Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430803

ABSTRACT

Chloroquine (CQ) is an antimalaria drug that has been widely used for decades. However, CQ-induced pruritus remains one of the major obstacles in CQ treatment for uncomplicated malaria. Recent studies have revealed that MrgprX1 plays an essential role in CQ-induced itch. To date, a few MrgprX1 antagonists have been discovered, but they are clinically unavailable or lack selectivity. Here, a cell-based high-throughput screening was performed to identify novel antagonists of MrgprX1, and the screening of 2543 compounds revealed two novel MrgprX1 inhibitors, berbamine and closantel. Notably, berbamine potently inhibited CQ-mediated MrgprX1 activation (IC50 = 1.6 µM) but did not alter the activity of other pruritogenic GPCRs. In addition, berbamine suppressed the CQ-mediated phosphorylation of ERK1/2. Interestingly, CQ-induced pruritus was significantly reduced by berbamine in a dose-dependent manner, but berbamine had no effect on histamine-induced, protease-activated receptors 2-activating peptide-induced, and deoxycholic acid-induced itch in mice. These results suggest that berbamine is a novel, potent, and selective antagonist of MrgprX1 and may be a potential drug candidate for the development of therapeutic agents to treat CQ-induced pruritus.


Subject(s)
Benzylisoquinolines , Chloroquine , Mice , Animals , Chloroquine/adverse effects , Pruritus/chemically induced , Pruritus/drug therapy , Histamine , Ubiquitin-Protein Ligases
2.
Brain ; 137(Pt 4): 1039-50, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24549959

ABSTRACT

Itch is a common symptom of diseases of the skin but can also accompany diseases of other tissues including the nervous system. Acute itch from chemicals experimentally applied to the skin is initiated and maintained by action potential activity in a subset of nociceptive neurons. But whether these pruriceptive neurons are active or might become intrinsically more excitable under the pathological conditions that produce persistent itch and nociceptive sensations in humans is largely unexplored. Recently, two distinct types of cutaneous nociceptive dorsal root ganglion neurons were identified as responding to pruritic chemicals and playing a role in itch sensation. One expressed the mas-related G-coupled protein receptor MRGPRA3 and the other MRGPRD (MRGPRA3+ and MRGPRD+ neurons, respectively). Here we tested whether these two distinct pruriceptive nociceptors exhibited an enhanced excitability after the development of contact hypersensitivity, an animal model of allergic contact dermatitis, a common pruritic disorder in humans. The characteristics of increased excitability of pruriceptive neurons during this disorder may also pertain to the same types of neurons active in other pruritic diseases or pathologies that affect the nervous system and other tissues or organs. We found that challenging the skin of the calf of the hind paw or the cheek of previously sensitized mice with the hapten, squaric acid dibutyl ester, produced symptoms of contact hypersensitivity including an increase in skin thickness and site-directed spontaneous pain-like (licking or wiping) and itch-like (biting or scratching) behaviours. Ablation of MRGPRA3+ neurons led to a significant reduction in spontaneous scratching of the hapten-challenged nape of the neck of previously sensitized mice. In vivo, electrophysiological recordings revealed that MRGPRA3+ and MRGPRD+ neurons innervating the hapten-challenged skin exhibited a greater incidence of spontaneous activity and/or abnormal after-discharges in response to mechanical and heat stimuli applied to their receptive fields compared with neurons from the vehicle-treated control animals. Whole-cell recordings in vitro showed that both MRGPRA3+ and MRGPRD+ neurons from hapten-challenged mice displayed a significantly more depolarized resting membrane potential, decreased rheobase, and greater number of action potentials at twice rheobase compared with neurons from vehicle controls. These signs of neuronal hyperexcitability were associated with a significant increase in the peak amplitude of tetrodotoxin-sensitive and resistant sodium currents. Thus, the hyperexcitability of MRGPRA3+ and MRGPRD+ neurons, brought about in part by enhanced sodium currents, may contribute to the spontaneous itch- and pain-related behaviours accompanying contact hypersensitivity and/or other inflammatory diseases in humans.


Subject(s)
Dermatitis, Contact/metabolism , Neurons/metabolism , Nociceptors/physiology , Pruritus/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Dermatitis, Contact/physiopathology , Disease Models, Animal , Ganglia, Spinal/metabolism , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pain/metabolism , Patch-Clamp Techniques , Pruritus/etiology , Skin/innervation
3.
Theranostics ; 14(4): 1615-1630, 2024.
Article in English | MEDLINE | ID: mdl-38389848

ABSTRACT

Rationale: Noxious stimuli are often perceived as itchy in patients with chronic dermatitis (CD); however, itch and pain mechanisms of CD are not known. Methods: TRPV1 involvement in CD was analyzed using a SADBE induced CD-like mouse model, and several loss- and gain-of-function mouse models. Trigeminal TRPV1 channel and MrgprA3+ neuron functions were analyzed by calcium imaging and whole-cell patch-clamp recordings. Lesional CD-like skin from mice were analyzed by unbiased metabolomic analysis. 20-HETE availability in human and mouse skin were determined by LC/MS and ELISA. And finally, HET0016, a selective 20-HETE synthase inhibitor, was used to evaluate if blocking skin TRPV1 activation alleviates CD-associated chronic itch or pain. Results: While normally a pain inducing chemical, capsaicin induced both itch and pain in mice with CD condition. DREADD silencing of MrgprA3+ primary sensory neurons in these mice selectively decreased capsaicin induced scratching, but not pain-related wiping behavior. In the mice with CD condition, MrgprA3+ neurons showed elevated ERK phosphorylation. Further experiments showed that MrgprA3+ neurons from MrgprA3;Braf mice, which have constitutively active BRAF in MrgprA3+ neurons, were significantly more excitable and responded more strongly to capsaicin. Importantly, capsaicin induced both itch and pain in MrgprA3;Braf mice in an MrgprA3+ neuron dependent manner. Finally, the arachidonic acid metabolite 20-HETE, which can activate TRPV1, was significantly elevated in the lesional skin of mice and patients with CD. Treatment with the selective 20-HETE synthase inhibitor HET0016 alleviated itch in mice with CD condition. Conclusion: Our results demonstrate that 20-HETE activates TRPV1 channels on sensitized MrgprA3+ neurons, and induces allokinesis in lesional CD skin. Blockade of 20-HETE synthesis or silencing of TRPV1-MrgprA3+ neuron signaling offers promising therapeutic strategies for alleviating CD-associated chronic itch.


Subject(s)
Amidines , Dermatitis , Hydroxyeicosatetraenoic Acids , Proto-Oncogene Proteins B-raf , Humans , Animals , Capsaicin/pharmacology , Pruritus , Pain , Chronic Disease , Disease Models, Animal , TRPV Cation Channels
4.
Integr Med Res ; 12(1): 100916, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36632132

ABSTRACT

Background: Previous studies have found that Korean red ginseng extract (KRG) has antipruritic effects, which can be attributed to the presence of Rg3, one of the most potent ginsenosides. Therefore, Rg3-enriched KRG extract (Rg3EKRG) is anticipated to have enhanced antipruritic effects. The present study was conducted to examine the effects of Rg3EKRG in acute chloroquine (CQ)-induced and chronic dry skin pruritus. Methods: Calcium imaging technique was used in HE293T cells expressing MrgprA3 and TRPA1 ("MrgprA3/TRPA1") and in primary cultures of mouse dorsal root ganglia (DRG) neurons. Mouse scratching behavior tests were performed on dry skin models. To verify the altered expression of itch-related genes, real-time RNA sequencing analysis and PCR were performed on DRG sections obtained from dry skin models. Results: Rg3EKRG suppressed CQ-induced intracellular calcium changes to a greater degree than KRG. Rg3EKRG dose-dependently inhibited CQ-induced responses in MrgprA3/TRPA1 cells. Rg3EKRG likely targeted MrgprA3 rather than TRPA1 to exert its inhibitory effect. Further, Rg3EKRG strongly inhibited the scratching behavior in mice induced by acute CQ injection. Importantly, DRG neurons obtained from dry skin mice models showed increased mRNA levels of MrgprA3, and treatment with Rg3EKRG alleviated chronic dry skin conditions and suppressed spontaneous scratching behaviors. Conclusion: The results of the present study imply that Rg3EKRG has a stronger antipruritic effect than KRG, inhibiting both acute CQ-induced and chronic dry skin pruritus in an MrgprA3-dependent manner. Therefore, Rg3EKRG is a potential antipruritic agent that can suppress acute and chronic itching at the peripheral sensory neuronal level.

5.
Biochem Pharmacol ; 208: 115368, 2023 02.
Article in English | MEDLINE | ID: mdl-36493846

ABSTRACT

Chronic itch is the most prominent feature of atopic dermatitis (AD), and antihistamine treatment is often less effective in reducing clinical pruritus severity in AD. Multiple studies have shown that histamine-independent itch pathway is thought to predominate in AD-induced chronic itch. Mas-related G-protein-coupled receptor (Mrgpr) A3+ sensory neurons have been identified as one of the major itch-sensing neuron populations, and transient receptor potential (TRP) channel A1 is the key downstream of MrgprA3-mediated histamine-independent itch. MrgprA3-TRPA1 signal pathway is necessary for the development of chronic itch and may be the potentially promising target of chronic itch in AD. Dictamnine is one of the main quinoline alkaloid components of Cortex Dictamni (a traditional Chinese medicine widely used in clinical treatment of skin diseases). However, the anti-inflammatory and anti-pruritic effect of dictamnine on AD have not been reported. In this study, we used the 2,4-dinitrofluorobenzene (DNFB)-induced AD mouse model to observe the scratching behavior, inflammatory manifestations, and to detect the expression of MrgprA3 and TRPA1 in skin and DRG. The data demonstrated that dictamnine effectively inhibited AD-induced chronic itch, inflammation symptoms, epidermal thickening, inflammatory cell infiltration, and downregulated the expression of MrgprA3 and TRPA1. Furthermore, dictamnine restrained the excitability of MrgprA3+ and TRPA1+ neurons. Molecular docking also indicated that dictamnine has better binding affinity with MrgprA3. These results suggest that dictamnine may inhibit chronic itch caused by AD through the MrgprA3-TRPA1 mediated histamine-independent itch pathway, and may have a potential utility in AD treatment.


Subject(s)
Dermatitis, Atopic , Quinolines , Transient Receptor Potential Channels , Mice , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Dinitrofluorobenzene , Histamine/metabolism , Molecular Docking Simulation , Pruritus/chemically induced , Pruritus/drug therapy , Pruritus/metabolism , Quinolines/pharmacology , Transient Receptor Potential Channels/metabolism , Sensory Receptor Cells , Receptors, G-Protein-Coupled/metabolism
6.
Res Sq ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076920

ABSTRACT

Skin employs interdependent cellular networks to facilitate barrier integrity and host immunity through ill-defined mechanisms. This study demonstrates that manipulation of itch-sensing neurons bearing the Mas-related G protein-coupled receptor A3 (MrgprA3) drives IL-17+ γδ T cell expansion, epidermal thickening, and resistance to the human pathogen Schistosoma mansoni through mechanisms that require myeloid antigen presenting cells (APC). Activated MrgprA3 neurons instruct myeloid APCs to downregulate interleukin 33 (IL-33) and up-regulate TNFα partially through the neuropeptide calcitonin gene related peptide (CGRP). Strikingly, cell-intrinsic deletion of IL-33 in myeloid APC basally alters chromatin accessibility at inflammatory cytokine loci and promotes IL-17/23-dependent epidermal thickening, keratinocyte hyperplasia, and resistance to helminth infection. Our findings reveal a previously undescribed mechanism of intercellular cross-talk wherein "itch" neuron activation reshapes myeloid cytokine expression patterns to alter skin composition for cutaneous immunity against invasive pathogens.

7.
Front Physiol ; 14: 1055706, 2023.
Article in English | MEDLINE | ID: mdl-37441000

ABSTRACT

Aedes aegypti (Ae. aegypti) saliva induces a variety of anti-inflammatory and immunomodulatory activities. Interestingly, although it is known that mosquito bites cause allergic reactions in sensitised hosts, the primary exposure of humans to Ae. aegypti does not evoke significant itching. Whether active components in the saliva of Ae. aegypti can counteract the normal itch reaction to injury produced by a histaminergic or non-histaminergic pathway in vertebrate hosts is unknown. This study investigated the effects of Ae. aegypti mosquito salivary gland extract (SGE) on sensitive reactions such as itching and associated skin inflammation. Acute pruritus and plasma extravasation were induced in mice by the intradermal injection of either compound 48/80 (C48/80), the Mas-related G protein-coupled receptor (Mrgpr) agonist chloroquine (CQ), or the transient receptor potential ankyrin 1 (TRPA1) agonist allyl isothiocyanate (AITC). The i.d. co-injection of Ae. aegypti SGE inhibited itching, plasma extravasation, and neutrophil influx evoked by C48/80, but it did not significantly affect mast cell degranulation in situ or in vitro. Additionally, SGE partially reduced CQ- and AITC-induced pruritus in vivo, suggesting that SGE affects pruriceptive nerve firing independently of the histaminergic pathway. Activation of TRPA1 significantly increased intracellular Ca2+ in TRPA-1-transfected HEK293t lineage, which was attenuated by SGE addition. We showed for the first time that Ae. aegypti SGE exerts anti-pruriceptive effects, which are partially regulated by the histamine-independent itch TRPA1 pathway. Thus, SGE may possess bioactive molecules with therapeutic potential for treating nonhistaminergic itch.

8.
Neuron ; 110(5): 809-823.e5, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34986325

ABSTRACT

Whether glutamate or itch-selective neurotransmitters are used to confer itch specificity is still under debate. We focused on an itch-selective population of primary afferents expressing MRGPRA3, which highly expresses Vglut2 and the neuropeptide neuromedin B (Nmb), to investigate this question. Optogenetic stimulation of MRGPRA3+ afferents triggers scratching and other itch-related avoidance behaviors. Using a combination of optogenetics, spinal cord slice recordings, Vglut2 conditional knockout mice, and behavior assays, we showed that glutamate is essential for MRGPRA3+ afferents to transmit itch. We further demonstrated that MRGPRA3+ afferents form monosynaptic connections with both NMBR+ and NMBR- neurons and that NMB and glutamate together can enhance the activity of NMBR+ spinal DH neurons. Moreover, Nmb in MRGPRA3+ afferents and NMBR+ DH neurons are required for chloroquine-induced scratching. Together, our results establish a new model in which glutamate is an essential neurotransmitter in primary afferents for itch transmission, whereas NMB signaling enhances its activities.


Subject(s)
Glutamic Acid , Pruritus , Animals , Mice , Mice, Knockout , Neurons , Pruritus/chemically induced , Spinal Cord
9.
Neuron ; 106(6): 940-951.e4, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32298640

ABSTRACT

Itch and pain are distinct unpleasant sensations that can be triggered from the same receptive fields in the skin, raising the question of how pruriception and nociception are coded and discriminated. Here, we tested the multimodal capacity of peripheral first-order neurons, focusing on the genetically defined subpopulation of mouse C-fibers that express the chloroquine receptor MrgprA3. Using optogenetics, chemogenetics, and pharmacology, we assessed the behavioral effects of their selective stimulation in a wide variety of conditions. We show that metabotropic Gq-linked stimulation of these C-afferents, through activation of native MrgprA3 receptors or DREADDs, evokes stereotypical pruriceptive rather than nocifensive behaviors. In contrast, fast ionotropic stimulation of these same neurons through light-gated cation channels or native ATP-gated P2X3 channels predominantly evokes nocifensive rather than pruriceptive responses. We conclude that C-afferents display intrinsic multimodality, and we provide evidence that optogenetic and chemogenetic interventions on the same neuronal populations can drive distinct behavioral outputs.


Subject(s)
Channelrhodopsins/metabolism , Nerve Fibers, Unmyelinated/metabolism , Neurons, Afferent/metabolism , Nociception/physiology , Pain/metabolism , Pruritus/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Purinergic P2X3/metabolism , Adenosine Triphosphate , Animals , Chloroquine , Ganglia, Spinal/metabolism , Gastrin-Releasing Peptide/metabolism , Light , Mice , Neurons, Afferent/physiology , Optogenetics , Receptors, Opioid/metabolism , Transient Receptor Potential Channels/metabolism
10.
J Ginseng Res ; 42(4): 470-475, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30337807

ABSTRACT

BACKGROUND: It was previously found that Korean Red Ginseng water extract (KRGE) inhibits the histamine-induced itch signaling pathway in peripheral sensory neurons. Thus, in the present study, we investigated whether KRGE inhibited another distinctive itch pathway induced by chloroquine (CQ); a representative histamine-independent pathway mediated by MrgprA3 and TRPA1. METHODS: Intracellular calcium changes were measured by the calcium imaging technique in the HEK293T cells transfected with both MrgprA3 and TRPA1 ("MrgprA3/TRPA1"), and in primary culture of mouse dorsal root ganglia (DRGs). Mouse scratching behavior tests were performed to verify proposed antipruritic effects of KRGE and ginsenoside Rg3. RESULTS: CQ-induced Ca2+ influx was strongly inhibited by KRGE (10 µg/mL) in MrgprA3/TRPA1, and notably ginsenoside Rg3 dose-dependently suppressed CQ-induced Ca2+ influx in MrgprA3/TRPA1. Moreover, both KRGE (10 µg/mL) and Rg3 (100 µM) suppressed CQ-induced Ca2+ influx in primary culture of mouse DRGs, indicating that the inhibitory effect of KRGE was functional in peripheral sensory neurons. In vivo tests revealed that not only KRGE (100 mg) suppressed CQ-induced scratching in mice [bouts of scratching: 274.0 ± 51.47 (control) vs. 104.7 ± 17.39 (KRGE)], but also Rg3 (1.5 mg) oral administration significantly reduced CQ-induced scratching as well [bouts of scratching: 216.8 ± 33.73 (control) vs. 115.7 ± 20.94 (Rg3)]. CONCLUSION: The present study verified that KRGE and Rg3 have a strong antipruritic effect against CQ-induced itch. Thus, KRGE is as a promising antipruritic agent that blocks both histamine-dependent and -independent itch at peripheral sensory neuronal levels.

11.
Itch (Phila) ; 2(3)2017 Dec.
Article in English | MEDLINE | ID: mdl-29577089

ABSTRACT

INTRODUCTION: Chronic itch has been drawing much attention due to its clinical significance and the complexity of its mechanisms. To facilitate the development of anti-itch strategies, it is necessary to investigate the key players in itch sensation under chronic itch conditions. Several members of the Mrgpr family were identified as itch receptors that detect cutaneous pruritogens in primary sensory neurons. However, the role of Mrgprs in chronic itch conditions has not been well described. METHODS: Scratching behaviors of WT and Mrgpr-clusterΔ-/- mice were examined in dry skin model and contact dermatitis model to examine the role of Mrgpr genes in mediating chronic itch sensation. Scratching behaviors of the mice were also examined in allergic itch model. Real-time PCR were performed to examine the expression level of MrgprA3 and MrgprC11 under naïve and dry skin conditions. The MrgprA3+ itch-sensing fibers were labeled by tdTomato fluorescence in Mrgpra3GFP-Cre; ROSA26tdTomato mice, and the morphology and density of those fibers in the epidermis were analyzed under dry skin condition. RESULTS: We showed that deleting a cluster of Mrgpr genes in mice reduced scratching behavior severely under two chronic itch conditions, namely dry skin and contact dermatitis, and the allergic itch condition. Moreover, the gene expressions of itch receptors MrgprA3 and MrgprC11 in dorsal root ganglia (DRG) were upregulated significantly under dry skin condition. Consistently, the percentage of MrgprA3+ itch-sensing neurons was increased as well. We also observed hyperinnervation of MrgprA3+ itch-sensing fibers in the epidermis of the skin under dry skin condition. DISCUSSION: We demonstrate that Mrgprs play important roles in mediating chronic itch and allergic itch. These findings enrich our knowledge of itch mechanism and may lead to the development of novel therapeutic approach to combat itch.

12.
Brain Res ; 1636: 161-171, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26874069

ABSTRACT

Itch is described as an unpleasant or irritating skin sensation that elicits the desire or reflex to scratch. MrgprA3, one of members of the Mrgprs family, is specifically expressed in a subpopulation of dorsal root ganglion (DRG) in the peripheral nervous system (PNS). These MrgprA3-expressing DRG neurons have been identified as itch-specific neurons. They can be activated by the compound, chloroquine, which is used as a drug to treat malaria. In the present study, we labeled these itch-specific neurons using the method of molecular genetic markers, and then studied their electrophysiological properties. We also recorded the cutaneous MrgprA3(-) neurons retrogradely labeled by Dil dye (MrgprA3(-)-Dil). We first found that MrgprA3(+) neurons have a lower excitability than MrgprA3(-) neurons (MrgprA3(-)-non-Dil and MrgprA3(-)-Dil). The number of action potential (AP) was reduced more obviously in MrgprA3(+) neurons than that of in MrgprA3(-) neurons. In most cases, MrgprA3(+) neurons only generated single AP; however, in MrgprA3(-) neurons, the same stimulation could induce multiple AP firing due to the greater voltage-gated potassium (Kv) current existence in MrgprA3(+) than in MrgprA3(-) neurons. Thus, Kv current plays an important role in the regulation of excitability in itch-specific neurons.


Subject(s)
Action Potentials/genetics , Ganglia, Spinal/cytology , Neurons/physiology , Potassium Channels, Voltage-Gated/physiology , Receptors, G-Protein-Coupled/metabolism , Action Potentials/drug effects , Amino Acids/administration & dosage , Animals , Biophysical Phenomena/drug effects , Biophysical Phenomena/genetics , Biophysics , Cells, Cultured , Electric Stimulation , Female , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Patch-Clamp Techniques , Potassium/pharmacology , Potassium Channel Blockers/pharmacology , Receptors, G-Protein-Coupled/genetics , Tetraethylammonium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL