Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.234
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 39: 639-665, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33646858

ABSTRACT

Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.


Subject(s)
Helminthiasis , Helminths , Parasites , Animals , Host-Parasite Interactions , Humans , Immunity, Innate , Lymphocytes , T-Lymphocytes
2.
Annu Rev Immunol ; 38: 597-620, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340575

ABSTRACT

Neuroimmunology, albeit a relatively established discipline, has recently sparked numerous exciting findings on microglia, the resident macrophages of the central nervous system (CNS). This review addresses meningeal immunity, a less-studied aspect of neuroimmune interactions. The meninges, a triple layer of membranes-the pia mater, arachnoid mater, and dura mater-surround the CNS, encompassing the cerebrospinal fluid produced by the choroid plexus epithelium. Unlike the adjacent brain parenchyma, the meninges contain a wide repertoire of immune cells. These constitute meningeal immunity, which is primarily concerned with immune surveillance of the CNS, and-according to recent evidence-also participates in postinjury CNS recovery, chronic neurodegenerative conditions, and even higher brain function. Meningeal immunity has recently come under the spotlight owing to the characterization of meningeal lymphatic vessels draining the CNS. Here, we review the current state of our understanding of meningeal immunity and its effects on healthy and diseased brains.


Subject(s)
Central Nervous System/immunology , Central Nervous System/metabolism , Disease Susceptibility , Homeostasis , Immunity , Meninges/physiology , Animals , Humans , Lymphatic Vessels/immunology , Lymphatic Vessels/metabolism , Neuroimmunomodulation , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
3.
Annu Rev Immunol ; 37: 19-46, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30379595

ABSTRACT

The interplay between the immune and nervous systems has been acknowledged in the past, but only more recent studies have started to unravel the cellular and molecular players of such interactions. Mounting evidence indicates that environmental signals are sensed by discrete neuro-immune cell units (NICUs), which represent defined anatomical locations in which immune and neuronal cells colocalize and functionally interact to steer tissue physiology and protection. These units have now been described in multiple tissues throughout the body, including lymphoid organs, adipose tissue, and mucosal barriers. As such, NICUs are emerging as important orchestrators of multiple physiological processes, including hematopoiesis, organogenesis, inflammation, tissue repair, and thermogenesis. In this review we focus on the impact of NICUs in tissue physiology and how this fast-evolving field is driving a paradigm shift in our understanding of immunoregulation and organismal physiology.


Subject(s)
Immune System , Nervous System , Neuroimmunomodulation , Animals , Humans , Immunity, Mucosal , Immunomodulation
4.
Cell ; 186(7): 1309-1327, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001498

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system afflicting nearly three million individuals worldwide. Neuroimmune interactions between glial, neural, and immune cells play important roles in MS pathology and offer potential targets for therapeutic intervention. Here, we review underlying risk factors, mechanisms of MS pathogenesis, available disease modifying therapies, and examine the value of emerging technologies, which may address unmet clinical needs and identify novel therapeutic targets.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Central Nervous System , Neuroglia , Cell Physiological Phenomena , Inflammation/pathology
5.
Cell ; 185(22): 4135-4152.e22, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36257314

ABSTRACT

Recent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aß) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aß deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3ß-signaling, and restrict Aß phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aß load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Microglia/pathology , Phagocytosis
6.
Cell ; 184(23): 5715-5727.e12, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34717799

ABSTRACT

The enteric nervous system (ENS) controls several intestinal functions including motility and nutrient handling, which can be disrupted by infection-induced neuropathies or neuronal cell death. We investigated possible tolerance mechanisms preventing neuronal loss and disruption in gut motility after pathogen exposure. We found that following enteric infections, muscularis macrophages (MMs) acquire a tissue-protective phenotype that prevents neuronal loss, dysmotility, and maintains energy balance during subsequent challenge with unrelated pathogens. Bacteria-induced neuroprotection relied on activation of gut-projecting sympathetic neurons and signaling via ß2-adrenergic receptors (ß2AR) on MMs. In contrast, helminth-mediated neuroprotection was dependent on T cells and systemic production of interleukin (IL)-4 and IL-13 by eosinophils, which induced arginase-expressing MMs that prevented neuronal loss from an unrelated infection located in a different intestinal region. Collectively, these data suggest that distinct enteric pathogens trigger a state of disease or tissue tolerance that preserves ENS number and functionality.


