Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 514
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 33(10): 894-904, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38433330

ABSTRACT

Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and ß-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.


Subject(s)
Diabetes Mellitus, Type 2 , Hepatocyte Nuclear Factor 4 , Promoter Regions, Genetic , Transcriptional Activation , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Humans , Transcriptional Activation/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Hep G2 Cells , Genetic Variation , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Cell Line
2.
Trends Genet ; 38(4): 321-324, 2022 04.
Article in English | MEDLINE | ID: mdl-34696899

ABSTRACT

Maturity-onset diabetes in the young (MODY) comprises monogenic phenotypes of young-onset, insulinopenic diabetes. All its forms are dominantly inherited. Why? Are the pancreatic ß cells only harmed by heterozygous variants? We propose that recessive MODYs do exist but have escaped detection due to lack of family history suggestive of monogenic inheritance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Diabetes Mellitus, Type 2/genetics , Humans , Mutation , Phenotype
3.
Am J Hum Genet ; 109(11): 2018-2028, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36257325

ABSTRACT

The true prevalence and penetrance of monogenic disease variants are often not known because of clinical-referral ascertainment bias. We comprehensively assess the penetrance and prevalence of pathogenic variants in HNF1A, HNF4A, and GCK that account for >80% of monogenic diabetes. We analyzed clinical and genetic data from 1,742 clinically referred probands, 2,194 family members, clinically unselected individuals from a US health system-based cohort (n = 132,194), and a UK population-based cohort (n = 198,748). We show that one in 1,500 individuals harbor a pathogenic variant in one of these genes. The penetrance of diabetes for HNF1A and HNF4A pathogenic variants was substantially lower in the clinically unselected individuals compared to clinically referred probands and was dependent on the setting (32% in the population, 49% in the health system cohort, 86% in a family member, and 98% in probands for HNF1A). The relative risk of diabetes was similar across the clinically unselected cohorts highlighting the role of environment/other genetic factors. Surprisingly, the penetrance of pathogenic GCK variants was similar across all cohorts (89%-97%). We highlight that pathogenic variants in HNF1A, HNF4A, and GCK are not ultra-rare in the population. For HNF1A and HNF4A, we need to tailor genetic interpretation and counseling based on the setting in which a pathogenic monogenic variant was identified. GCK is an exception with near-complete penetrance in all settings. This along with the clinical implication of diagnosis makes it an excellent candidate for the American College of Medical Genetics secondary gene list.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Penetrance , Diabetes Mellitus, Type 2/diagnosis , Cohort Studies , Prevalence , Mutation , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 4/genetics
4.
Clin Genet ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733153

ABSTRACT

Maturity-Onset Diabetes of the Young (MODY) is a diabetes mellitus subtype caused by a single gene. The detection rate of the responsible gene is 27% in the United Kingdom, indicating that the causative gene remains unknown in the majority of clinically diagnosed MODY cases. To improve the detection rate, we applied comprehensive genetic testing using whole exome sequencing (WES) followed by Multiplex Ligation-dependent Probe Amplification (MLPA) and functional analyses. Twenty-one unrelated Japanese participants with MODY were enrolled in the study. To detect copy number variations (CNVs), WES was performed first, followed by MLPA analysis for participants who were negative on the basis of WES. Undetermined variants were analyzed according to their functional properties. WES identified 7 pathogenic and 3 novel likely pathogenic variants in the 21 participants. Functional analyses revealed that 1 in 3 variants was pathogenic. MLPA analysis applied to the remaining 13 undetermined samples identified 4 cases with pathogenic CNVs: 3 in HNF4A and 1 in HNF1B. Pathogenic variants were identified in 12 participants (12/21, 57.1%) - relatively high rate reported to date. Notably, one-third of the participants had CNVs in HNF4A or HNF1B, indicating a limitation of WES-only screening.

