Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 485
Filter
Add more filters

Publication year range
1.
Mol Ther ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033323

ABSTRACT

Patients with cancer of unknown primary (CUP) carry the double burden of an aggressive disease and reduced access to therapies. Experimental models are pivotal for CUP biology investigation and drug testing. We derived two CUP cell lines (CUP#55 and #96) and corresponding patient-derived xenografts (PDXs), from ascites tumor cells. CUP cell lines and PDXs underwent histological, immune-phenotypical, molecular, and genomic characterization confirming the features of the original tumor. The tissue-of-origin prediction was obtained from the tumor microRNA expression profile and confirmed by single-cell transcriptomics. Genomic testing and fluorescence in situ hybridization analysis identified FGFR2 gene amplification in both models, in the form of homogeneously staining region (HSR) in CUP#55 and double minutes in CUP#96. FGFR2 was recognized as the main oncogenic driver and therapeutic target. FGFR2-targeting drug BGJ398 (infigratinib) in combination with the MEK inhibitor trametinib proved to be synergic and exceptionally active, both in vitro and in vivo. The effects of the combined treatment by single-cell gene expression analysis revealed a remarkable plasticity of tumor cells and the greater sensitivity of cells with epithelial phenotype. This study brings personalized therapy closer to CUP patients and provides the rationale for FGFR2 and MEK targeting in metastatic tumors with FGFR2 pathway activation.

2.
Cancer Sci ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175203

ABSTRACT

Patients with BRAF-mutated colorectal cancer (BRAFV600E CRC) are currently treated with a combination of BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor. A fundamental problem in treating patients with BRAFV600E CRC is intrinsic and/or acquired resistance to this combination therapy. By screening 78 compounds, we identified tretinoin, a retinoid, as a compound that synergistically enhances the antiproliferative effect of a combination of BRAF inhibition and MEK inhibition with or without EGFR inhibition on BRAFV600E CRC cells. This synergistic effect was also exerted by other retinoids. Tretinoin, added to BRAF inhibitor and MEK inhibitor, upregulated PARP, BAK, and p-H2AX. When either RARα or RXRα was silenced, the increase in cleaved PARP expression by the addition of TRE to ENC/BIN or ENC/BIN/CET was canceled. Our results suggest that the mechanism of the synergistic antiproliferative effect involves modulation of the Bcl-2 family and the DNA damage response that affects apoptotic pathways, and this synergistic effect is induced by RARα- or RXRα-mediated apoptosis. Tretinoin also enhanced the antitumor effect of a combination of the BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor in a BRAFV600E CRC xenograft mouse model. Our data provide a rationale for developing retinoids as a new combination agent to overcome resistance to the combination therapy for patients with BRAFV600E CRC.

3.
Cancer ; 130(11): 1940-1951, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38288862

ABSTRACT

BACKGROUND: This phase 1b study (ClinicalTrials.gov identifier NCT03695380) evaluated regimens combining PARP and MEK inhibition, with or without PD-L1 inhibition, for BRCA wild-type, platinum-sensitive, recurrent ovarian cancer (PSROC). METHODS: Patients with PSROC who had received one or two prior treatment lines were treated with 28-day cycles of cobimetinib 60 mg daily (days 1-21) plus niraparib 200 mg daily (days 1-28) with or without atezolizumab 840 mg (days 1 and 15). Stage 1 assessed safety before expansion to stage 2, which randomized patients who had BRCA wild-type PSROC to receive either doublet or triplet therapy, stratified by genome-wide loss of heterozygosity status (<16% vs. ≥16%; FoundationOne CDx assay) and platinum-free interval (≥6 to <12 vs. ≥12 months). Coprimary end points were safety and the investigator-determined objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors (RECIST). Potential associations between genetic parameters and efficacy were explored, and biomarker profiles of super-responders (complete response or those with progression-free survival [PFS] >15 months) and progressors (disease progression as the best response) were characterized. RESULTS: The ORR in patients who had BRCA wild-type PSROC was 35% (95% confidence interval, 20%-53%) with the doublet regimen (n = 37) and 27% (95% confidence interval, 14%-44%) with the triplet regimen (n = 37), and the median PFS was 6.0 and 7.4 months, respectively. Post-hoc analyses indicated more favorable ORR and PFS in the homologous recombination-deficiency-signature (HRDsig)-positive subgroup than in the HRDsig-negative subgroup. Tolerability was consistent with the known profiles of individual agents. NF1 and MKNK1 mutations were associated with sustained benefit from the doublet and triplet regimens, respectively. CONCLUSIONS: Chemotherapy-free doublet and triplet therapy demonstrated encouraging activity, including among patients who had BRCA wild-type, HRDsig-positive or HRDsig-negative PSROC harboring NF1 or MKNK1 mutations.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , B7-H1 Antigen , Neoplasm Recurrence, Local , Ovarian Neoplasms , Phthalazines , Piperidines , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Middle Aged , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Aged , Adult , Piperidines/therapeutic use , Piperidines/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , Phthalazines/therapeutic use , Phthalazines/administration & dosage , Indazoles/therapeutic use , Indazoles/administration & dosage , BRCA1 Protein/genetics , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Aged, 80 and over , Platinum/therapeutic use , Platinum/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , BRCA2 Protein/genetics , Progression-Free Survival , Azetidines
4.
Oncologist ; 29(5): e616-e621, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38527005

ABSTRACT

MEK signaling pathway targeting has emerged as a valuable addition to the options available for the treatment of advanced cancers including melanoma and non-small cell lung cancer. Ophthalmologic monitoring of patients taking part in clinical trials of MEK inhibitors has shown that while ocular effects are common, generally emerging during the first days to weeks of treatment, the majority are either asymptomatic or have minimal visual impact and are benign, resolving without intervention or the need to reduce or stop MEK inhibitor therapy. However rare cases of serious, potentially vision-threatening ocular toxicities have been reported during MEK inhibitor therapy. There is currently no recommendation for routine ophthalmologic screening or monitoring of patients with advanced cancer who are initiating MEK inhibitor therapy. However, baseline ophthalmologic examination may be useful for all patients initiating MEK inhibitor therapy to allow the differentiation of preexisting pathology versus the development of MEK inhibitor-associated retinopathy in the event of the emergence of symptomatic ocular events. Regular ophthalmologic examination may be appropriate for patients at increased risk for ocular events, such as patients with a history of ocular inflammation, infection, or underlying macular/retinal disease. All patients reporting visual disturbance should be referred for prompt ophthalmologic review to determine the potential seriousness of any underlying abnormalities and whether there is a need for treatment modification or specific intervention. Understanding the potential consequences of ocular toxicities is of particular importance in the context of decision-making for the continuation of potentially life-prolonging medications such as MEK inhibitors.


Subject(s)
Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Eye Diseases/chemically induced , Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
5.
Rev Endocr Metab Disord ; 25(1): 123-147, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37648897

ABSTRACT

Anaplastic thyroid cancer (ATC) is an infrequent thyroid tumor that usually occurs in elderly patients. There is often a history of previous differentiated thyroid cancer suggesting a biological progression. It is clinically characterized by a locally invasive cervical mass of rapid onset. Metastases are found at diagnosis in 50% of patients. Due to its adverse prognosis, a prompt diagnosis is crucial. In patients with unresectable or metastatic disease, multimodal therapy (chemotherapy and external beam radiotherapy) has yielded poor outcomes with 12-month overall survival of less than 20%. Recently, significant progress has been made in understanding the oncogenic pathways of ATC, leading to the identification of BRAF V600E mutations as the driver oncogene in nearly 40% of cases. The combination of the BRAF inhibitor dabrafenib (D) and MEK inhibitor trametinib (T) showed outstanding response rates in BRAF-mutated ATC and is now considered the standard of care in this setting. Recently, it was shown that neoadjuvant use of DT followed by surgery achieved 24-month overall survival rates of 80%. Although these approaches have changed the management of ATC, effective therapies are still needed for patients with BRAF wild-type ATC, and high-quality evidence is lacking for most aspects of this neoplasia. Additionally, in real-world settings, timely access to multidisciplinary care, molecular testing, and targeted therapies continues to be a challenge. Health policies are warranted to ensure specialized treatment for ATC.The expanding knowledge of ATC´s molecular biology, in addition to the ongoing clinical trials provides hope for the development of further therapeutic options.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Aged , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/pathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/therapeutic use , Thyroid Neoplasms/genetics , Mutation
6.
BMC Cancer ; 24(1): 77, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225605

ABSTRACT

BACKGROUND: KRAS is the undisputed champion of oncogenes, and despite its prominent role in oncogenesis as mutated gene, KRAS mutation appears infrequent in gliomas. Nevertheless, gliomas are considered KRAS-driven cancers due to its essential role in mouse malignant gliomagenesis. Glioblastoma is the most lethal primary brain tumor, often associated with disturbed RAS signaling. For newly diagnosed GBM, the current standard therapy is alkylating agent chemotherapy combined with radiotherapy. Cisplatin is one of the most effective anticancer drugs and is used as a first-line treatment for a wide spectrum of solid tumors (including medulloblastoma and neuroblastoma) and many studies are currently focused on new delivery modalities of effective cisplatin in glioblastoma. Its mechanism of action is mainly based on DNA damage, inducing the formation of DNA adducts, triggering a series of signal-transduction pathways, leading to cell-cycle arrest, DNA repair and apoptosis. METHODS: Long-term cultures of human glioblastoma, U87MG and U251MG, were either treated with cis-diamminedichloroplatinum (cisplatin, CDDP) and/or MEK-inhibitor PD98059. Cytotoxic responses were assessed by cell viability (MTT), protein expression (Western Blot), cell cycle (PI staining) and apoptosis (TUNEL) assays. Further, gain-of-function experiments were performed with cells over-expressing mutated hypervariable region (HVR) KRASG12V plasmids. RESULTS: Here, we studied platinum-based chemosensitivity of long-term cultures of human glioblastoma from the perspective of KRAS expression, by using CDDP and MEK-inhibitor. Endogenous high KRAS expression was assessed at transcriptional (qPCR) and translational levels (WB) in a panel of primary and long-term glioblastoma cultures. Firstly, we measured immediate cellular adjustment through direct regulation of protein concentration of K-Ras4B in response to cisplatin treatment. We found increased endogenous protein abundance and involvement of the effector pathway RAF/MEK/ERK mitogen-activated protein kinase (MAPK) cascade. Moreover, as many MEK inhibitors are currently being clinically evaluated for the treatment of high-grade glioma, so we concomitantly tested the effect of the potent and selective non-ATP-competitive MEK1/2 inhibitor (PD98059) on cisplatin-induced chemosensitivity in these cells. Cell-cycle phase distribution was examined using flow cytometry showing a significant cell-cycle arrest in both cultures at different percentage, which is modulated by MEK inhibition. Cisplatin-induced cytotoxicity increased sub-G1 percentage and modulates G2/M checkpoint regulators cyclins D1 and A. Moreover, ectopic expression of a constitutively active KRASG12V rescued CDDP-induced apoptosis and different HVR point mutations (particularly Ala 185) reverted this phenotype. CONCLUSION: These findings warrant further studies of clinical applications of MEK1/2 inhibitors and KRAS as 'actionable target' of cisplatin-based chemotherapy for glioblastoma.


Subject(s)
Antineoplastic Agents , Glioblastoma , Proto-Oncogene Proteins p21(ras) , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Glioblastoma/drug therapy , Glioblastoma/genetics , Mitogen-Activated Protein Kinase Kinases , Platinum/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
7.
Gynecol Oncol ; 187: 12-20, 2024 08.
Article in English | MEDLINE | ID: mdl-38703673

ABSTRACT

OBJECTIVES: Uterine carcinosarcomas (UCS) are rare, biologically aggressive tumors. Since UCS may harbor mutations in RAS/MAPK pathway genes we evaluated the preclinical in vitro and in vivo efficacy of the RAF/MEK clamp avutometinib in combination with the focal adhesion kinase (FAK) inhibitors defactinib or VS-4718 against multiple primary UCS cell lines and xenografts. METHODS: Whole-exome-sequencing (WES) was used to evaluate the genetic landscape of 5 primary UCS cell lines. The in vitro activity of avutometinib ± FAK inhibitor was evaluated using cell viability and cell cycle assays against primary UCS cell lines. Mechanistic studies were performed using western blot assays while in vivo experiments were completed in UCS tumor bearing mice treated with avutometinib ± FAK inhibitor by oral gavage. RESULTS: WES results demonstrated multiple UCS cell lines harbor genetic alterations including KRAS, PTK2, BRAF, MAP2K, and MAP2K1, potentially sensitizing to FAK and RAF/MEK inhibition. Four out of five of the UCS cell lines demonstrated in vitro sensitivity to FAK and/or RAF/MEK inhibition when used alone or in combination. By western blot assays, exposure of UCS cell lines to the combination of defactinib/avutometinib demonstrated decreased phosphorylated (p)-FAK as well as decreased p-ERK. In vivo, the combination of avutometinib/VS-4718 demonstrated superior tumor growth inhibition and longer survival compared to single agent treatment and controls starting at day 10 (p < 0.002) in UCS xenografts. CONCLUSION: The combination of avutometinib and defactinib demonstrates promising in vitro and in vivo anti-tumor activity against primary UCS cell lines and xenografts.


Subject(s)
Carcinosarcoma , Uterine Neoplasms , Xenograft Model Antitumor Assays , Female , Humans , Animals , Uterine Neoplasms/drug therapy , Uterine Neoplasms/pathology , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Cell Line, Tumor , Mice , Carcinosarcoma/drug therapy , Carcinosarcoma/pathology , Carcinosarcoma/genetics , Carcinosarcoma/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Protein Kinase Inhibitors/pharmacology , Indoles/pharmacology , raf Kinases/antagonists & inhibitors , raf Kinases/metabolism , raf Kinases/genetics , Exome Sequencing , Mice, Nude , Benzamides , Pyrazines , Sulfonamides
8.
Gynecol Oncol ; 183: 133-140, 2024 04.
Article in English | MEDLINE | ID: mdl-38493021

ABSTRACT

OBJECTIVES: Low-grade-serous-ovarian-carcinoma (LGSOC) is characterized by a high recurrence rate and limited therapeutic options. About one-third of LGSOC contains mutations in MAPK pathway genes such as KRAS/NRAS/BRAF. Avutometinib is a dual RAF/MEK inhibitor while defactinib and VS-4718 are focal-adhesion-kinase-inhibitors (FAKi). We determined the preclinical efficacy of avutometinib±VS-4718 in LGSOC patient-derived-tumor-xenografts (PDX). METHODS: Whole-exome-sequencing (WES) was used to evaluate the genetic fingerprint of 3 patient-derived LGSOC (OVA(K)250, PERIT(M)17 and A(PE)148). OVA(K)250 tissue was successfully xenografted as PDX into female CB17/lcrHsd-Prkdc/SCID-mice. Animals were treated with either control, avutometinib, VS-4718, or avutometinib/ VS-4718 once daily five days on and two days off through oral gavage. Mechanistic studies were performed ex vivo using avutometinib±defactinib treated LGSOC tumor samples by western blot. RESULTS: WES results demonstrated wild-type KRAS in all 3 LGSOC. OVA(K)250 PDX showed gain-of-function mutations (GOF) in PTK2 and PTK2B genes, and loss-of-heterozygosity in ADRB2, potentially sensitizing to FAK and RAF/MEK inhibition. The combination of avutometinib/ VS-4718 demonstrated strong tumor-growth inhibition compared to controls starting at day 9 (p < 0.002) in OVA(K)250PDX. By 60 days, mice treated with avutometinib alone and avutometinib/VS-4718 were still alive; compared to median survival of 20 days in control-treated mice and of 35 days in VS-4718-treated mice (p < 0.0001). By western-blot assays exposure of OVA(K)250 to avutometinib, FAKi defactinib and their combination demonstrated decreased phosphorylated FAK (p-FAK) as well as decreased p-ERK. CONCLUSION: Avutometinib, and to a larger extent its combination with FAK inhibitor VS-4718, demonstrated promising in vivo activity against a KRAS wild-type LGSOC-PDX. These data support the ongoing registration-directed study (RAMP201/NCT04625270).


Subject(s)
Focal Adhesion Kinase 1 , Ovarian Neoplasms , Xenograft Model Antitumor Assays , Female , Humans , Animals , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Mice , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/genetics , Protein Kinase Inhibitors/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Exome Sequencing , Benzamides , Diphenylamine/analogs & derivatives , Pyrazines , Sulfonamides
9.
J Neurooncol ; 167(3): 447-454, 2024 May.
Article in English | MEDLINE | ID: mdl-38443693

ABSTRACT

PURPOSE: The use of trametinib in the treatment of pediatric low-grade gliomas (PLGG) and plexiform neurofibroma (PN) is being investigated in an ongoing multicenter phase II trial (NCT03363217). Preliminary data shows potential benefits with significant response in the majority of PLGG and PN and an overall good tolerance. Moreover, possible benefits of MEK inhibitor therapy on cognitive functioning in neurofibromatosis type 1 (NF1) were recently shown which supports the need for further evaluation. METHODS: Thirty-six patients with NF1 (age range 3-19 years) enrolled in the phase II study of trametinib underwent a neurocognitive assessment at inclusion and at completion of the 72-week treatment. Age-appropriate Wechsler Intelligence Scales and the Trail Making Test (for children over 8 years old) were administered at each assessment. Paired t-tests and Reliable Change Index (RCI) analyses were performed to investigate change in neurocognitive outcomes. Regression analyses were used to investigate the contribution of age and baseline score in the prediction of change. RESULTS: Stable performance on neurocognitive tests was revealed at a group-level using paired t-tests. Clinically significant improvements were however found on specific indexes of the Wechsler intelligence scales and Trail Making Test, using RCI analyses. No significant impact of age on cognitive change was evidenced. However, lower initial cognitive performance was associated with increased odds of presenting clinically significant improvements on neurocognitive outcomes. CONCLUSION: These preliminary results show a potential positive effect of trametinib on cognition in patients with NF1. We observed significant improvements in processing speed, visuo-motor and verbal abilities. This study demonstrates the importance of including neuropsychological evaluations into clinical trial when using MEK inhibitors for patients with NF1.


Subject(s)
Neurofibromatosis 1 , Neuropsychological Tests , Pyridones , Pyrimidinones , Humans , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/administration & dosage , Male , Female , Adolescent , Child , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/complications , Neurofibromatosis 1/psychology , Young Adult , Child, Preschool , Glioma/drug therapy , Glioma/psychology , Glioma/complications , Brain Neoplasms/drug therapy , Brain Neoplasms/psychology , Brain Neoplasms/complications , Adult , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/adverse effects
10.
Acta Pharmacol Sin ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871922

ABSTRACT

Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP+ OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.

11.
Mol Ther ; 31(4): 986-1001, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36739480

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm of childhood. The molecular hallmark of JMML is hyperactivation of the Ras/MAPK pathway with the most common cause being mutations in the gene PTPN11, encoding the protein tyrosine phosphatase SHP2. Current strategies for treating JMML include using the hypomethylating agent, 5-azacitidine (5-Aza) or MEK inhibitors trametinib and PD0325901 (PD-901), but none of these are curative as monotherapy. Utilizing an Shp2E76K/+ murine model of JMML, we show that the combination of 5-Aza and PD-901 modulates several hematologic abnormalities often seen in JMML patients, in part by reducing the burden of leukemic hematopoietic stem and progenitor cells (HSC/Ps). The reduced JMML features in drug-treated mice were associated with a decrease in p-MEK and p-ERK levels in Shp2E76K/+ mice treated with the combination of 5-Aza and PD-901. RNA-sequencing analysis revealed a reduction in several RAS and MAPK signaling-related genes. Additionally, a decrease in the expression of genes associated with inflammation and myeloid leukemia was also observed in Shp2E76K/+ mice treated with the combination of the two drugs. Finally, we report two patients with JMML and PTPN11 mutations treated with 5-Aza, trametinib, and chemotherapy who experienced a clinical response because of the combination treatment.


Subject(s)
Leukemia, Myelomonocytic, Juvenile , Animals , Mice , Azacitidine/pharmacology , Leukemia, Myelomonocytic, Juvenile/drug therapy , Leukemia, Myelomonocytic, Juvenile/genetics , Leukemia, Myelomonocytic, Juvenile/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/therapeutic use , Mutation , Protein Kinase Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Humans
12.
Article in English | MEDLINE | ID: mdl-38935244

ABSTRACT

PURPOSE OF REVIEW: The purpose of this narrative review is to summarize pain symptomatology and mechanisms in neurofibromatosis type 1 (NF1), discuss the pain related quality of life impacts of NF1, and discuss the literature exploring interventions to improve quality of life. RECENT FINDINGS: Chronic pain in NF1 is described as headache and non-headache pain. The literature describes mechanisms contributing to neuronal hyperexcitability in the setting of reduced neurofibromin as key contributors to pain in NF1. Pain in NF1 negatively impacts quality of life with pain interference, depression, anxiety, and cognitive functioning acting as important mediators. Mitogen-activated protein kinase (MEK) inhibitors are pharmacologic agents that interfere with pain mechanisms. Mind-body interventions improve coping skills to improve quality of life. Chronic pain in NF1 is heterogeneous with negative impacts on quality of life. New developments in pharmacological and non-pharmacological interventions offer promising approaches to pain management and quality of life improvement. Additional research is necessary to validate the use of MEK inhibitors and mind-body interventions in the treatment of NF1.

13.
BMC Pulm Med ; 24(1): 379, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090580

ABSTRACT

BACKGROUND: Lung cancer, accounting for a significant proportion of global cancer cases and deaths, poses a considerable health burden. Non-small cell lung cancer (NSCLC) patients have a poor prognosis and limited treatment options due to late-stage diagnosis and drug resistance. Dysregulated of the mitogen-activated protein kinase (MAPK) pathway, which is implicated in NSCLC pathogenesis, underscores the potential of MEK inhibitors such as binimetinib. Despite promising results in other cancers, comprehensive studies evaluating the safety and efficacy of binimetinib in lung cancer are lacking. This systematic review aimed to investigate the safety and efficacy of binimetinib for lung cancer treatment. METHODS: We searched PubMed, Scopus, Web of Science, and Google Scholar until September 2023. Clinical trials evaluating the efficacy or safety of binimetinib for lung cancer treatment were included. Studies were excluded if they included individuals with conditions unrelated to lung cancer, investigated other treatments, or had different types of designs. The quality assessment was conducted utilizing the National Institutes of Health tool. RESULTS: Seven studies with 228 participants overall were included. Four had good quality judgments, and three had fair quality judgments. The majority of patients experienced all-cause adverse events, with diarrhea, fatigue, and nausea being the most commonly reported adverse events of any grade. The objective response rate (ORR) was up to 75%, and the median progression-free survival (PFS) was up to 9.3 months. The disease control rate after 24 weeks varied from 41% to 64%. Overall survival (OS) ranged between 3.0 and 18.8 months. Notably, treatment-related adverse events were observed in more than 50% of patients, including serious adverse events such as colitis, febrile neutropenia, and pulmonary infection. Some adverse events led to dose limitation and drug discontinuation in five studies. Additionally, five studies reported cases of death, mostly due to disease progression. The median duration of treatment ranged from 14.8 weeks to 8.4 months. The most common dosage of binimetinib was 30 mg or 45 mg twice daily, sometimes used in combination with other agents like encorafenib or hydroxychloroquine. CONCLUSIONS: Only a few studies have shown binimetinib to be effective, in terms of improving OS, PFS, and ORR, while most of the studies found nonsignificant efficacy with increased toxicity for binimetinib compared with traditional chemotherapy in patients with lung cancer. Further large-scale randomized controlled trials are recommended.


Subject(s)
Benzimidazoles , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Benzimidazoles/therapeutic use , Benzimidazoles/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Progression-Free Survival
14.
Childs Nerv Syst ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877124

ABSTRACT

Since the discovery of the association between BRAF mutations and fusions in the development of childhood low-grade gliomas and the subsequent recognition that most childhood low-grade glial and glioneuronal tumors have aberrant signaling through the RAS/RAF/MAP kinase pathway, there has been a dramatic change in how these tumors are conceptualized. Many of the fusions and mutations present in these tumors are associated with molecular targets, which have agents in development or already in clinical use. Various agents, including MEK inhibitors, BRAF inhibitors, MTOR inhibitors and, in small subsets of patients NTRK inhibitors, have been used successfully to treat children with recurrent disease, after failure of conventional approaches such as surgery or chemotherapy. The relative benefits of chemotherapy as compared to molecular-targeted therapy for children with newly diagnosed gliomas and neuroglial tumors are under study. Already the combination of an MEK inhibitor and a BRAF inhibitor has been shown superior to conventional chemotherapy (carboplatin and vincristine) in newly diagnosed children with BRAF-V600E mutated low-grade gliomas and neuroglial tumors. However, the long-term effects of such molecular-targeted treatment are unknown. The potential use of molecular-targeted therapy in early treatment has made it mandatory that the molecular make-up of the majority of low-grade glial and glioneuronal tumors is known before initiation of therapy. The primary exception to this rule is in children with neurofibromatosis type 1 who, by definition, have NF1 loss; however, even in this population, gliomas arising in late childhood and adolescence or those not responding to conventional treatment may be candidates for biopsy, especially before entry on molecular-targeted therapy trials.

15.
Pediatr Dermatol ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886992

ABSTRACT

Giant congenital melanocytic nevi (GCMN) can be cosmetically significant and can lead to melanoma. There is no standard pharmacologic treatment for GCMN. We present the case of an 8-year-old female with kaposiform lymphangiomatosis caused by an NRAS mutation whose nevus spilus-type GCMN improved on oral selumetinib.

16.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34470822

ABSTRACT

The RAF/MEK/ERK pathway is central to the control of cell physiology, and its dysregulation is associated with many cancers. Accordingly, the proteins constituting this pathway, including MEK1/2 (MEK), have been subject to intense drug discovery and development efforts. Allosteric MEK inhibitors (MEKi) exert complex effects on RAF/MEK/ERK pathway signaling and are employed clinically in combination with BRAF inhibitors in malignant melanoma. Although mechanisms and structures of MEKi bound to MEK have been described for many of these compounds, recent studies suggest that RAF/MEK complexes, rather than free MEK, should be evaluated as the target of MEKi. Here, we describe structural and biochemical studies of eight structurally diverse, clinical-stage MEKi to better understand their mechanism of action on BRAF/MEK complexes. We find that all of these agents bind in the MEK allosteric site in BRAF/MEK complexes, in which they stabilize the MEK activation loop in a conformation that is resistant to BRAF-mediated dual phosphorylation required for full activation of MEK. We also show that allosteric MEK inhibitors act most potently on BRAF/MEK complexes rather than on free active MEK, further supporting the notion that a BRAF/MEK complex is the physiologically relevant pharmacologic target for this class of compounds. Our findings provide a conceptual and structural framework for rational development of RAF-selective MEK inhibitors as an avenue to more effective and better-tolerated agents targeting this pathway.


Subject(s)
MAP Kinase Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/metabolism , Allosteric Regulation , Enzyme Activation , Enzyme Stability , Humans , MAP Kinase Kinase Kinases/chemistry , MAP Kinase Kinase Kinases/metabolism , Phosphorylation , Protein Conformation , Signal Transduction
17.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892436

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of human malignancies and carries an exceptionally poor prognosis. It is mostly driven by multiple oncogenic alterations, with the highest mutation frequency being observed in the KRAS gene, which is a key oncogenic driver of tumorogenesis and malignant progression in PDAC. However, KRAS remained undruggable for decades until the emergence of G12C mutation specific KRAS inhibitors. Despite this development, this therapeutic approach to target KRAS directly is not routinely used for PDAC patients, with the reasons being the rare presence of G12C mutation in PDAC with only 1-2% of occurring cases, modest therapeutic efficacy, activation of compensatory pathways leading to cell resistance, and absence of effective KRASG12D or pan-KRAS inhibitors. Additionally, indirect approaches to targeting KRAS through upstream and downstream regulators or effectors were also found to be either ineffective or known to cause major toxicities. For this reason, new and more effective treatment strategies that combine different therapeutic modalities aiming at achieving synergism and minimizing intrinsic or adaptive resistance mechanisms are required. In the current work presented here, pancreatic cancer cell lines with oncogenic KRAS G12C, G12D, or wild-type KRAS were treated with specific KRAS or SOS1/2 inhibitors, and therapeutic synergisms with concomitant MEK inhibition and irradiation were systematically evaluated by means of cell viability, 2D-clonogenic, 3D-anchorage independent soft agar, and bioluminescent ATP assays. Underlying pathophysiological mechanisms were examined by using Western blot analyses, apoptosis assay, and RAS activation assay.


Subject(s)
Pancreatic Neoplasms , Protein Kinase Inhibitors , Proto-Oncogene Proteins p21(ras) , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/radiotherapy , Carcinoma, Pancreatic Ductal/therapy , Signal Transduction/drug effects , Apoptosis , Mutation , Cell Proliferation/drug effects , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism
18.
Cancer Sci ; 114(5): 2189-2202, 2023 May.
Article in English | MEDLINE | ID: mdl-36694355

ABSTRACT

Constitutive activation of the mitogen-activated protein kinase (MAPK) signaling pathway is essential for tumorigenesis of pancreatic ductal adenocarcinoma (PDAC). To date, however, almost all clinical trials of inhibitor targeting this pathway have failed to improve the outcome of patients with PDAC. We found that implanted MIA Paca2, a human PDAC cell line sensitive to a MAPK inhibitor, PD0325901, became refractory within a week after treatment. By comparing the expression profiles of MIA Paca2 before and after acquisition of the refractoriness to PD0325901, we identified clusterin (CLU) as a candidate gene involved. CLU was shown to be induced immediately after treatment with PD0325901 or expressed primarily in more than half of PDAC cell lines, enhancing cell viability by escaping from apoptosis. A combination of PD0325901 and CLU downregulation was found to synergistically or additively reduce the proliferation of PDAC cells. In surgically resected PDAC tissues, overexpression of CLU in cancer cells was observed immunohistochemically in approximately half of the cases studied. Collectively, our findings highlight the mechanisms responsible for the rapid refractory response to MEK inhibitor in PDAC cells, suggesting a novel therapeutic strategy that could be applicable to patients with PDAC using inhibitor targeting the MAPK signaling pathway and CLU.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Clusterin/genetics , Clusterin/metabolism , Clusterin/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Mitogen-Activated Protein Kinases , Mitogen-Activated Protein Kinase Kinases , Cell Line, Tumor , Cell Proliferation , Pancreatic Neoplasms
19.
Cancer ; 129(12): 1904-1918, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37042037

ABSTRACT

BACKGROUND: Combination BRAF and MEK inhibitor therapy is an active regimen in patients who have BRAF V600E-mutated tumors; however, the clinical efficacy of this therapy is limited by resistance. Preclinically, the addition of heat shock protein 90 (HSP90) inhibition improves the efficacy of BRAF inhibitor therapy in both BRAF inhibitor-sensitive and BRAF inhibitor-resistant mutant cell lines. METHODS: Cancer Therapy Evaluation Program study 9557 (ClinicalTrials.gov identifier NCT02097225) is a phase 1 study that was designed to assess the safety and efficacy of the small-molecule HSP90 inhibitor, AT13387, in combination with dabrafenib and trametinib in BRAF V600E/K-mutant solid tumors. Correlative analyses evaluated the expression of HSP90 client proteins and chaperones. RESULTS: Twenty-two patients with metastatic, BRAF V600E-mutant solid tumors were enrolled using a 3 + 3 design at four dose levels, and 21 patients were evaluable for efficacy assessment. The most common tumor type was colorectal cancer (N = 12). Dose-limiting toxicities occurred in one patient at dose level 3 and in one patient at dose level 4; specifically, myelosuppression and fatigue, respectively. The maximum tolerated dose was oral dabafenib 150 mg twice daily, oral trametinib 2 mg once daily, and intravenous AT13387 260 mg/m2 on days 1, 8, and 15. The best response was a partial response in two patients and stable disease in eight patients, with an overall response rate of 9.5% (90% exact confidence interval [CI], 2%-27%), a disease control rate of 47.6% (90% CI, 29%-67%), and a median overall survival of 5.1 months (90% CI, 3.4-7.6 months). There were no consistent proteomic changes associated with response or resistance, although responders did have reductions in BRAF expression, and epidermal growth factor receptor downregulation using HSP90 inhibition was observed in one patient who had colorectal cancer. CONCLUSIONS: HSP90 inhibition combined with BRAF/MEK inhibition was safe and produced evidence of modest disease control in a heavily pretreated population. Additional translational work may identify tumor types and resistance mechanisms that are most sensitive to this approach.


Subject(s)
Colorectal Neoplasms , Melanoma , Humans , Proto-Oncogene Proteins B-raf/genetics , Proteomics , Pyridones/therapeutic use , Pyrimidinones , Oximes/adverse effects , Melanoma/pathology , Protein Kinase Inhibitors/therapeutic use , Mitogen-Activated Protein Kinase Kinases , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Mutation , Antineoplastic Combined Chemotherapy Protocols/adverse effects
20.
Oncologist ; 28(1): e36-e44, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36398872

ABSTRACT

BACKGROUND: SHR7390 is a novel, selective MEK1/2 inhibitor. Here, we report results from two phase I trials conducted to evaluate the tolerability, safety and antitumor activity of SHR7390 monotherapy for advanced solid tumors and SHR7390 plus camrelizumab for treatment-refractory advanced or metastatic colorectal cancer (CRC). PATIENTS AND METHODS: Patients received SHR7390 alone or combined with fixed-dose camrelizumab (200 mg every 2 weeks) in an accelerated titration scheme to determine the maximum tolerated dose (MTD). A recommended dose for expansion was determined based on the safety and tolerability of the dose-escalation stage. The primary endpoints were dose limiting toxicity (DLT) and MTD. RESULTS: In the SHR7390 monotherapy trial, 16 patients were enrolled. DLTs were reported in the 1.0 mg cohort, and the MTD was 0.75 mg. Grade ≥3 treatment-related adverse events (TRAEs) were recorded in 4 patients (25.0%). No patients achieved objective response. In the SHR7390 combination trial, 22 patients with CRC were enrolled. One DLT was reported in the 0.5 mg cohort and the MTD was not reached. Grade ≥3 TRAEs were observed in 8 patients (36.4%), with the most common being rash (n=4). One grade 5 TRAE (increased intracranial pressure) occurred. Five patients (22.7%) achieved partial response, including one of 3 patients with MSS/MSI-L and BRAF mutant tumors, one of 15 patients with MSS/MSI-L and BRAF wild type tumors, and all 3 patients with MSI-H tumors. CONCLUSIONS: SHR7390 0.5 mg plus camrelizumab showed a manageable safety profile. Preliminary clinical activity was reported regardless of MSI and BRAF status.


Subject(s)
Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL