Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Inherit Metab Dis ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503330

ABSTRACT

Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in SLC25A13. The clinical manifestation is very variable and comprises three types: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD: OMIM 605814), post-NICCD including failure to thrive and dyslipidemia caused by citrin deficiency, and adult-onset type II citrullinemia (CTLN2: OMIM 603471). Frequently, NICCD can run with a mild clinical course and manifestations may resolve in the post-NICCD. However, a subset of patients may develop CTLN2 when they become more than 18 years old, and this condition is potentially life-threatening. Since a combination of diet with low-carbohydrate and high-fat content supplemented with medium-chain triglycerides is expected to ameliorate most manifestations and to prevent the progression to CTLN2, early detection and intervention are important and may improve long-term outcome in patients. Moreover, infusion of high sugar solution and/or glycerol may be life-threatening in patients with citrin deficiency, particularly CTLN2. The disease is highly prevalent in East Asian countries but is more and more recognized as a global entity. Since newborn screening for citrin deficiency has only been introduced in a few countries, the diagnosis still mainly relies on clinical suspicion followed by genetic testing or selective metabolic screening. This paper aims at describing (1) the different stages of the disease focusing on clinical aspects; (2) the current published clinical situation in East Asia, Europe, and North America; (3) current efforts in increasing awareness by establishing management guidelines and patient registries, hereby illustrating the ongoing development of a global network for this rare disease.

2.
J Inherit Metab Dis ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37681292

ABSTRACT

Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in the SLC25A13 gene. Intrahepatic cholestasis and various metabolic abnormalities, including hypoglycemia, galactosemia, citrullinemia, and hyperammonemia may be present in neonates or infants in the "neonatal intrahepatic cholestasis caused by citrin deficiency" (NICCD) form of the disease. Because at present, newborn screening (NBS) for citrin deficiency using citrulline levels in dried blood spots (DBS) can only detect some of the patients, we tried to develop a new evaluation system to more reliably detect newborns with citrin deficiency utilizing parameters already in place in present NBS methods. To achieve this goal, we re-analyzed NBS profiles of amino acids and acylcarnitines in 96 NICCD patients, who were diagnosed through selective screening or positive family history. Hereby, we identified the combined evaluation of arginine (Arg), citrulline (Cit), isoleucine+leucine (Ile + Leu), tyrosine (Tyr), free carnitine (C0) / glutarylcarnitine (C5-DC) ratio in DBS as potentially sensitive to diagnose citrin deficiency in pre-symptomatic newborns. In particular, a scoring system using threshold levels for Arg (≥9 µmol/L), Cit (≥ 39 µmol/L), Ile + Leu (≥ 99 µmol/L), Tyr (≥ 96 µmol/L) and C0/C5-DC ratio (≥327) was significantly effective to detect newborns who later developed NICCD, and could thus be implemented in existing NBS programs at no extra analytical costs whenever citrin deficiency is considered to become a novel target disease.

3.
J Inherit Metab Dis ; 45(3): 431-444, 2022 05.
Article in English | MEDLINE | ID: mdl-35142380

ABSTRACT

Citrin deficiency is an autosomal recessive disorder caused by mutations in the SLC25A13 gene. The disease can present with age-dependent clinical manifestations: neonatal intrahepatic cholestasis by citrin deficiency (NICCD), failure to thrive, and dyslipidemia by citrin deficiency (FTTDCD), and adult-onset type II citrullinemia (CTLN2). As a nationwide study to investigate the clinical manifestations, medical therapy, and long-term outcome in Japanese patients with citrin deficiency, we collected clinical data of 222 patients diagnosed and/or treated at various different institutions between January 2000 and December 2019. In the entire cohort, 218 patients were alive while 4 patients (1 FTTDCD and 3 CTLN2) had died. All patients <20 years were alive. Patients with citrin deficiency had an increased risk for low weight and length at birth, and CTLN2 patients had an increased risk for growth impairment during adolescence. Liver transplantation has been performed in only 4 patients (1 NICCD, 3 CTLN2) with a good response thereafter. This study reports the diagnosis and clinical course in a large cohort of patients with citrin deficiency and suggests that early intervention including a low carbohydrate diet and MCT supplementation can be associated with improved clinical course and long-term outcome.


Subject(s)
Cholestasis, Intrahepatic , Citrullinemia , Dyslipidemias , Organic Anion Transporters , Adolescent , Adult , Cholestasis, Intrahepatic/etiology , Cholestasis, Intrahepatic/therapy , Citrullinemia/diagnosis , Citrullinemia/genetics , Citrullinemia/therapy , Failure to Thrive , Humans , Infant, Newborn , Japan , Mitochondrial Membrane Transport Proteins/genetics , Mutation
4.
Pediatr Int ; 64(1): e14741, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33851467

ABSTRACT

BACKGROUND: Neonatal intrahepatic cholestasis with citrin deficiency (NICCD) results in coagulopathy due to decreased levels of vitamin (V)K-dependent clotting factors, similar to biliary atresia (BA). However, the involvement of VK-independent coagulant and anticoagulant factor(s) remains unknown. We examined relationships between coagulant and anticoagulant potential before and after nutritional treatment in NICCD. METHODS: Three cases (aged 12, 21, and 45 days) with NICCD-associated coagulopathy were evaluated with standard coagulation/anticoagulation tests and comprehensive coagulation assays, rotational thromboelastometry, and protein C/protein S (PC/PS) pathway function assay (ThromboPath® ), before and after nutritional treatment. RESULTS: In all cases, activated partial thromboplastin time and prothrombin time were significantly prolonged, which is associated with very low levels of VK-independent fibrinogen and antithrombin. The initiation of nutritional treatment of medium-chain triglycerides oil improved these levels within the normal range, although low levels of other clotting factors were modestly increased. Whole blood- rotational thromboelastometry analysis revealed near-normal coagulation potential, even before treatment, comparable to healthy adults, and supportive of their non-bleeding symptoms. The introduction of nutritional treatment had further improved comprehensive coagulation potential. The global PC/PS-pathway function assay demonstrated the absence of the features of this function associated with the pathogenesis of NICCD. Compared to BA, the plasma levels of fibrinogen and antithrombin in all cases were markedly low, whilst those after treatment improved, especially to similar level of BA. CONCLUSIONS: Neonatal intrahepatic cholestasis with citrin deficiency has the characteristic of rebalancing hemostatic mechanisms associated with coagulant and anticoagulant potential involving low levels of fibrinogen and antithrombin, suggesting a pathophysiological coagulopathy distinct from BA.


Subject(s)
Biliary Atresia , Blood Coagulation Disorders , Cholestasis, Intrahepatic , Cholestasis , Citrullinemia , Hemostatics , Humans , Infant, Newborn , Anticoagulants , Antithrombins , Biliary Atresia/complications , Blood Coagulation Factors , Cholestasis/etiology , Cholestasis, Intrahepatic/complications , Cholestasis, Intrahepatic/diagnosis , Fibrinogen , Infant
5.
Mol Genet Metab ; 133(1): 63-70, 2021 05.
Article in English | MEDLINE | ID: mdl-33741270

ABSTRACT

Patients with citrin deficiency during the adaptation/compensation period exhibit diverse clinical features and have characteristic diet of high protein, high fat, and low carbohydrate. Japanese cuisine typically contains high carbohydrate but evaluation of diet of citrin-deficient patients in 2008 showed a low energy intake and a protein:fat:carbohydrate (PFC) ratio of 19:44:37, which indicates low carbohydrate consumption rate. These findings prompted the need for diet intervention to prevent the adult onset of type II citrullinemia (CTLN2). Since the publication of the report about 10 years ago, patients are generally advised to eat what they wish under active dietary consultation and intervention. In this study, citrin-deficient patients and control subjects living in the same household provided answers to a questionnaire, filled-up a maximum 6-day food diary, and supplied physical data and information on medications if any. To study the effects of the current diet, the survey collected data from 62 patients and 45 controls comparing daily intakes of energy, protein, fat, and carbohydrate. Food analysis showed that patient's energy intake was 115% compared to the Japanese standard. The confidence interval of the PFC ratio of patients was 20-22:47-51:28-32, indicating higher protein, higher fat and lower carbohydrate relative to previous reports. The mean PFC ratio of female patients (22:53:25) was significantly different from that of male patients (20:46:34), which may explain the lower frequency of CTLN2 in females. Comparison of the present data to those published 10 years ago, energy, protein, and fat intakes were significantly higher but the amount of carbohydrate consumption remained the same. Regardless of age, most patients (except for adolescents) consumed 100-200 g/day of carbohydrates, which met the estimated average requirement of 100 g/day for healthy individuals. Finally, patients were generally not overweight and some CTLN2 patients were underweight although their energy intake was higher compared with the control subjects. We speculate that high-energy of a low carbohydrate diet under dietary intervention may help citrin-deficient patients attain normal growth and prevent the onset of CTLN2.


Subject(s)
Calcium-Binding Proteins/genetics , Citrullinemia/diet therapy , Energy Metabolism/physiology , Organic Anion Transporters/genetics , Adolescent , Adult , Calcium-Binding Proteins/deficiency , Carbohydrate Metabolism/physiology , Carbohydrates/administration & dosage , Citrullinemia/epidemiology , Citrullinemia/metabolism , Citrullinemia/pathology , Dietary Fats/administration & dosage , Dietary Fats/metabolism , Eating/physiology , Female , Humans , Japan/epidemiology , Male , Mitochondrial Membrane Transport Proteins/genetics , Organic Anion Transporters/deficiency , Proteins/administration & dosage , Proteins/metabolism
6.
J Inherit Metab Dis ; 44(1): 110-117, 2021 01.
Article in English | MEDLINE | ID: mdl-32740958

ABSTRACT

Citrin deficiency is a hereditary disorder caused by SLC25A13 mutations and manifests as neonatal intrahepatic cholestasis (NICCD), failure to thrive and dyslipidemia (FTTDCD), and adult-onset type II citrullinemia (CTLN2). Citrin is a component of the malate-aspartate nicotinamide adenine dinucleotide hydrogen (NADH) shuttle, an essential shuttle for hepatic glycolysis. Hepatic glycolysis and the coupled lipogenesis are impaired in citrin deficiency. Hepatic lipogenesis plays a significant role in fat supply during growth spurt periods: the fetal period, infancy, and puberty. Growth impairment in these periods is characteristic of citrin deficiency. Hepatocytes with citrin deficiency cannot use glucose and fatty acids as energy sources due to defects in the NADH shuttle and downregulation of peroxisome proliferator-activated receptor α (PPARα), respectively. An energy deficit in hepatocytes is considered a fundamental pathogenesis of citrin deficiency. Medium-chain triglyceride (MCT) supplementation with a lactose-restricted formula and MCT supplementation under a low-carbohydrate diet are recommended for NICCD and CTLN2, respectively. MCT supplementation therapy can provide energy to hepatocytes, promote lipogenesis, correct the cytosolic NAD+ /NADH ratio via the malate-citrate shuttle and improve ammonia detoxification, and it is a reasonable therapy for citrin deficiency. It is very important to administer MCT at a dose equivalent to the liver's energy requirements in divided doses with meals. MCT supplementation therapy is certainly promising for promoting growth spurts during infancy and adolescence and for preventing CTLN2 onset. Intravenous administration of solutions containing fructose is contraindicated, and persistent hyperglycemia should be avoided due to glucose intoxication for patients receiving hyperalimentation or with complicating diabetes.


Subject(s)
Citrullinemia/drug therapy , Citrullinemia/prevention & control , Triglycerides/therapeutic use , Adolescent , Citrullinemia/metabolism , Energy Metabolism , Hepatocytes/metabolism , Humans , Infant
7.
Medicina (Kaunas) ; 57(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34684069

ABSTRACT

Background: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a rare autosomal recessive disease. The incidence of citrin deficiency is estimated between 1/10,000 and 1/20,000 in Taiwan. Case report: This report describes a case of a 42 day old female infant who suffered from prolonged jaundice, poor weight gain, and anemia. The initial total/direct bilirubin levels were 8.1/3.11 mg/dL. Liver biopsy was performed at 47 days old. The pathology revealed lobules marked with macrovesicular and microvesicular fatty metamorphosis. The serum amino acid profile showed elevated levels of threonine, methionine, citrulline, and arginine. Newborn screening disclosed normal results, but the genetic study revealed SLC25A13 mutation 851-854 del and 615 + 5G > A. The genetic study of her parents showed that the father carried the SLC25A13 mutation 851-854 del and the mother carried the SLC25A13 mutation 615 + 5G > A. Treatment with ursodeoxycholic acid decreased the bilirubin levels to a normal range at the age of 5 months. Conclusion: This report illustrates that hepatic steatosis is a feature of NICCD. For every young infant patient who develops cholestasis, the pediatrician must consider NICCD as a differential diagnosis even if newborn screening shows normal findings.


Subject(s)
Cholestasis , Jaundice , Calcium-Binding Proteins/genetics , Citrullinemia , Female , Humans , Infant , Infant, Newborn , Mitochondrial Membrane Transport Proteins/genetics , Mutation
8.
Clin Chem Lab Med ; 58(5): 787-797, 2020 04 28.
Article in English | MEDLINE | ID: mdl-31639099

ABSTRACT

Background A method for bile acid profiling measuring 21 primary and secondary bile acids in serum samples was developed and validated with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample preparation included spiking with internal standards followed by protein precipitation, centrifugation, drying under nitrogen gas and reconstitution. Extracted samples were injected onto a Phenomenex Kinetex C18 column (150 × 4.60 mm, 2.6 µm). Methods Data was collected with LC-MS/MS operated in negative ion mode with multiple reaction monitoring (MRM) and single reaction monitoring (SRM). The analytical run time was 12 min. Results The method showed excellent linearity with high regression coefficients (>0.99) over a range of 0.05 and 25 µM for all analytes tested. The method also showed acceptable intra-day and inter-day accuracy and precision. As a proof of concept, the analytical method was applied to patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), biliary atresia (BA), and necrotizing enterocolitis (NEC), and distinct bile acids profiles were demonstrated. Conclusions The method could be poised to identify possible biomarkers for non-invasive early diagnosis of these disorders.


Subject(s)
Bile Acids and Salts/blood , Chromatography, High Pressure Liquid/methods , Intestinal Diseases/diagnosis , Liver/metabolism , Tandem Mass Spectrometry/methods , Biliary Atresia/diagnosis , Biomarkers/blood , Child , Citrullinemia/diagnosis , Enterocolitis, Necrotizing/diagnosis , Humans , Limit of Detection , Reproducibility of Results , Validation Studies as Topic
9.
Mol Genet Metab ; 127(3): 175-183, 2019 07.
Article in English | MEDLINE | ID: mdl-31255436

ABSTRACT

Identification of the genes responsible for adult-onset type II citrullinemia (CTLN2) and citrin protein function have enhanced our understanding of citrin deficiency. Citrin deficiency is characterized by 1) neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD); 2) adaptation/compensation stage with unique food preference from childhood to adulthood; and 3) CTLN2. The treatment of NICCD aims to prevent the progression of cholestasis, and it includes medium chain triglycerides (MCT) milk and lactose-free milk, in addition to medications (e.g., vitamin K2, lipid-soluble vitamins and ursodeoxycholic acid). Spontaneous remission around the age of one is common in NICCD, though prolonged cholestasis can lead to irreversible liver failure and may require liver transplantation. The adaptation/compensation stage (after one year of age) is characterized by the various signs and symptoms such as hypoglycemia, fatty liver, easy fatigability, weight loss, and neuropsychiatric symptoms. Some poorly-controlled patients show failure to thrive and dyslipidemia caused by citrin deficiency (FTTDCD). Diet therapy is the key in the adaptation/compensation stage. Protein- and fat-rich diet with a protein: fat: carbohydrate ratio being 15-25%: 40-50%: 30-40% along with the appropriate energy intake is recommended. The use of MCT oil and sodium pyruvate is also effective. The toxicity of carbohydrate is well known in the progression to CTLN2 if the consumption is over a long term or intense. Alcohol can also trigger CTLN2. Continuous intravenous hyperalimentation with high glucose concentration needs to be avoided. Administration of Glyceol® (an osmotic agent containing glycerol and fructose) is contraindicated. Because the intense treatment such as liver transplantation may become necessary to cure CTLN2, the effective preventative treatment during the adaptation/compensation stage is very important. At present, there is no report of a case with patients reported having the onset of CTLN2 who are on the diet therapy and under the appropriate medical support during the adaptation/compensation stage.


Subject(s)
Calcium-Binding Proteins/genetics , Citrullinemia/diet therapy , Citrullinemia/prevention & control , Organic Anion Transporters/genetics , Adult , Cholestasis/etiology , Fatty Liver/etiology , Humans , Infant, Newborn , Liver Transplantation , Mitochondrial Membrane Transport Proteins/genetics , Triglycerides/blood , Vitamins/therapeutic use
10.
BMC Pediatr ; 19(1): 348, 2019 10 13.
Article in English | MEDLINE | ID: mdl-31607264

ABSTRACT

BACKGROUND: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is an autosomal recessive disorder and one of the most common inherent causes of cholestatic jaundice in Asian infants. Mutations in the SLC25A13 gene, which encodes citrin protein expressed in the liver, have been identified as the genetic cause for NICCD. CASE PRESENTATION: Here, we report a 4-month-old female with clinical features including jaundice, hyperbilirubinemia, hyperlactacidemia, and abnormal liver function. The patient was diagnosed with NICCD by differential diagnosis using genetic analysis. Mutations in 60 jaundice-related genes were tested by using amplicon sequencing, which was performed on an Ion S5XL genetic analyzer. A compound heterozygous mutation in the SLC25A13 gene was identified, consisting of a known deletion SLC25A13:c.852_855delTATG and a novel splicing mutation SLC25A13:c.1841 + 3_1841 + 4delAA. Sanger sequencing for the proband and her parents was performed to validate the result and reveal the source of mutations. CONCLUSION: A compound heterozygous mutation in the SLC25A13 gene was identified in a 4-month-old female patient with NICCD. Our data suggest that amplicon sequencing is a helpful tool for the differential diagnosis of inherited diseases with similar symptoms. Further studies of the mutation spectrum of neonatal jaundice in China are warranted.


Subject(s)
Calcium-Binding Proteins/deficiency , Jaundice/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mutation/genetics , Organic Anion Transporters/deficiency , Diagnosis, Differential , Female , Heterozygote , Humans , Infant , Pedigree
11.
BMC Pediatr ; 19(1): 18, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30642297

ABSTRACT

BACKGROUND: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) has high prevalence in East Asia, and has been reported in other parts of the world. NICCD is also the most common form of genetic cholestasis among East Asians. There has been reports of mortalities or liver transplants associated with NICCD, but risk factors associated with poor outcome were unknown. Our objective is to report NICCD mortalities in a tertiary pediatric hepatology center, and to explore associated risk factors along with implications to clinical practice. METHOD: This is a retrospective analysis of NICCD cases collected from June 2003 until January 2017 in the Children's Hospital of Fudan University. Clinical, biochemical, and genetic data were compared between deceased cases and survivors without liver transplant. RESULTS: Sixty-one confirmed NICCD cases, including 52 cases in the survival group, and 9 cases in the mortality group, were included in the analysis. Mean age at referral in the mortality group was significantly higher when compared to the survival group (9.58 ± 5.03 VS 3.96 ± 3.13 months, p < 0.000). The proportion with infection in the mortality group was significantly higher than the survival group (p = 0.023). 44.4% of patients in the mortality group did not receive lactose-free and/or medium chain triglycerides enriched (LF/MCT) formula, and this percentage was significantly higher than the survival group (9.6%, p = 0.021). Mean platelet (PLT) count in the mortality group was significantly lower than the survival group (p = 0.010). Mean serum gamma-glutamyl transpeptidase (GGT), and total cholesterol (TCH) levels were significantly lower in the mortality group when compared to the survival group with p values of 0.001, and 0.019, respectively. Those who died had higher serum ammonium levels than survivors (p = 0.016). Mean level of citrulline was significantly lower in the mortality group compared to the survival group (p = 0.010). On the other hand, mean level of tyrosine was significantly higher in the mortality group than that of the survival group (p = 0.015). CONCLUSION: Late referral, presence of infection, delayed treatment with LF/MCT formula, lower platelet count, lower levels of GGT, total cholesterol, blood citrulline, and higher level of blood ammonia and tyrosine, were associated with poor prognosis in NICCD.


Subject(s)
Citrullinemia/mortality , Citrullinemia/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Prognosis , Retrospective Studies , Risk Factors
12.
Mol Genet Metab ; 110(1-2): 181-3, 2013.
Article in English | MEDLINE | ID: mdl-23835251

ABSTRACT

We report citrin deficiency in a neonatal non-East-Asian patient, the ninth Caucasian reported with this disease. The association of intrahepatic cholestasis, galactosuria, very high alpha-fetoprotein and increased plasma and urine citrulline, tyrosine, methionine and threonine levels suggested citrin deficiency. Identification of a protein-truncating mutation (c.1078C>T; p.Arg360*) in the SLC25A13 gene confirmed the diagnosis. An immediate response to a high-protein, lactose-free, low-carbohydrate formula was observed. Our report illustrates the need for awareness on citrin deficiency in Western countries.


Subject(s)
Calcium-Binding Proteins/deficiency , Calcium-Binding Proteins/genetics , Diet Therapy , Mitochondrial Membrane Transport Proteins/genetics , Organic Anion Transporters/deficiency , Organic Anion Transporters/genetics , Asian People/genetics , Calcium-Binding Proteins/blood , Calcium-Binding Proteins/urine , Citrulline/blood , Citrulline/urine , Humans , Methionine/blood , Methionine/urine , Mutation , Organic Anion Transporters/blood , Organic Anion Transporters/urine , Romania , Spain , Threonine/blood , Threonine/urine , Tyrosine/blood , Tyrosine/urine , White People/genetics
13.
J Pediatr Endocrinol Metab ; 36(12): 1154-1160, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37939726

ABSTRACT

OBJECTIVES: To find biochemical and molecular markers can assist in identifying serious liver damage of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) patients. METHODS: 138 patients under 13 days to 1.1 year old diagnosed of NICCD in our center from 2004 to 2020. Base on the abnormal liver laboratory tests, we divided 138 patients into three groups: acute liver failure (ALF), liver dysfunction, and non-liver dysfunction groups, then compared their clinical, biochemical and, molecular data. RESULTS: 96 % of 138 patients had high levels of citrulline and high ratio of threonine to serine, which is the distinctive feature of plasma amino acid profile for NICCD. A total of 18.1 % of 138 patients had evidence of ALF who presented the most severity hepatic damage, 51.5 % had liver dysfunction, and the remaining 30.4 % presented mild clinical symptoms (non-liver dysfunction). In ALF group, the levels of citrulline, tyrosine, TBIL, ALP, and γ-GT was significantly elevated, and the level of ALB and Fisher ratio was pronounced low. Homozygous mutations of 1,638_1660dup, IVS6+5G.A, or IVS16ins3kb in SLC25A13 gene were only found in ALF and liver dysfunction groups. Supportive treatment including medium-chain triglyceride supplemented diet and fresh frozen plasma could be life-saving and might reverse ALF. CONCLUSIONS: High level of citrulline, tyrosine, TBIL, ALP, γ-GT, and ammonia, low level of albumin, and low Fisher ratio were predictors to suggest severe liver damage in NICCD patients who may go on to develop fatal metabolic disorder. Early identification and proper therapy is particularly important for these patients.


Subject(s)
Citrullinemia , Infant, Newborn, Diseases , Liver Diseases , Humans , Infant , Infant, Newborn , Cholestasis, Intrahepatic/genetics , Citrulline , Citrullinemia/genetics , Citrullinemia/diagnosis , East Asian People , Mitochondrial Membrane Transport Proteins/genetics , Mutation , Tyrosine , Liver Diseases/genetics
14.
Front Pediatr ; 11: 1103877, 2023.
Article in English | MEDLINE | ID: mdl-37063661

ABSTRACT

Background: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a common clinical phenotype of citrin deficiency in infants. Its phenotype is atypical, so genetic testing is quite necessary for the diagnosis. Case presentation: We report 4 patients with jaundice and low body weight. Furthermore, the biochemical examination of all showed abnormal liver function and metabolic changes. DNA samples of the patients were extracted and subjected to genetic screening. All candidate pathogenic variants were validated by Sanger sequencing, and CNVs were ascertained by qPCR. The genetic screening revealed 6 variants in 4 patients, and all patients carried compound heterozygous variants of SLC25A13. Importantly, 3 variants were newly discovered: a nonsense mutation in exon17 (c.1803C > G), a frameshift mutation in exon 11(c.1141delG) and a deletion of the whole exon11. Thus, four NICCD patients were clearly caused by variants of SLC25A13. Biochemical indicators of all patients gradually returned to normal after dietary adjustment. Conclusions: Our study clarified the genetic etiology of the four infants, expanded the variant spectrum of SLC25A13, and provided a basis for genetic counseling of the family. Early diagnosis and intervention should be given to patients with NICCD.

15.
Mol Genet Metab Rep ; 35: 100967, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36967723

ABSTRACT

The deficiency of CITRIN, the liver mitochondrial aspartate-glutamate carrier (AGC), is the cause of four human clinical phenotypes, neonatal intrahepatic cholestasis caused by CITRIN deficiency (NICCD), silent period, failure to thrive and dyslipidemia caused by CITRIN deficiency (FTTDCD), and citrullinemia type II (CTLN2). Clinical symptoms can be traced back to disruption of the malate-aspartate shuttle due to the lack of citrin. A potential therapy for this condition is the expression of aralar, the AGC present in brain, to replace citrin. To explore this possibility we have first verified that the NADH/NAD+ ratio increases in hepatocytes from citrin(-/-) mice, and then found that exogenous aralar expression reversed the increase in NADH/NAD+ observed in these cells. Liver mitochondria from citrin (-/-) mice expressing liver specific transgenic aralar had a small (~ 4-6 nmoles x mg prot-1 x min-1) but consistent increase in malate aspartate shuttle (MAS) activity over that of citrin(-/-) mice. These results support the functional replacement between AGCs in the liver. To explore the significance of AGC replacement in human therapy we studied the relative levels of citrin and aralar in mouse and human liver through absolute quantification proteomics. We report that mouse liver has relatively high aralar levels (citrin/aralar molar ratio of 7.8), whereas human liver is virtually devoid of aralar (CITRIN/ARALAR ratio of 397). This large difference in endogenous aralar levels partly explains the high residual MAS activity in liver of citrin(-/-) mice and why they fail to recapitulate the human disease, but supports the benefit of increasing aralar expression to improve the redox balance capacity of human liver, as an effective therapy for CITRIN deficiency.

16.
Front Mol Biosci ; 9: 939837, 2022.
Article in English | MEDLINE | ID: mdl-36090036

ABSTRACT

Introduction: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a pan-ethnic complicated inborn error of metabolism but the specific mechanism is not fully understood. Methods: A total of 169 patients with NICCD who have biallelic pathogenic SLC25A13 variants detected by targeted next-generation sequencing were collected. They were divided into the "Newborn-screen Group" and "Clinical diagnosed Group" depending on the newborn screening results. Amino acid and acylcarnitine profiles were measured by MS/MS. The total bile acids, blood amino acids and acylcarnitines, general biochemistry, blood count, and coagulation parameters were monitored every 2-3 months. We compared the differences in metabolic indices and their dynamic changes between these two groups. The Mann-Whitney test and orthogonal partial least squares discrimination analysis (OPLS-DA) were used for statistical analysis. Results: At the onset of NICCD, we found that the "Clinical diagnosed Group" had higher levels of intermediate products of the urea cycle, free carnitine, and short-chain and long-chain acylcarnitines than those in the "Newborn-screen Group," but the levels of ketogenic/glucogenic amino acids and several medium-chain acylcarnitines were lower. Furthermore, concentrations of direct bilirubin, total bile acid, lactate, prothrombin time, and several liver enzymes were significantly higher while total protein, amylase, and hemoglobin were lower in the "Clinical diagnosed Group" than in the "Newborn-screen Group." Dynamic change analysis showed that direct bilirubin, albumin, arginine, and citrulline were the earliest metabolic derangements to reach peak levels in NICCD groups, followed by acylcarnitine profiles, and finally with the elevation of liver enzymes. All abnormal characteristic metabolic indicators in the "Newborn-screen Group" came back to normal levels at earlier ages than the "Clinical diagnosed Group." c.852_855del (41.2%), IVS16ins3kb (17.6%), c.615 + 5G>A (9.6%), 1638_1660dup (4.4%), and c.1177 + 1G>A (3.7%) accounted for 76.5% of all the mutated SLC25A13 alleles in our population. Conclusion: Argininosuccinate synthesis, gluconeogenesis, ketogenesis, fatty acid oxidation, liver function, and cholestasis were more severely affected in the "Clinical diagnosed Group." The "Newborn-screen Group" had a better prognosis which highlighted the importance of newborn screening of NICCD.

17.
Mol Genet Metab Rep ; 30: 100834, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35242568

ABSTRACT

Citrin deficiency belongs to a group of urea cycle disorders that can be identified during newborn screening by measuring citrulline, phenylalanine, methionine, and galactose levels. Early diagnosis of citrin deficiency is beneficial as disease-specific interventions such as permission of food preference and/or supplementation of medium-chain triglyceride can prevent metabolic decompensation. However, there are currently no laboratory tests for the diagnosis of citrin deficiency in routine clinical practice. Our retrospective study investigated the diagnostic characteristics of citrin deficiency during infancy at secondary newborn screening. The present study included 10 patients with citrin deficiency and 35 controls without the condition. The positive likelihood ratios for serum levels of blood urea nitrogen (BUN) levels were 6.8 at the first visit, 3.2 at age ≤ 60 days, and 17.5 at age ≤ 100 days. The serum BUN/creatinine ratio also showed a high positive likelihood ratio (3.9 at first visit, 16.0 at age ≤ 60 days, and 24.5 at age ≤ 100 days). Therefore, the serum BUN or BUN/creatinine ratio may help to identify patients with citrin deficiency during newborn screening. Further studies are required to confirm its diagnostic accuracy in a larger cohort and elucidate the underlying mechanisms involved.

18.
Nutrients ; 12(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33137944

ABSTRACT

BACKGROUND: Little is known about the optimal dietary treatment for citrin deficiency. Our aim is to describe the management of UK citrin deficiency patients. METHODS: A longitudinal retrospective review was performed. Data were collected from medical records on presenting signs and symptoms, dietary management and clinical outcome. RESULTS: data were collected on 32 patients from 21 families. 50% were females (16/32). Median age at diagnosis was 4 y (5 days-35 y) with 12 patients diagnosed in the neonatal period with neonatal intrahepatic cholestasis (NICCD), eight later in childhood (FTTDCD) and 12 by family screening based on index cases from five families. No patient had adult-onset type II citrullinemia. The patient age at the time of data collection was a median of 11 y (1-44 y). 91% (29/32) of patients had normal physical and neurological development, 47% (15/32) experienced recurrent unexplained abdominal pain and 9% (3/32) episodes of hypoglycaemia. Siblings had different phenotypes (5 families had > 1 affected patient). Most patients preferred high protein foods, limiting sugar-containing foods. Only 41% (13/32) were prescribed a low CHO, high protein, high fat diet (restriction varied) and two used medium chain triglyceride (MCT) supplements. No patient was prescribed drug therapy. Twenty-five per cent (8/32) of patients were underweight and 41% (13/32) had height <-1 z-scores. CONCLUSIONS: patients presented with various phenotypes, symptoms and suboptimal growth. Symptoms and biochemical markers improved with age, but height remained low in some. More research is necessary to assess the effectiveness of dietary approaches in improving clinical outcomes and symptoms in citrin deficiency.


Subject(s)
Citrullinemia/diet therapy , Diet, High-Fat/methods , Diet, High-Protein Low-Carbohydrate/methods , Dietary Supplements , Health Status , Adolescent , Adult , Biomarkers/blood , Child , Child, Preschool , Citrullinemia/blood , Citrullinemia/physiopathology , Female , Humans , Infant , Longitudinal Studies , Male , Phenotype , Retrospective Studies , Treatment Outcome , Triglycerides/administration & dosage , United Kingdom , Young Adult
19.
J Pediatr Endocrinol Metab ; 33(1): 157-163, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31809266

ABSTRACT

Background Citrin deficiency (CD) is an autosomal recessive genetic disorder caused by a defect in the mitochondrial aspartate/glutamate antiporter, citrin. Three clinical manifestations have been described until today. Case presentation We reported 5 CD patients from two families. Four patients were male and one patient was female. Two of them have NICCD (neonatal intrahepatic cholestasis caused by citrin deficiency); three of them have CTLN2 (adult-onset type II citrullinemia). Both NICCD patients showed typical clinical and biochemical changes with a diagnosis confirmed by mutations in the SLC25A13 gene. We detected a previously unreported homozygous novel mutation c.478delC (L160Wfs*36 ) on the SLC25A13 gene. All of the CTLN2 patients were siblings. Proband was a 15-year-old mentally retarded and autistic male who had admitted to our emergency with disorientation. Laboratory data showed hyperammonemia and citrullinemia. Conclusions Two different profiles of age-related CD have been depicted with this article. It has been aimed to underline that the CD can be observed in different forms not only in neonatals or little infants but also in adolescents. This article is the first case series that covers both NICCD and CTLN2 cases together and that has been published in Turkey. Considering the fact that especially the majority of CTLN2 cases have been identified in Asian countries, our article has vital importance in terms of defining phenotypic features of the disease.


Subject(s)
Calcium-Binding Proteins/deficiency , Citrullinemia/genetics , Citrullinemia/pathology , Mutation , Organic Anion Transporters/deficiency , Adolescent , Child, Preschool , Citrullinemia/classification , Citrullinemia/therapy , Female , Humans , Infant , Male , Mitochondrial Membrane Transport Proteins , Prognosis , Turkey
20.
Biomolecules ; 10(8)2020 07 24.
Article in English | MEDLINE | ID: mdl-32722104

ABSTRACT

Can you imagine a disease in which intake of an excess amount of sugars or carbohydrates causes hyperammonemia? It is hard to imagine the intake causing hyperammonemia. AGC2 or citrin deficiency shows their symptoms following sugar/carbohydrates intake excess and this disease is now known as a pan-ethnic disease. AGC2 (aspartate glutamate carrier 2) or citrin is a mitochondrial transporter which transports aspartate (Asp) from mitochondria to cytosol in exchange with glutamate (Glu) and H+. Asp is originally supplied from mitochondria to cytosol where it is necessary for synthesis of proteins, nucleotides, and urea. In cytosol, Asp can be synthesized from oxaloacetate and Glu by cytosolic Asp aminotransferase, but oxaloacetate formation is limited by the amount of NAD+. This means an increase in NADH causes suppression of Asp formation in the cytosol. Metabolism of carbohydrates and other substances which produce cytosolic NADH such as alcohol and glycerol suppress oxaloacetate formation. It is forced under citrin deficiency since citrin is a member of malate/Asp shuttle. In this review, we will describe history of identification of the SLC25A13 gene as the causative gene for adult-onset type II citrullinemia (CTLN2), a type of citrin deficiency, pathophysiology of citrin deficiency together with animal models and possible treatments for citrin deficiency newly developing.


Subject(s)
Aspartic Acid/metabolism , Calcium-Binding Proteins/metabolism , Citrullinemia/metabolism , Glutamic Acid/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Organic Anion Transporters/metabolism , Animals , Biological Transport , Calcium-Binding Proteins/genetics , Citrullinemia/genetics , Citrullinemia/therapy , Genetic Predisposition to Disease/genetics , Humans , Mitochondrial Membrane Transport Proteins/genetics , Organic Anion Transporters/genetics
SELECTION OF CITATIONS
SEARCH DETAIL