5.
Diabetes Metab Res Rev ; 40(5): e3823, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821874

ABSTRACT

AIMS: Asians have a high prevalence of young-onset diabetes, but the pattern of monogenic diabetes is unknown. We aimed to determine the prevalence of monogenic diabetes in Chinese patients with young-onset diabetes and compare the clinical characteristics and outcome between patients with and without monogenic diabetes. MATERIALS AND METHODS: We sequenced a targeted panel of 33 genes related to monogenic diabetes in 1021 Chinese patients with non-type 1 diabetes diagnosed at age ≤40 years. Incident complications including cardiovascular disease (CVD), end-stage kidney disease (ESKD) and all-cause death were captured since enrolment (1995-2012) until 2019. RESULTS: In this cohort (mean ± SD age at diagnosis: 33.0 ± 6.0 years, median[IQR] diabetes duration 7.0[1.0-15.0] years at baseline, 44.9% men), 22(2.2%, 95% confidence interval[CI] 1.4%-3.2%) had monogenic diabetes. Pathogenic (P) or likely pathogenic (LP) variants were detected in GCK (n = 6), HNF1A (n = 9), HNF4A (n = 1), PLIN1 (n = 1) and PPARG (n = 2), together with copy number variations in HNF1B (n = 3). Over a median follow-up of 17.1 years, 5(22.7%) patients with monogenic diabetes (incidence rate 12.3[95% CI 5.1-29.4] per 1000 person-years) versus 254(25.4%) without monogenic diabetes (incidence rate 16.7[95% CI 14.8-18.9] per 1000 person-years) developed the composite outcome of CVD, ESKD and/or death (p = 0.490). The multivariable Cox model did not show any difference in hazards for composite events between groups. CONCLUSIONS: In Chinese with young-onset non-type 1 diabetes, at least 2% of cases were contributed by monogenic diabetes, over 80% of which were accounted for by P/LP variants in common MODY genes. The incidence of diabetes complications was similar between patients with and without monogenic diabetes.


Subject(s)
Age of Onset , Humans , Male , Female , Follow-Up Studies , Hong Kong/epidemiology , Adult , Prospective Studies , Prognosis , Asian People/genetics , Young Adult , Diabetes Mellitus/genetics , Diabetes Mellitus/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Prevalence , Adolescent , Incidence , East Asian People
6.
Diabet Med ; 41(5): e15265, 2024 May.
Article in English | MEDLINE | ID: mdl-38093550

ABSTRACT

AIMS: The aim is to identify people with HNF1A-MODY among individuals in diabetic cohort solely based on low hs-CRP serum level and early diabetes onset. METHODS: In 3537 participants, we analyzed the hs-CRP levels. We analyzed the HNF1A gene in 50 participants (1.4% of the cohort) with type 1 or type 2 diabetes who had hs-CRP ≤0.25 mg/L and were diagnosed with diabetes mellitus (DM) at the age of 8-40 years. We functionally characterized two identified missense variants. RESULTS: Three participants had a rare variant in the HNF1A gene, two of which we classified as likely pathogenic: c.1369_1384dup (p.Val462Aspfs*92) and c.737T>G (p.Val246Gly), and one as likely benign: c.1573A>T (p.Thr525Ser). Our functional studies revealed that p.Val246Gly decreased HNF1α transactivation activity to ~59% and the DNA binding ability to ~16% of the wild-type, while p.Thr525Ser variant showed no effect on transactivation activity, DNA binding, nor nuclear localization. Based on the two identified HNF1A-MODY patients among 3537 people with diabetes, we estimate 0.057% as the minimal HNF1A-MODY prevalence in Slovakia. A positive predictive value of hs-CRP ≤0.25 mg/L for finding HNF1A-MODY individuals was 4.0% (95% CI 0.7%, 13.5%). CONCLUSIONS: Hs-CRP value and age of DM onset could be an alternative approach to current diagnostic criteria with a potential to increase the diagnostic rate of HNF1A-MODY.


