Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Microsyst Nanoeng ; 10: 22, 2024.
Article in English | MEDLINE | ID: mdl-38304019

ABSTRACT

Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices. However, the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural designs. Here, we present a multicolor nanofilter consisting of multilayered 'active' plasmonic nanocomposites, wherein metallic nanoparticles are embedded within a conductive polymer nanofilm. These nanocomposites are fabricated with a total thickness below 100 nm using a 'lithography-free' method at the wafer level, and they inherently exhibit three prominent optical modes, accompanying scattering phenomena that produce distinct dichroic reflection and transmission colors. Here, a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed, encompassing the entire visible spectrum. Furthermore, this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum (3250 K-6250 K). This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun's elevation and prevailing weather conditions.

2.
Microsyst Nanoeng ; 10: 59, 2024.
Article in English | MEDLINE | ID: mdl-38736715

ABSTRACT

Large-field nanoscale fluorescence imaging is invaluable for many applications, such as imaging subcellular structures, visualizing protein interactions, and high-resolution tissue imaging. Unfortunately, conventional fluorescence microscopy requires a trade-off between resolution and field of view due to the nature of the optics used to form the image. To overcome this barrier, we developed an acoustofluidic scanning fluorescence nanoscope that simultaneously achieves superior resolution, a large field of view, and strong fluorescent signals. The acoustofluidic scanning fluorescence nanoscope utilizes the superresolution capabilities of microspheres that are controlled by a programmable acoustofluidic device for rapid fluorescence enhancement and imaging. The acoustofluidic scanning fluorescence nanoscope resolves structures that cannot be resolved with conventional fluorescence microscopes with the same objective lens and enhances the fluorescent signal by a factor of ~5 without altering the field of view of the image. The improved resolution realized with enhanced fluorescent signals and the large field of view achieved via acoustofluidic scanning fluorescence nanoscopy provides a powerful tool for versatile nanoscale fluorescence imaging for researchers in the fields of medicine, biology, biophysics, and biomedical engineering.

3.
Microsyst Nanoeng ; 10: 53, 2024.
Article in English | MEDLINE | ID: mdl-38654843

ABSTRACT

Nanoimprint lithography (NIL) has been utilized to address the manufacturing challenges of high cost and low throughput for optical metasurfaces. To overcome the limitations inherent in conventional imprint resins characterized by a low refractive index (n), high-n nanocomposites have been introduced to directly serve as meta-atoms. However, comprehensive research on these nanocomposites is notably lacking. In this study, we focus on the composition of high-n zirconium dioxide (ZrO2) nanoparticle (NP) concentration and solvents used to produce ultraviolet (UV) metaholograms and quantify the transfer fidelity by the measured conversion efficiency. The utilization of 80 wt% ZrO2 NPs in MIBK, MEK, and acetone results in conversion efficiencies of 62.3%, 51.4%, and 61.5%, respectively, at a wavelength of 325 nm. The analysis of the solvent composition and NP concentration can further enhance the manufacturing capabilities of high-n nanocomposites in NIL, enabling potential practical use of optical metasurfaces.

4.
Microsyst Nanoeng ; 10: 1, 2024.
Article in English | MEDLINE | ID: mdl-38169527

ABSTRACT

Conventional photonic devices exhibit static optical properties that are design-dependent, including the material's refractive index and geometrical parameters. However, they still possess attractive optical responses for applications and are already exploited in devices across various fields. Hydrogel photonics has emerged as a promising solution in the field of active photonics by providing primarily deformable geometric parameters in response to external stimuli. Over the past few years, various studies have been undertaken to attain stimuli-responsive photonic devices with tunable optical properties. Herein, we focus on the recent advancements in hydrogel-based photonics and micro/nanofabrication techniques for hydrogels. In particular, fabrication techniques for hydrogel photonic devices are categorized into film growth, photolithography (PL), electron-beam lithography (EBL), and nanoimprint lithography (NIL). Furthermore, we provide insights into future directions and prospects for deformable hydrogel photonics, along with their potential practical applications.

5.
Commun Phys ; 7(1): 250, 2024.
Article in English | MEDLINE | ID: mdl-39070108

ABSTRACT

Materials exhibiting a significant shift current response could potentially outperform conventional solar cell materials. The myriad of factors governing shift-current response, however, poses significant challenges in finding such strong shift-current materials. Here we propose a general design principle that exploits inter-orbital mixing to excite virtual multiband transitions in materials with multiple flat bands to achieve an enhanced shift current response. We further relate this design principle to maximizing Wannier function spread as expressed through the formalism of quantum geometry. We demonstrate the viability of our design using a 1D stacked Rice-Mele model. Furthermore, we consider a concrete material realization - alternating angle twisted multilayer graphene (TMG) - a natural platform to experimentally realize such an effect. We identify a set of twist angles at which the shift current response is maximized via virtual transitions for each multilayer graphene and highlight the importance of TMG as a promising material to achieve an enhanced shift current response at terahertz frequencies. Our proposed mechanism also applies to other 2D systems and can serve as a guiding principle for designing multiband systems that exhibit an enhanced shift current response.

6.
NPJ 2D Mater Appl ; 7(1): 74, 2023.
Article in English | MEDLINE | ID: mdl-38665484

ABSTRACT

Sunlight is widely seen as one of the most abundant forms of renewable energy, with photovoltaic cells based on pn junctions being the most commonly used platform attempting to harness it. Unlike in conventional photovoltaic cells, the bulk photovoltaic effect (BPVE) allows for the generation of photocurrent and photovoltage in a single material without the need to engineer a pn junction and create a built-in electric field, thus offering a solution that can potentially exceed the Shockley-Queisser efficiency limit. However, it requires a material with no inversion symmetry and is therefore absent in centrosymmetric materials. Here, we demonstrate that breaking the inversion symmetry by structural disorder can induce BPVE in ultrathin PtSe2, a centrosymmetric semiconducting van der Waals material. Homogenous illumination of defective PtSe2 by linearly and circularly polarized light results in a photoresponse termed as linear photogalvanic effect (LPGE) and circular photogalvanic effect (CPGE), which is mostly absent in the pristine crystal. First-principles calculations reveal that LPGE originates from Se vacancies that act as asymmetric scattering centers for the photo-generated electron-hole pairs. Our work emphasizes the importance of defects to induce photovoltaic functionality in centrosymmetric materials and shows how the range of materials suitable for light sensing and energy-harvesting applications can be extended.

SELECTION OF CITATIONS
SEARCH DETAIL