). to dG(N1-H). within hundreds of microseconds. This observation suggests that the generation of dG(N1-H). via dG(N2-H). following hydrogen atom abstraction from dG is unlikely to be a major pathway when HO. reacts with dG.


Subject(s)
Deoxyguanosine/analogs & derivatives , Deoxyguanosine/analysis , Free Radicals/analysis , Deoxyguanosine/radiation effects , Free Radicals/chemistry , Hydroxyl Radical/chemistry , Photolysis , Spectrophotometry, Ultraviolet , Ultraviolet Rays
19.
Chemistry ; 25(28): 7004-7011, 2019 May 17.
Article in English | MEDLINE | ID: mdl-30920069

ABSTRACT

Benzophenone (BP) and drugs containing the BP chromophore, such as the non-steroidal anti-inflammatory drug ketoprofen, have been widely reported as DNA photosensitizers through triplet-triplet energy transfer (TTET). In the present work, a direct spectroscopic fingerprint for the formation of the thymine triplet (3 Thy*) by through-bond (TB) TTET from 3 BP* has been uncovered. This has been achieved in two new systems that have been designed and synthesized with one BP and one thymine (Thy) covalently linked to the two ends of the rigid skeleton of the natural bile acids cholic and lithocholic acid. The results shown here prove that it is possible to achieve triplet energy transfer to a Thy unit even when the photosensitizer is at a long (nonbonding) distance.

20.
Molecules ; 24(12)2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31234408

ABSTRACT

It is of interest to use UV-sulfite based processes to degrade pollutants in wastewater treatment process. In this work, arsenic (As(III)) has been selected as a target pollutant to verify the efficacy of such a hypothesized process. The results showed that As(III) was quickly oxidized by a UV-sulfite system at neutral or alkaline pH and especially at pH 9.5, which can be mainly attributed to the generated oxysulfur radicals. In laser flash photolysis (LFP) experiments (λex = 266 nm), the signals of SO3•- and eaq- generated by photolysis of sulfite at 266 nm were discerned. Quantum yields for photoionization of HSO3- (0.01) and SO32- (0.06) were also measured. It has been established that eaq- does not react with SO32-, but reacts with HSO3- with a rate constant 8 × 107 M-1s-1.


Subject(s)
Arsenites/chemistry , Photolysis , Sulfites/chemistry , Light , Oxidation-Reduction/radiation effects , Ultraviolet Rays , Water/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL