Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(11): 2068-2073, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29716781

ABSTRACT

A facile method for late stage diversification of lead molecules for the M1 PAM program using biosynthesis is described. Liver microsomes from several species are screened to identify a high turnover system. Subsequent incubations using less than 1 mg of substrate generate nanomole quantities of drug metabolites that are purified, characterized by microcryoprobe NMR spectroscopy, and quantified to known concentrations to enable rapid biology testing. The late-stage diversification of lead compounds provides rapid SAR feedback to the medicinal chemistry design cycle.


Subject(s)
Bridged Bicyclo Compounds/metabolism , Cyclohexanes/metabolism , Heterocyclic Compounds/metabolism , Bridged Bicyclo Compounds/chemistry , Cyclohexanes/chemistry , Dose-Response Relationship, Drug , Heterocyclic Compounds/chemistry , Magnetic Resonance Spectroscopy , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 26(2): 650-655, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26631313

ABSTRACT

Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies.


Subject(s)
Allosteric Regulation/drug effects , Amides/chemistry , Amides/pharmacology , Indoles/chemistry , Indoles/pharmacology , Receptor, Muscarinic M1/metabolism , Amides/pharmacokinetics , Animals , Drug Design , Humans , Hydrogen Bonding , Indoles/pharmacokinetics , Mice , Molecular Docking Simulation , Receptor, Muscarinic M1/agonists
SELECTION OF CITATIONS
SEARCH DETAIL