Subject(s)
Enteric Nervous System/microbiology , Enteric Nervous System/parasitology , Infections/microbiology , Infections/parasitology , Neurons/pathology , Neuroprotection , Organ Specificity , Yersinia pseudotuberculosis/physiology , Animals , Eosinophils/metabolism , Hematopoietic Stem Cells/metabolism , Immunity , Infections/immunology , Interleukin-13/metabolism , Interleukin-4/metabolism , Macrophages/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Strongyloides/physiology , Strongyloidiasis/genetics , Strongyloidiasis/immunology , Strongyloidiasis/parasitology , Transcriptome/genetics , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/microbiology
7.
Cell ; 184(2): 441-459.e25, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33333021

ABSTRACT

Barrier tissue immune responses are regulated in part by nociceptors. Nociceptor ablation alters local immune responses at peripheral sites and within draining lymph nodes (LNs). The mechanisms and significance of nociceptor-dependent modulation of LN function are unknown. Using high-resolution imaging, viral tracing, single-cell transcriptomics, and optogenetics, we identified and functionally tested a sensory neuro-immune circuit that is responsive to lymph-borne inflammatory signals. Transcriptomics profiling revealed that multiple sensory neuron subsets, predominantly peptidergic nociceptors, innervate LNs, distinct from those innervating surrounding skin. To uncover LN-resident cells that may interact with LN-innervating sensory neurons, we generated a LN single-cell transcriptomics atlas and nominated nociceptor target populations and interaction modalities. Optogenetic stimulation of LN-innervating sensory fibers triggered rapid transcriptional changes in the predicted interacting cell types, particularly endothelium, stromal cells, and innate leukocytes. Thus, a unique population of sensory neurons monitors peripheral LNs and may locally regulate gene expression.


Subject(s)
Immunomodulation , Lymph Nodes/immunology , Lymph Nodes/innervation , Sensory Receptor Cells/immunology , Action Potentials , Animals , Inflammation/pathology , Mice , Nociceptors/metabolism , Optogenetics , Peptides/metabolism , Skin/innervation , Sympathetic Nervous System/physiology , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism
8.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33508229

ABSTRACT

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Subject(s)
Cranial Sinuses/immunology , Cranial Sinuses/physiology , Dura Mater/immunology , Dura Mater/physiology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/metabolism , Antigens/cerebrospinal fluid , Cellular Senescence , Chemokine CXCL12/pharmacology , Dura Mater/blood supply , Female , Homeostasis , Humans , Immunity , Male , Mice, Inbred C57BL , Phenotype , Stromal Cells/cytology , T-Lymphocytes/cytology
9.
Cell ; 184(8): 2151-2166.e16, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33765440

ABSTRACT

Cutaneous mast cells mediate numerous skin inflammatory processes and have anatomical and functional associations with sensory afferent neurons. We reveal that epidermal nerve endings from a subset of sensory nonpeptidergic neurons expressing MrgprD are reduced by the absence of Langerhans cells. Loss of epidermal innervation or ablation of MrgprD-expressing neurons increased expression of a mast cell gene module, including the activating receptor, Mrgprb2, resulting in increased mast cell degranulation and cutaneous inflammation in multiple disease models. Agonism of MrgprD-expressing neurons reduced expression of module genes and suppressed mast cell responses. MrgprD-expressing neurons released glutamate which was increased by MrgprD agonism. Inhibiting glutamate release or glutamate receptor binding yielded hyperresponsive mast cells with a genomic state similar to that in mice lacking MrgprD-expressing neurons. These data demonstrate that MrgprD-expressing neurons suppress mast cell hyperresponsiveness and skin inflammation via glutamate release, thereby revealing an unexpected neuroimmune mechanism maintaining cutaneous immune homeostasis.


Subject(s)
Glutamic Acid/metabolism , Mast Cells/metabolism , Neurons/metabolism , Skin/metabolism , Animals , Cells, Cultured , Dermatitis/metabolism , Dermatitis/pathology , Diphtheria Toxin/pharmacology , Disease Models, Animal , Female , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Langerhans Cells/cytology , Langerhans Cells/drug effects , Langerhans Cells/metabolism , Mast Cells/cytology , Mast Cells/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Skin/pathology , beta-Alanine/chemistry , beta-Alanine/metabolism , beta-Alanine/pharmacology
10.
Cell ; 182(2): 372-387.e14, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32610084

ABSTRACT

Acute psychological stress has long been known to decrease host fitness to inflammation in a wide variety of diseases, but how this occurs is incompletely understood. Using mouse models, we show that interleukin-6 (IL-6) is the dominant cytokine inducible upon acute stress alone. Stress-inducible IL-6 is produced from brown adipocytes in a beta-3-adrenergic-receptor-dependent fashion. During stress, endocrine IL-6 is the required instructive signal for mediating hyperglycemia through hepatic gluconeogenesis, which is necessary for anticipating and fueling "fight or flight" responses. This adaptation comes at the cost of enhancing mortality to a subsequent inflammatory challenge. These findings provide a mechanistic understanding of the ontogeny and adaptive purpose of IL-6 as a bona fide stress hormone coordinating systemic immunometabolic reprogramming. This brain-brown fat-liver axis might provide new insights into brown adipose tissue as a stress-responsive endocrine organ and mechanistic insight into targeting this axis in the treatment of inflammatory and neuropsychiatric diseases.


Subject(s)
Adipose Tissue, Brown/metabolism , Interleukin-6/metabolism , Stress, Psychological , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Brain/metabolism , Chemokines/metabolism , Cytokines/metabolism , Disease Models, Animal , Gluconeogenesis , Hyperglycemia/metabolism , Hyperglycemia/pathology , Interleukin-6/blood , Interleukin-6/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Adrenergic, beta-3/metabolism , Receptors, Interleukin-6/metabolism , Uncoupling Protein 1/deficiency , Uncoupling Protein 1/genetics
11.
Cell ; 180(1): 50-63.e12, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31923399

ABSTRACT

Mucosal barrier immunity is essential for the maintenance of the commensal microflora and combating invasive bacterial infection. Although immune and epithelial cells are thought to be the canonical orchestrators of this complex equilibrium, here, we show that the enteric nervous system (ENS) plays an essential and non-redundant role in governing the antimicrobial protein (AMP) response. Using confocal microscopy and single-molecule fluorescence in situ mRNA hybridization (smFISH) studies, we observed that intestinal neurons produce the pleiotropic cytokine IL-18. Strikingly, deletion of IL-18 from the enteric neurons alone, but not immune or epithelial cells, rendered mice susceptible to invasive Salmonella typhimurium (S.t.) infection. Mechanistically, unbiased RNA sequencing and single-cell sequencing revealed that enteric neuronal IL-18 is specifically required for homeostatic goblet cell AMP production. Together, we show that neuron-derived IL-18 signaling controls tissue-wide intestinal immunity and has profound consequences on the mucosal barrier and invasive bacterial killing.


Subject(s)
Immunity, Mucosal/immunology , Interleukin-18/immunology , Intestinal Mucosa/immunology , Animals , Cytokines/immunology , Enteric Nervous System/immunology , Enteric Nervous System/metabolism , Epithelial Cells/immunology , Female , Goblet Cells/immunology , Interleukin-18/biosynthesis , Intestinal Mucosa/metabolism , Intestine, Small/immunology , Male , Mice , Mice, Inbred C57BL , Neurons/immunology , Rats , Rats, Sprague-Dawley , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Signal Transduction/immunology
12.
Cell ; 178(5): 1231-1244.e11, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31402172

ABSTRACT

Growth and differentiation factor 15 (GDF15) is an inflammation-associated hormone with poorly defined biology. Here, we investigated the role of GDF15 in bacterial and viral infections. We found that inflammation induced GDF15, and that GDF15 was necessary for surviving both bacterial and viral infections, as well as sepsis. The protective effects of GDF15 were largely independent of pathogen control or the magnitude of inflammatory response, suggesting a role in disease tolerance. Indeed, we found that GDF15 was required for hepatic sympathetic outflow and triglyceride metabolism. Failure to defend the lower limit of plasma triglyceride levels was associated with impaired cardiac function and maintenance of body temperature, effects that could be rescued by exogenous administration of lipids. Together, we show that GDF15 coordinates tolerance to inflammatory damage through regulation of triglyceride metabolism.


Subject(s)
Growth Differentiation Factor 15/metabolism , Liver/metabolism , Sepsis/pathology , Animals , Antibodies/pharmacology , Disease Models, Animal , Growth Differentiation Factor 15/blood , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/immunology , Heart/drug effects , Heart/virology , Humans , Lipid Metabolism/drug effects , Lipopolysaccharides/toxicity , Liver/drug effects , Mice , Mice, Inbred C57BL , Norepinephrine/metabolism , Orthomyxoviridae/pathogenicity , Poly I-C/toxicity , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Sepsis/blood , Sepsis/mortality , Survival Rate , Triglycerides/blood , Triglycerides/metabolism , Troponin I/blood , Tumor Necrosis Factor-alpha/blood
13.
Cell ; 178(4): 919-932.e14, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31353219

ABSTRACT

Cutaneous TRPV1+ neurons directly sense noxious stimuli, inflammatory cytokines, and pathogen-associated molecules and are required for innate immunity against some skin pathogens. Important unanswered questions are whether TRPV1+ neuron activation in isolation is sufficient to initiate innate immune responses and what is the biological function for TRPV1+ neuron-initiated immune responses. We used TRPV1-Ai32 optogenetic mice and cutaneous light stimulation to activate cutaneous neurons in the absence of tissue damage or pathogen-associated products. We found that TRPV1+ neuron activation was sufficient to elicit a local type 17 immune response that augmented host defense to C. albicans and S. aureus. Moreover, local neuron activation elicited type 17 responses and augmented host defense at adjacent, unstimulated skin through a nerve reflex arc. These data show the sufficiency of TRPV1+ neuron activation for host defense and demonstrate the existence of functional anticipatory innate immunity at sites adjacent to infection that depends on antidromic neuron activation.


Subject(s)
Immunity, Innate/immunology , Interleukin-23/metabolism , Interleukin-6/metabolism , Sensory Receptor Cells/immunology , Skin/immunology , TRPV Cation Channels/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Candida albicans/immunology , Inflammation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics/methods , Skin/microbiology , Staphylococcus aureus/immunology , TRPV Cation Channels/genetics
14.
Cell ; 174(5): 1054-1066, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30142344

ABSTRACT

Innate lymphoid cells (ILCs) are lymphocytes that do not express the type of diversified antigen receptors expressed on T cells and B cells. ILCs are largely tissue-resident cells and are deeply integrated into the fabric of tissues. The discovery and investigation of ILCs over the past decade has changed our perception of immune regulation and how the immune system contributes to the maintenance of tissue homeostasis. We now know that cytokine-producing ILCs contribute to multiple immune pathways by, for example, sustaining appropriate immune responses to commensals and pathogens at mucosal barriers, potentiating adaptive immunity, and regulating tissue inflammation. Critically, the biology of ILCs also extends beyond classical immunology to metabolic homeostasis, tissue remodeling, and dialog with the nervous system. The last 10 years have also contributed to our greater understanding of the transcriptional networks that regulate lymphocyte commitment and delineation. This, in conjunction with the recent advances in our understanding of the influence of local tissue microenvironments on the plasticity and function of ILCs, has led to a re-evaluation of their existing categorization. In this review, we distill the advances in ILC biology over the past decade to refine the nomenclature of ILCs and highlight the importance of ILCs in tissue homeostasis, morphogenesis, metabolism, repair, and regeneration.


Subject(s)
Adaptive Immunity/physiology , Immunity, Innate , Lymphocytes/cytology , Animals , B-Lymphocytes/immunology , Cytokines/immunology , Homeostasis , Humans , Hypothalamo-Hypophyseal System , Inflammation/immunology , Killer Cells, Natural/cytology , Mice , Phenotype , Pituitary-Adrenal System , Regeneration , T-Lymphocytes/immunology
15.
Cell ; 173(5): 1083-1097.e22, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29754819

ABSTRACT

The nervous system, the immune system, and microbial pathogens interact closely at barrier tissues. Here, we find that a bacterial pathogen, Streptococcus pyogenes, hijacks pain and neuronal regulation of the immune response to promote bacterial survival. Necrotizing fasciitis is a life-threatening soft tissue infection in which "pain is out of proportion" to early physical manifestations. We find that S. pyogenes, the leading cause of necrotizing fasciitis, secretes streptolysin S (SLS) to directly activate nociceptor neurons and produce pain during infection. Nociceptors, in turn, release the neuropeptide calcitonin gene-related peptide (CGRP) into infected tissues, which inhibits the recruitment of neutrophils and opsonophagocytic killing of S. pyogenes. Botulinum neurotoxin A and CGRP antagonism block neuron-mediated suppression of host defense, thereby preventing and treating S. pyogenes necrotizing infection. We conclude that targeting the peripheral nervous system and blocking neuro-immune communication is a promising strategy to treat highly invasive bacterial infections. VIDEO ABSTRACT.


Subject(s)
Neurons/metabolism , Neutrophils/metabolism , Streptococcal Infections/pathology , Streptococcus pyogenes/pathogenicity , Animals , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Botulinum Toxins, Type A/administration & dosage , Calcitonin Gene-Related Peptide/metabolism , Caspase 1/deficiency , Caspase 1/genetics , Diterpenes/pharmacology , Fasciitis, Necrotizing/etiology , Fasciitis, Necrotizing/pathology , Fasciitis, Necrotizing/veterinary , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Neurons/drug effects , Neutrophils/immunology , Pain/etiology , Signal Transduction , Skin/metabolism , Skin/pathology , Streptococcal Infections/complications , Streptococcal Infections/veterinary , Streptococcus pyogenes/metabolism , Streptolysins/immunology , Streptolysins/metabolism , TRPV Cation Channels/deficiency , TRPV Cation Channels/genetics
16.
Cell ; 173(3): 554-567, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677509

ABSTRACT

The essential roles played by the immune system in the discrimination between self- versus non/altered-self and its integral role in promoting host defense against invading microbes and tumors have been extensively studied for many years. In these contexts, significant advances have been made in defining the molecular and cellular networks that orchestrate cell-cell communication to mediate host defense and pathogen expulsion. Notably, recent studies indicate that in addition to these classical immune functions, cells of the innate and adaptive immune system also sense complex tissue- and environment-derived signals, including those from the nervous system and the diet. In turn these responses regulate physiologic processes in multiple tissues throughout the body, including nervous system function, metabolic state, thermogenesis, and tissue repair. In this review we propose an integrated view of how the mammalian immune system senses and interacts with other complex organ systems to maintain tissue and whole-body homeostasis.


Subject(s)
Energy Metabolism , Immune System/physiology , Immunity, Innate/physiology , Adaptive Immunity , Animals , Cell Communication , Diet , Homeostasis , Host-Pathogen Interactions , Humans , Inflammation , Neurons/physiology , Regeneration , Sympathetic Nervous System , Vasoactive Intestinal Peptide/chemistry
17.
Annu Rev Neurosci ; 47(1): 323-344, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38648267

ABSTRACT

Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.


Subject(s)
Central Nervous System Diseases , Meninges , Humans , Animals , Central Nervous System Diseases/physiopathology , Central Nervous System Diseases/pathology , Lymphatic System/physiology , Lymphatic System/physiopathology , Lymphatic Vessels/physiology
18.
Cell ; 169(2): 301-313.e11, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28366204

ABSTRACT

Receptor-interacting protein kinase-3 (RIPK3) is an activator of necroptotic cell death, but recent work has implicated additional roles for RIPK3 in inflammatory signaling independent of cell death. However, while necroptosis has been shown to contribute to antiviral immunity, death-independent roles for RIPK3 in host defense have not been demonstrated. Using a mouse model of West Nile virus (WNV) encephalitis, we show that RIPK3 restricts WNV pathogenesis independently of cell death. Ripk3-/- mice exhibited enhanced mortality compared to wild-type (WT) controls, while mice lacking the necroptotic effector MLKL, or both MLKL and caspase-8, were unaffected. The enhanced susceptibility of Ripk3-/- mice arose from suppressed neuronal chemokine expression and decreased central nervous system (CNS) recruitment of T lymphocytes and inflammatory myeloid cells, while peripheral immunity remained intact. These data identify pleiotropic functions for RIPK3 in the restriction of viral pathogenesis and implicate RIPK3 as a key coordinator of immune responses within the CNS.


Subject(s)
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , West Nile Fever/immunology , West Nile virus/physiology , Animals , Central Nervous System/metabolism , Chemokines/immunology , Leukocytes/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Necrosis , Neurons/metabolism
19.
Immunity ; 55(7): 1159-1172, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35777361

ABSTRACT

Neurological symptoms in SARS-CoV-2-infected patients have been reported, but their cause remains unclear. In theory, the neurological symptoms observed after SARS-CoV-2 infection could be (1) directly caused by the virus infecting brain cells, (2) indirectly by our body's local or systemic immune response toward the virus, (3) by coincidental phenomena, or (4) a combination of these factors. As indisputable evidence of intact and replicating SARS-CoV-2 particles in the central nervous system (CNS) is currently lacking, we suggest focusing on the host's immune reaction when trying to understand the neurocognitive symptoms associated with SARS-CoV-2 infection. In this perspective, we discuss the possible immune-mediated mechanisms causing functional or structural CNS alterations during acute infection as well as in the post-infectious context. We also review the available literature on CNS affection in the context of COVID-19 infection, as well as observations from animal studies on the molecular pathways involved in sickness behavior.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Brain , Central Nervous System
20.
Immunity ; 55(11): 2085-2102.e9, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36228615

ABSTRACT

Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.


Subject(s)
Macrophages , Neuroinflammatory Diseases , Humans , Macrophages/metabolism , Monocytes/metabolism , Microglia/metabolism , Brain
SELECTION OF CITATIONS
SEARCH DETAIL