Subject(s)
C-Reactive Protein , Diabetes Mellitus, Type 2 , Humans , Child , Adolescent , Young Adult , Adult , C-Reactive Protein/metabolism , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Biomarkers , Age of Onset , Hepatocyte Nuclear Factor 1-alpha/genetics , DNA , Mutation
7.
BMC Med Res Methodol ; 24(1): 128, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834992

ABSTRACT

BACKGROUND: Clinical prediction models can help identify high-risk patients and facilitate timely interventions. However, developing such models for rare diseases presents challenges due to the scarcity of affected patients for developing and calibrating models. Methods that pool information from multiple sources can help with these challenges. METHODS: We compared three approaches for developing clinical prediction models for population screening based on an example of discriminating a rare form of diabetes (Maturity-Onset Diabetes of the Young - MODY) in insulin-treated patients from the more common Type 1 diabetes (T1D). Two datasets were used: a case-control dataset (278 T1D, 177 MODY) and a population-representative dataset (1418 patients, 96 MODY tested with biomarker testing, 7 MODY positive). To build a population-level prediction model, we compared three methods for recalibrating models developed in case-control data. These were prevalence adjustment ("offset"), shrinkage recalibration in the population-level dataset ("recalibration"), and a refitting of the model to the population-level dataset ("re-estimation"). We then developed a Bayesian hierarchical mixture model combining shrinkage recalibration with additional informative biomarker information only available in the population-representative dataset. We developed a method for dealing with missing biomarker and outcome information using prior information from the literature and other data sources to ensure the clinical validity of predictions for certain biomarker combinations. RESULTS: The offset, re-estimation, and recalibration methods showed good calibration in the population-representative dataset. The offset and recalibration methods displayed the lowest predictive uncertainty due to borrowing information from the fitted case-control model. We demonstrate the potential of a mixture model for incorporating informative biomarkers, which significantly enhanced the model's predictive accuracy, reduced uncertainty, and showed higher stability in all ranges of predictive outcome probabilities. CONCLUSION: We have compared several approaches that could be used to develop prediction models for rare diseases. Our findings highlight the recalibration mixture model as the optimal strategy if a population-level dataset is available. This approach offers the flexibility to incorporate additional predictors and informed prior probabilities, contributing to enhanced prediction accuracy for rare diseases. It also allows predictions without these additional tests, providing additional information on whether a patient should undergo further biomarker testing before genetic testing.


Subject(s)
Bayes Theorem , Diabetes Mellitus, Type 2 , Rare Diseases , Humans , Diabetes Mellitus, Type 2/diagnosis , Rare Diseases/diagnosis , Case-Control Studies , Female , Diabetes Mellitus, Type 1/diagnosis , Male , Biomarkers/analysis , Adolescent , Adult , Child
8.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928025

ABSTRACT

Maturity-onset diabetes of the young (MODY) is part of the heterogeneous group of monogenic diabetes (MD) characterized by the non-immune dysfunction of pancreatic ß-cells. The diagnosis of MODY still remains a challenge for clinicians, with many cases being misdiagnosed as type 1 or type 2 diabetes mellitus (T1DM/T2DM), and over 80% of cases remaining undiagnosed. With the introduction of modern technologies, important progress has been made in deciphering the molecular mechanisms and heterogeneous etiology of MD, including MODY. The aim of our study was to identify genetic variants associated with MODY in a group of patients with early-onset diabetes/prediabetes in whom a form of MD was clinically suspected. Genetic testing, based on next-generation sequencing (NGS) technology, was carried out either in a targeted manner, using gene panels for monogenic diabetes, or by analyzing the entire exome (whole-exome sequencing). GKC-MODY 2 was the most frequently detected variant, but rare forms of KCNJ11-MODY 13, specifically, HNF4A-MODY 1, were also identified. We have emphasized the importance of genetic testing for early diagnosis, MODY subtype differentiation, and genetic counseling. We presented the genotype-phenotype correlations, especially related to the clinical evolution and personalized therapy, also emphasizing the particularities of each patient in the family context.


Subject(s)
Diabetes Mellitus, Type 2 , Genetic Counseling , Genetic Testing , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Genetic Testing/methods , Male , Female , Adult , Precision Medicine/methods , High-Throughput Nucleotide Sequencing/methods , Adolescent , Potassium Channels, Inwardly Rectifying/genetics , Young Adult , Child , Hepatocyte Nuclear Factor 4/genetics , Exome Sequencing/methods , Genetic Predisposition to Disease , Mutation
9.
Medicina (Kaunas) ; 60(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38793013

ABSTRACT

(1) Background and objectives: Maturity-onset diabetes of the young (MODY) is a group of diabetes caused by gene defects related to insulin secretion. MODY1, MODY2, and MODY3 are the most common and account for approximately 80% of all cases. Other types are relatively rare. This study describes the clinical, analytical, and genetic characteristics of a patient with MODY10, and diabetic nephropathy, retinopathy, and functional hypogonadism diagnosis. (2) Materials and methods: A clinical case was analyzed and whole exome generation sequencing (WES) was used to detect mutations related to a monogenic variant. (3) Results: A seventeen-year-old male patient, who was diagnosed with apparent type 1 diabetes at the age of eight was started with insulin therapy. He came to the emergency room with glycemic decompensation, facial, and lower limb edema. During his evaluation, he had near-nephrotic range proteinuria of 2902 mg/24 h, a kidney ultrasound showing mild pyelocalyceal dilation, proliferative diabetic retinopathy, and was also diagnosed with functional hypogonadotropic hypogonadism. These comorbidities improved with adequate glycemic control. WES showed missense variant c.94G>A (p.Gly32Ser) in the INS gene, according to Clinvar corresponding to MODY10. It was a "de novo" variant not reported in his parents. (4) Conclusions: Monogenic diabetes (MD) is rare and MODY10 is among the less frequent types. MODY should be suspected in patients with type 1 phenotype with negative autoimmunity even in the absence of a family history of diabetes. To the best of our knowledge, we present here the first patient with these phenotypic traits of MODY10 reported in Latin America.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Diabetic Retinopathy , Hypogonadism , Humans , Male , Diabetic Retinopathy/genetics , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Hypogonadism/genetics , Hypogonadism/complications , Adolescent , Diabetic Nephropathies/genetics , Diabetic Nephropathies/complications
10.
Diabetologia ; 66(12): 2226-2237, 2023 12.
Article in English | MEDLINE | ID: mdl-37798422

ABSTRACT

AIMS/HYPOTHESIS: Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes. METHODS: We extended our previous screening of the Norwegian Childhood Diabetes Registry by 830 additional samples and comprehensively genotyped HNF1A variants in autoantibody-negative participants using next-generation sequencing. Carriers of pathogenic variants were treated by local healthcare providers, and participants with novel likely pathogenic variants and variants of uncertain significance were enrolled in an investigator-initiated, non-randomised, open-label pilot study (ClinicalTrials.gov registration no. NCT04239586). To identify variants associated with HNF1A-MODY, we functionally characterised their pathogenicity and assessed the carriers' phenotype and treatment response to sulfonylurea. RESULTS: In total, 615 autoantibody-negative participants among 4712 cases of paediatric diabetes underwent genetic sequencing, revealing 19 with HNF1A variants. We identified nine carriers with novel variants classified as variants of uncertain significance or likely to be pathogenic, while the remaining ten participants carried five pathogenic variants previously reported. Of the nine carriers with novel variants, six responded favourably to sulfonylurea. Functional investigations revealed their variants to be dysfunctional and demonstrated a correlation with the resulting phenotype, providing evidence for reclassifying these variants as pathogenic. CONCLUSIONS/INTERPRETATION: Based on this robust classification, we estimate that the prevalence of HNF1A-MODY is 0.3% in paediatric diabetes. Clinical phenotyping is challenging and functional investigations provide a strong complementary line of evidence. We demonstrate here that combining clinical phenotyping with functional protein studies provides a powerful tool to obtain a precise diagnosis of HNF1A-MODY.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Child , Pilot Projects , Diabetes Mellitus, Type 2/metabolism , Phenotype , Autoantibodies/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Norway/epidemiology , Sulfonylurea Compounds , Mutation
11.
Diabetologia ; 66(11): 1997-2006, 2023 11.
Article in English | MEDLINE | ID: mdl-37653058

ABSTRACT

AIMS/HYPOTHESIS: In pregnancies where the mother has glucokinase-MODY (GCK-MODY), fetal growth is determined by fetal genotype. When the fetus inherits a maternal pathogenic GCK variant, normal fetal growth is anticipated, and insulin treatment of maternal hyperglycaemia is not recommended. At present, fetal genotype is estimated from measurement of fetal abdominal circumference on ultrasound. Non-invasive prenatal testing of fetal GCK genotype (NIPT-GCK) using cell-free DNA in maternal blood has recently been developed. We aimed to compare the diagnostic accuracy of NIPT-GCK with that of ultrasound, and determine the feasibility of using NIPT-GCK to guide pregnancy management. METHODS: We studied an international cohort of pregnant women with hyperglycaemia due to GCK-MODY. We compared the diagnostic accuracy of NIPT-GCK with that of measurement of fetal abdominal circumference at 28 weeks' gestation (n=38) using a directly genotyped offspring sample as the reference standard. In a feasibility study, we assessed the time to result given to clinicians in 43 consecutive pregnancies affected by GCK-MODY between July 2019 and September 2021. RESULTS: In terms of diagnostic accuracy, NIPT-GCK was more sensitive and specific than ultrasound in predicting fetal genotype (sensitivity 100% and specificity 96% for NIPT-GCK vs sensitivity 53% and specificity 61% for fetal abdominal circumference 75th percentile). In terms of feasibility, a valid NIPT-GCK fetal genotype (≥95% probability) was reported in all 38 pregnancies with an amenable variant and repeated samples when needed. The median time to report was 5 weeks (IQR 3-8 weeks). For the 25 samples received before 20 weeks' gestation, results were reported at a median gestational age of 20 weeks (IQR 18-24), with 23/25 (92%) reported before 28 weeks. CONCLUSIONS/INTERPRETATION: Non-invasive prenatal testing of fetal genotype in GCK-MODY pregnancies is highly accurate and is capable of providing a result before the last trimester for most patients. This means that non-invasive prenatal testing of fetal genotype is the optimal approach to management of GCK-MODY pregnancies.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Pregnancy , Humans , Female , Infant , Glucokinase/genetics , Feasibility Studies , Precision Medicine , Diabetes Mellitus, Type 2/genetics , Hyperglycemia/genetics , Mutation
12.
Diabetologia ; 66(3): 438-449, 2023 03.
Article in English | MEDLINE | ID: mdl-36418577

ABSTRACT

AIMS/HYPOTHESIS: Monogenic forms of diabetes (MODY, neonatal diabetes mellitus and syndromic forms) are rare, and affected individuals may be misclassified and treated suboptimally. The prevalence of type 1 diabetes is high in Finnish children but systematic screening for monogenic diabetes has not been conducted. We assessed the prevalence and clinical manifestations of monogenic diabetes in children initially registered with type 1 diabetes in the Finnish Pediatric Diabetes Register (FPDR) but who had no type 1 diabetes-related autoantibodies (AABs) or had only low-titre islet cell autoantibodies (ICAs) at diagnosis. METHODS: The FPDR, covering approximately 90% of newly diagnosed diabetic individuals aged ≤15 years in Finland starting from 2002, includes data on diabetes-associated HLA genotypes and AAB data (ICA, and autoantibodies against insulin, GAD, islet antigen 2 and zinc transporter 8) at diagnosis. A next generation sequencing gene panel including 42 genes was used to identify monogenic diabetes. We interpreted the variants in HNF1A by using the gene-specific standardised criteria and reported pathogenic and likely pathogenic findings only. For other genes, we also reported variants of unknown significance if an individual's phenotype suggested monogenic diabetes. RESULTS: Out of 6482 participants, we sequenced DNA for 152 (2.3%) testing negative for all AABs and 49 (0.8%) positive only for low-titre ICAs (ICAlow). A monogenic form of diabetes was revealed in 19 (12.5%) of the AAB-negative patients (14 [9.2%] had pathogenic or likely pathogenic variants) and two (4.1%) of the ICAlow group. None had ketoacidosis at diagnosis or carried HLA genotypes conferring high risk for type 1 diabetes. The affected genes were GCK, HNF1A, HNF4A, HNF1B, INS, KCNJ11, RFX6, LMNA and WFS1. A switch from insulin to oral medication was successful in four of five patients with variants in HNF1A, HNF4A or KCNJ11. CONCLUSIONS/INTERPRETATION: More than 10% of AAB-negative children with newly diagnosed diabetes had a genetic finding associated with monogenic diabetes. Because the genetic diagnosis can lead to major changes in treatment, we recommend referring all AAB-negative paediatric patients with diabetes for genetic testing. Low-titre ICAs in the absence of other AABs does not always indicate a diagnosis of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Humans , Finland , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/genetics , Insulin/genetics , Autoantibodies , Mutation/genetics
13.
J Biol Chem ; 298(4): 101803, 2022 04.
Article in English | MEDLINE | ID: mdl-35257744

ABSTRACT

Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating the expression of numerous target genes. Pathogenic variants in the HNF1A gene are known to cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), a disease characterized by dominant inheritance, age of onset before 25 to 35 years of age, and pancreatic ß-cell dysfunction. A precise diagnosis can alter management of this disease, as insulin can be exchanged with sulfonylurea tablets and genetic counseling differs from polygenic forms of diabetes. Therefore, more knowledge on the mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants is required for precise diagnostics. Here, we structurally and biophysically characterized an HNF-1A protein containing both the DNA-binding domain and the dimerization domain, and determined the folding and DNA-binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S). All three variants showed reduced functionality compared to the WT protein. Furthermore, while the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, we found the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for these investigated variants and present a novel approach for the dissection of structurally unstable and DNA-binding defective variants. This study indicates that structural and biochemical investigation of HNF-1A is a valuable tool in reliable variant classification needed for precision diabetes diagnostics and management.


Subject(s)
Diabetes Mellitus, Type 2 , Hepatocyte Nuclear Factor 1-alpha , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Genetic Variation , Hepatocyte Nuclear Factor 1-alpha/chemistry , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Protein Binding , Protein Domains
14.
Genet Med ; 25(4): 100019, 2023 04.
Article in English | MEDLINE | ID: mdl-36681871

ABSTRACT

PURPOSE: Maturity-onset diabetes of the young (MODY) represents a heterogenous group of monogenic diabetes. Despite its autosomal dominant inheritance, many MODY participants in the University of Chicago Monogenic Diabetes Registry have no family members enrolled. We aimed to gather data on the Registry participants' experiences in (1) receipt of an accurate diagnosis, (2) decisions regarding disclosure of their MODY genetic test results with biological relatives, and (3) recommendations toward our Registry's processes and outreach. METHODS: We conducted 20 one-on-one semistructured interviews with adult Registry participants. RESULTS: All participants found navigating the health care system challenging because of the providers' unfamiliarity with MODY and dismissal of its importance post diagnosis. All had shared their results with at least 1 relative, however many found their relatives resistant to engaging with their providers. Participants wanted to receive targeted information on their condition and connect with other participants who have faced similar diagnostic and treatment challenges. CONCLUSION: Our results demonstrate that our probands faced resistance to reclassification of their diabetes from both health care providers and relatives. In an effort to improve cascade testing, the Registry is designing a portal to facilitate participant-research team communication and provide additional supports for participants to involve family members in testing.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/therapy , Genetic Testing , Family , Registries , Mutation
15.
Rev Endocr Metab Disord ; 24(4): 673-684, 2023 08.
Article in English | MEDLINE | ID: mdl-37165203

ABSTRACT

Monogenic Forms of Diabetes (MFD) account for about 3% of all diabetes, and their accurate diagnosis often results in life-changing therapeutic reassignment for the patients. Like other Mendelian diseases, reduced penetrance and variable expressivity are often seen in several different types of MFD, where symptoms develop only in a portion of the persons who carry the pathogenic variant or vary widely in symptom severity and age of onset. This complicates diagnosis and disease management in MFD. In addition to its clinical importance, knowledge of genetic modifiers that confer penetrance and expressivity variability opens possibilities to identify protective genetic variants which may help probe the mechanisms of more common forms of diabetes and shed light in new therapeutic strategies. In this review, we will mainly address penetrance and expressivity variation in different types of MFD, factors that confer such variations and opportunities that come with such knowledge. Related literature was searched in PubMed, Medline and Embase. Papers with publication year from 1974 to 2023 are included. Data are either sourced from literatures or from OMIM, Clinvar and 1000 genome browser.


Subject(s)
Diabetes Mellitus , Humans , Penetrance , Diabetes Mellitus/genetics , Mutation
16.
BMC Endocr Disord ; 23(1): 38, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36782183

ABSTRACT

Young maturity-onset diabetes of the young type3(MODY3) as a special type of diabetes, the probability of diagnosis is low. This article reports on a case and reviews the relevant knowledge of the disease. We report an 11-year-and-11-month-old girl whose grandmother died from diabetic complications while the rest of the families were non-diabetes. The proband was initially treated with insulin and metformin but the threatment proved inefficient. After an exome-targeted capture sequencing test, she was diagnosed with mature-onset diabetes of young type 3 (MODY3), and sulfonylureas make sense. The key to mody treatment is a correct and timely diagnosis, which contributes to helping patients overcome the problems of MODY3, especially for blood sugar control.


Subject(s)
Diabetes Mellitus, Type 2 , Female , Humans , Diabetes Mellitus, Type 2/diagnosis , Hepatocyte Nuclear Factor 1-alpha/genetics , Insulin/genetics , Mutation , Child
17.
Pediatr Dev Pathol ; 26(4): 394-403, 2023.
Article in English | MEDLINE | ID: mdl-37334553

ABSTRACT

BACKGROUND: Hepatocellular adenoma (HCA) in the pediatric population is very rare and there are only limited studies, especially with molecular characterization of the tumors. Main HCA subtypes recognized in the current WHO classification include HNF1A-inactivated HCA (H-HCA), inflammatory HCA (IHCA), ß-catenin-activated HCA (b-HCA), and ß-catenin-activated IHCA (b-IHCA) and sonic hedgehog HCA (shHCA) is reported as an emerging subtype. METHODS: Clinical history, pathological information, and molecular studies for a series of 2 cases of pediatric HCA were reviewed. RESULTS: Case 1 was a b-HCA characterized by somatic CTNNB1 S45 mutation in a 11-year-old male with Abernethy malformation. Case 2 was a H-HCA characterized by germline HNF1A variant (c.526+1G>A) in a 15-year-old male associated with maturity-onset diabetes of the young type 3 (MODY3). CONCLUSION: Our findings highlight the rarity of these 2 cases associated with adenomatosis, and the contribution of molecular/genetic analysis for proper sub-typing, prognosis and family surveillance.


Subject(s)
Adenoma, Liver Cell , Carcinoma, Hepatocellular , Liver Neoplasms , Male , Humans , Child , Adolescent , Adenoma, Liver Cell/diagnosis , Adenoma, Liver Cell/genetics , Adenoma, Liver Cell/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/pathology , beta Catenin/genetics , Hedgehog Proteins , Phenotype , Genotype
18.
J Endocrinol Invest ; 46(5): 915-926, 2023 May.
Article in English | MEDLINE | ID: mdl-36331708

ABSTRACT

AIM: HNF1α transcription factor regulates a network of genes involved in the development of ß-cells and also serves as a model for transcription defects in pancreatic ß-cells; mutations in this gene cause MODY. The goal of this study was to assess the promoter methylation and expression profile of the most common MODY causing gene, HNF1α, in Kashmiri MODY patients, as factors responsible for glucose dysregulation, as no such study had been performed on MODY patients in Kashmir previously. METHODS: The study included 85 Kashmiri subjects. Samples were extracted for DNA and RNA using standard protocols. The HNF1α promoter methylation profile was assessed by bisulfite conversion of the DNA followed by MSP, whereas qPCR was used for expression analysis. RESULTS: The expression of HNF1α was found to be upregulated (p value 0.0349*) in majority of MODY (60%) and T1D (72%) cases (p value 0.0349*). HNF1α expression was 1.33-fold higher in MODY cases with hypermethylated HNF1α promoters (p value 0.0360*). HNF1α expression was upregulated by 2.3-fold in MODY patients with HbA1c levels > 7% (p value 0.0025**). MODY cases with FBS levels > 7.7 mmol/l were upregulated by 0.646-fold than those with FBS levels ≤ 7.7 mmol/l (p value 0.0161*). CONCLUSION: In this study, we found that as glucose dysregulation progresses, blood FBS, RBS, and HbA1c levels rise, and that at higher levels, HNF1α expression rises as well. From the results obtained, we may conclude that HNF1α is strongly upregulated in MODY, thus indicating the deleterious effect of over expression of HNF1α gene on glucose regulation.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Humans , Up-Regulation , Glycated Hemoglobin , Case-Control Studies , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism
19.
Endocr J ; 70(6): 629-634, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37045781

ABSTRACT

Glucokinase is a glycolytic enzyme that catalyzes the phosphorylation of glucose to glucose-6-phospate in the first step of the glycolytic pathway. It also regulates the threshold for insulin secretion from pancreatic beta cells by catalyzing the phosphorylation of glucose and plays an important role as a glucose sensor. Pathogenic variants in the glucokinase gene (GCK) cause non-progressive but persistent mild fasting hyperglycemia, also recognized as maturity-onset diabetes of the young 2 (MODY2). This report presents the case of two Japanese siblings with MODY2, who were initially diagnosed with impaired glucose intolerance at 20 and 17 years of age, and later developed diabetes mellitus. They had no history of obesity, were negative for islet-related autoantibodies and their serum C-peptide level were within the normal range. Diabetic complications were not observed. Next-generation sequencing revealed a novel heterozygous variant in GCK (NM_000162.5: c.1088A>G, p.Asp363Gly) in both siblings. This variant has not been reported previously. In silico functional analyses, using SIFT and MutationTaster, suggested that the variant was damaging. To confirm the functional impact of the mutated GCK, the HiBiT-tagged p.Asp363Gly variant and the wild-type GCK were transiently expressed in HEK293T cells. The cells expressing the variant GCK exhibited 79% less bioluminescence, compared to those expressing the wild-type GCK, suggesting that the pathophysiology of the variant was a result of haploinsufficiency.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Humans , Glucokinase/genetics , Glucokinase/metabolism , Mutation , East Asian People , HEK293 Cells , Siblings , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Glucose
20.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835446

ABSTRACT

Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes mellitus (DM) that accounts for around 2-5% of all types of diabetes. Autosomal dominant inheritance in pathogenic variations of 14 genes related to ß-cell functions can lead to monogenic types of diabetes. In Italy, GCK/MODY is the most frequent form and it is caused by mutations of the glucokinase (GCK). Patients with GCK/MODY usually have stable mild fasting hyperglycaemia with mildly elevated HbA1c levels and rarely need pharmacological treatment. Molecular analysis of the GCK coding exons was carried out by Sanger sequencing in eight Italian patients. All the probands were found to be heterozygous carriers of a pathogenic gross insertion/deletion c.1279_1358delinsTTACA; p.Ser426_Ala454delinsLeuGln. It was previously described for the first time by our group in a large cohort of Italian GCK/MODY patients. The higher levels of HbA1c (6.57% vs. 6.1%), and the higher percentage of patients requiring insulin therapy (25% vs. 2%) compared to the previously studied Italian patients with GCK/MODY, suggest that the mutation discovered could be responsible for a clinically worse form of GCK/MODY. Moreover, as all the patients carrying this variant share an origin from the same geographic area (Liguria), we postulate a possible founder effect and we propose to name it the "pesto" mutation.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Humans , Diabetes Mellitus, Type 2/genetics , Glucokinase/genetics , Glycated Hemoglobin/analysis , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL