Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.193
Filter
Add more filters

Publication year range
1.
Trends Genet ; 40(6): 480-494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658255

ABSTRACT

Embryonic neurodevelopment, particularly neural progenitor differentiation into post-mitotic neurons, has been extensively studied. While the number and composition of post-mitotic neurons remain relatively constant from birth to adulthood, the brain undergoes significant postnatal maturation marked by major property changes frequently disrupted in neural diseases. This review first summarizes recent characterizations of the functional and molecular maturation of the postnatal nervous system. We then review regulatory mechanisms controlling the precise gene expression changes crucial for the intricate sequence of maturation events, highlighting experience-dependent versus cell-intrinsic genetic timer mechanisms. Despite significant advances in understanding of the gene-environmental regulation of postnatal neuronal maturation, many aspects remain unknown. The review concludes with our perspective on exciting future research directions in the next decade.


Subject(s)
Gene-Environment Interaction , Neurogenesis , Neurons , Humans , Neurons/cytology , Neurons/metabolism , Animals , Neurogenesis/genetics , Cell Differentiation/genetics , Mitosis/genetics , Gene Expression Regulation, Developmental/genetics , Brain/growth & development , Brain/metabolism , Brain/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/cytology
2.
Proc Natl Acad Sci U S A ; 121(17): e2303664121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621124

ABSTRACT

Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.


Subject(s)
Brain-Derived Neurotrophic Factor , Calcium , Brain-Derived Neurotrophic Factor/metabolism , Calcium/metabolism , Synaptic Transmission/physiology , Synapses/metabolism , Calcium Channel Blockers/pharmacology , Calcium, Dietary , Receptor, trkB/genetics , Receptor, trkB/metabolism , Glutamates/metabolism
3.
EMBO J ; 41(9): e109352, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35318705

ABSTRACT

Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3-phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2-mediated hyperactivation of Cdk5 downstream of receptor- and activity-dependent calcium influx. Our results unravel an unexpected function for PI(3)P-containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P-producing VPS34 kinase in neurological disease and neurodegeneration.


Subject(s)
Synaptic Transmission , Synaptic Vesicles , Endocytosis/physiology , Endosomes , Neurotransmitter Agents , Phosphatidylinositol Phosphates , Synapses/physiology , Synaptic Transmission/physiology
4.
Proc Natl Acad Sci U S A ; 120(44): e2306086120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37883433

ABSTRACT

Munc13-1 is essential for vesicle docking and fusion at the active zone of synapses. Here, we report that Munc13-1 self-assembles into molecular clusters within diacylglycerol-rich microdomains present in phospholipid bilayers. Although the copy number of Munc13-1 molecules in these clusters has a broad distribution, a systematic Poisson analysis shows that this is most likely the result of two molecular species: monomers and mainly hexameric oligomers. Each oligomer is able to capture one vesicle independently. Hexamers have also been observed in crystals of Munc13-1 that form between opposed phospholipid bilayers [K. Grushin, R. V. Kalyana Sundaram, C. V. Sindelar, J. E. Rothman, Proc. Natl. Acad. Sci. U.S.A. 119, e2121259119 (2022)]. Mutations targeting the contacts stabilizing the crystallographic hexagons also disrupt the isolated hexamers, suggesting they are identical. Additionally, these mutations also convert vesicle binding from a cooperative to progressive mode. Our study provides an independent approach showing that Munc13-1 can form mainly hexamers on lipid bilayers each capable of vesicle capture.


Subject(s)
Diglycerides , SNARE Proteins , SNARE Proteins/metabolism , Diglycerides/metabolism , Synapses/metabolism , Molecular Chaperones/metabolism , Phospholipids/metabolism
5.
J Neurosci ; 44(18)2024 May 01.
Article in English | MEDLINE | ID: mdl-38383495

ABSTRACT

Synapses maintain two forms of neurotransmitter release to support communication in the brain. First, evoked neurotransmitter release is triggered by the invasion of an action potential (AP) across en passant boutons that form along axons. The probability of evoked release (Pr) varies substantially across boutons, even within a single axon. Such heterogeneity is the result of differences in the probability of a single synaptic vesicle (SV) fusing (Pv) and in the number of vesicles available for immediate release, known as the readily releasable pool (RRP). Spontaneous release (also known as a mini) is an important form of neurotransmission that occurs in the absence of APs. Because it cannot be triggered with electrical stimulation, much less is known about potential heterogeneity in the frequency of spontaneous release between boutons. We utilized a photostable and bright fluorescent indicator of glutamate release (iGluSnFR3) to quantify both spontaneous and evoked release at individual glutamatergic boutons. We found that the rate of spontaneous release is quite heterogenous at the level of individual boutons. Interestingly, when measuring both evoked and spontaneous release at single synapses, we found that boutons with the highest rates of spontaneous release also displayed the largest evoked responses. Using a new optical method to measure RRP at individual boutons, we found that this heterogeneity in spontaneous release was strongly correlated with the size of the RRP, but not related to Pv. We conclude that the RRP is a critical and dynamic aspect of synaptic strength that contributes to both evoked and spontaneous vesicle release.


Subject(s)
Presynaptic Terminals , Synaptic Transmission , Synaptic Vesicles , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology , Animals , Synaptic Transmission/physiology , Presynaptic Terminals/physiology , Presynaptic Terminals/metabolism , Male , Rats , Female , Glutamic Acid/metabolism , Mice , Rats, Sprague-Dawley
6.
J Neurosci ; 44(27)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38839301

ABSTRACT

Phospholipids (PLs) are asymmetrically distributed at the plasma membrane. This asymmetric lipid distribution is transiently altered during calcium-regulated exocytosis, but the impact of this transient remodeling on presynaptic function is currently unknown. As phospholipid scramblase 1 (PLSCR1) randomizes PL distribution between the two leaflets of the plasma membrane in response to calcium activation, we set out to determine its role in neurotransmission. We report here that PLSCR1 is expressed in cerebellar granule cells (GrCs) and that PLSCR1-dependent phosphatidylserine egress occurred at synapses in response to neuron stimulation. Synaptic transmission is impaired at GrC Plscr1 -/- synapses, and both PS egress and synaptic vesicle (SV) endocytosis are inhibited in Plscr1 -/- cultured neurons from male and female mice, demonstrating that PLSCR1 controls PL asymmetry remodeling and SV retrieval following neurotransmitter release. Altogether, our data reveal a novel key role for PLSCR1 in SV recycling and provide the first evidence that PL scrambling at the plasma membrane is a prerequisite for optimal presynaptic performance.


Subject(s)
Cerebellum , Phospholipid Transfer Proteins , Synapses , Synaptic Transmission , Synaptic Vesicles , Animals , Synaptic Vesicles/metabolism , Synaptic Transmission/physiology , Mice , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Female , Male , Cerebellum/cytology , Synapses/metabolism , Synapses/physiology , Cells, Cultured , Mice, Knockout , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Endocytosis/physiology
7.
Semin Cell Dev Biol ; 139: 3-12, 2023 04.
Article in English | MEDLINE | ID: mdl-35918217

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.


Subject(s)
Alzheimer Disease , Cognition Disorders , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , Synapses/genetics , Synapses/metabolism , Neurodegenerative Diseases/metabolism , Cognition Disorders/pathology , Risk Factors
8.
Development ; 149(9)2022 05 01.
Article in English | MEDLINE | ID: mdl-35394012

ABSTRACT

Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.


Subject(s)
Drosophila Proteins , Glutamic Acid , Animals , Drosophila , Drosophila Proteins/genetics , Fragile X Mental Retardation Protein/genetics , Presynaptic Terminals , RNA, Messenger/genetics , Receptors, Glutamate/genetics , Synapses
9.
EMBO Rep ; 24(11): e57758, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37680133

ABSTRACT

Compartmentalization by membranes is a common feature of eukaryotic cells and serves to spatiotemporally confine biochemical reactions to control physiology. Membrane-bound organelles such as the endoplasmic reticulum (ER), the Golgi complex, endosomes and lysosomes, and the plasma membrane, continuously exchange material via vesicular carriers. In addition to vesicular trafficking entailing budding, fission, and fusion processes, organelles can form membrane contact sites (MCSs) that enable the nonvesicular exchange of lipids, ions, and metabolites, or the secretion of neurotransmitters via subsequent membrane fusion. Recent data suggest that biomolecule and information transfer via vesicular carriers and via MCSs share common organizational principles and are often mediated by proteins with intrinsically disordered regions (IDRs). Intrinsically disordered proteins (IDPs) can assemble via low-affinity, multivalent interactions to facilitate membrane tethering, deformation, fission, or fusion. Here, we review our current understanding of how IDPs drive the formation of multivalent protein assemblies and protein condensates to orchestrate vesicular and nonvesicular transport with a special focus on presynaptic neurotransmission. We further discuss how dysfunction of IDPs causes disease and outline perspectives for future research.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Cell Membrane/metabolism , Lysosomes/metabolism
10.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38186005

ABSTRACT

Neuronal inhibition, primarily mediated by GABAergic neurotransmission, is crucial for brain development and healthy cognition. Gamma-aminobutyric acid concentration levels in sensory areas have been shown to correlate with hemodynamic and oscillatory neuronal responses. How these measures relate to one another during working memory, a higher-order cognitive process, is still poorly understood. We address this gap by collecting magnetoencephalography, functional magnetic resonance imaging, and Flumazenil positron emission tomography data within the same subject cohort using an n-back working-memory paradigm. By probing the relationship between GABAA receptor distribution, neural oscillations, and Blood Oxygen Level Dependent (BOLD) modulations, we found that GABAA receptor density in higher-order cortical areas predicted the reaction times on the working-memory task and correlated positively with the peak frequency of gamma power modulations and negatively with BOLD amplitude. These findings support and extend theories linking gamma oscillations and hemodynamic responses to gamma-aminobutyric acid neurotransmission and to the excitation-inhibition balance and cognitive performance in humans. Considering the small sample size of the study, future studies should test whether these findings also hold for other, larger cohorts as well as to examine in detail how the GABAergic system and neural fluctuations jointly support working-memory task performance.


Subject(s)
Memory, Short-Term , Receptors, GABA-A , Humans , Memory, Short-Term/physiology , Magnetoencephalography/methods , Magnetic Resonance Imaging , gamma-Aminobutyric Acid , Brain/physiology
11.
Proc Natl Acad Sci U S A ; 119(22): e2202842119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35613050

ABSTRACT

The neurotransmitter dopamine (DA) controls multiple behaviors and is perturbed in several major brain diseases. DA is released from large populations of specialized structures called axon varicosities. Determining the DA release mechanisms at such varicosities is essential for a detailed understanding of DA biology and pathobiology but has been limited by the low spatial resolution of DA detection methods. We used a near-infrared fluorescent DA nanosensor paint, adsorbed nanosensors detecting release of dopamine (AndromeDA), to detect DA secretion from cultured murine dopaminergic neurons with high spatial and temporal resolution. We found that AndromeDA detects discrete DA release events and extracellular DA diffusion and observed that DA release varies across varicosities. To systematically detect DA release hotspots, we developed a machine learning­based analysis tool. AndromeDA permitted the simultaneous visualization of DA release for up to 100 dopaminergic varicosities, showing that DA release hotspots are heterogeneous and occur at only ∼17% of all varicosities, indicating that many varicosities are functionally silent. Using AndromeDA, we determined that DA release requires Munc13-type vesicle priming proteins, validating the utility of AndromeDA as a tool to study the molecular and cellular mechanism of DA secretion.


Subject(s)
Axons , Dopamine , Dopaminergic Neurons , Nanostructures , Neurotransmitter Agents , Optical Imaging , Animals , Axons/metabolism , Brain/metabolism , Dopamine/analysis , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Fluorescent Dyes/chemistry , Mice , Neurotransmitter Agents/analysis , Neurotransmitter Agents/metabolism , Optical Imaging/methods , Paint , Spectroscopy, Near-Infrared/methods
12.
Proc Natl Acad Sci U S A ; 119(20): e2120870119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35544691

ABSTRACT

Transient receptor potential canonical 4 (TRPC4) is a receptor-operated cation channel codependent on both the Gq/11­phospholipase C signaling pathway and Gi/o proteins for activation. This makes TRPC4 an excellent coincidence sensor of neurotransmission through Gq/11- and Gi/o-coupled receptors. In whole-cell slice recordings of lateral septal neurons, TRPC4 mediates a strong depolarizing plateau that shuts down action potential firing, which may or may not be followed by a hyperpolarization that extends the firing pause to varying durations depending on the strength of Gi/o stimulation. We show that the depolarizing plateau is codependent on Gq/11-coupled group I metabotropic glutamate receptors and on Gi/o-coupled γ-aminobutyric acid type B receptors. The hyperpolarization is mediated by Gi/o activation of G protein­activated inwardly rectifying K+ (GIRK) channels. Moreover, the firing patterns, elicited by either electrical stimulation or receptor agonists, encode information about the relative strengths of Gq/11 and Gi/o inputs in the following fashion. Pure Gq/11 input produces weak depolarization accompanied by firing acceleration, whereas pure Gi/o input causes hyperpolarization that pauses firing. Although coincident Gq/11­Gi/o inputs also pause firing, the pause is preceded by a burst, and both the pause duration and firing recovery patterns reflect the relative strengths of Gq/11 versus Gi/o inputs. Computer simulations demonstrate that different combinations of TRPC4 and GIRK conductances are sufficient to produce the range of firing patterns observed experimentally. Thus, concurrent neurotransmission through the Gq/11 and Gi/o pathways is converted to discernible electrical responses by the joint actions of TRPC4 and GIRK for communication to downstream neurons.


Subject(s)
Action Potentials , G Protein-Coupled Inwardly-Rectifying Potassium Channels , GTP-Binding Protein alpha Subunits, Gi-Go , GTP-Binding Protein alpha Subunits , Neurons , Synaptic Transmission , TRPC Cation Channels , Animals , Cell Communication , G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , GTP-Binding Protein alpha Subunits/physiology , GTP-Binding Protein alpha Subunits, Gi-Go/physiology , Mice , Neurons/physiology , TRPC Cation Channels/physiology
13.
J Neurosci ; 43(20): 3743-3763, 2023 05 17.
Article in English | MEDLINE | ID: mdl-36944490

ABSTRACT

Action potential (AP)-independent (miniature) neurotransmission occurs at all chemical synapses but remains poorly understood, particularly in pathologic contexts. Axonal endoplasmic reticulum (ER) Ca2+ stores are thought to influence miniature neurotransmission, and aberrant ER Ca2+ handling is implicated in progression of Huntington disease (HD). Here, we report elevated mEPSC frequencies in recordings from YAC128 mouse (HD-model) neurons (from cortical cultures and striatum-containing brain slices, both from male and female animals). Pharmacological experiments suggest that this is mediated indirectly by enhanced tonic ER Ca2+ release. Calcium imaging, using an axon-localized sensor, revealed slow AP-independent ER Ca2+ release waves in both YAC128 and WT cultures. These Ca2+ waves occurred at similar frequencies in both genotypes but spread less extensively and were of lower amplitude in YAC128 axons, consistent with axonal ER Ca2+ store depletion. Surprisingly, basal cytosolic Ca2+ levels were lower in YAC128 boutons and YAC128 mEPSCs were less sensitive to intracellular Ca2+ chelation. Together, these data suggest that elevated miniature glutamate release in YAC128 cultures is associated with axonal ER Ca2+ depletion but not directly mediated by ER Ca2+ release into the cytoplasm. In contrast to increased mEPSC frequencies, cultured YAC128 cortical neurons showed less frequent AP-dependent (spontaneous) Ca2+ events in soma and axons, although evoked glutamate release detected by an intensity-based glutamate-sensing fluorescence reporter in brain slices was similar between genotypes. Our results indicate that axonal ER dysfunction selectively elevates miniature glutamate release from cortical terminals in HD. This, together with reduced spontaneous cortical neuron firing, may cause a shift from activity-dependent to -independent glutamate release in HD, with potential implications for fidelity and plasticity of cortical excitatory signaling.SIGNIFICANCE STATEMENT Miniature neurotransmitter release persists at all chemical neuronal synapses in the absence of action potential firing but remains poorly understood, particularly in disease states. We show enhanced miniature glutamate release from cortical neurons in the YAC128 mouse Huntington disease model. This effect is mediated by axonal ER Ca2+ store depletion, but is not obviously due to elevated ER-to-cytosol Ca2+ release. Conversely, YAC128 cortical pyramidal neurons fired fewer action potentials and evoked cortical glutamate release was similar between WT an YAC128 preparations, indicating axonal ER depletion selectively enhances miniature glutamate release in YAC128 mice. These results extend our understanding of action potential independent neurotransmission and highlight a potential involvement of elevated miniature glutamate release in Huntington disease pathology.


Subject(s)
Glutamic Acid , Huntington Disease , Mice , Male , Female , Animals , Mice, Transgenic , Presynaptic Terminals/pathology , Disease Models, Animal , Endoplasmic Reticulum/pathology , Calcium
14.
J Physiol ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39383250

ABSTRACT

Intersectin-1 (Itsn1) is a scaffold protein that plays a key role in coupling exocytosis and endocytosis of synaptic vesicles (SVs). However, it is unclear whether and how Itsn1 regulates these processes to support efficient neurotransmission during development. To address this, we examined the calyx of Held synapse in the auditory brainstem of wild-type and Itsn1 mutant mice before (immature) and after (mature) the onset of hearing. Itsn1 was present in the pre- and postsynaptic compartments at both developmental stages. Loss of function of Itsn1 did not alter presynaptic action potentials, Ca2+ entry via voltage-gated Ca2+ channels (VGCCs), transmitter release or short-term depression (STD) induced by depletion of SVs in the readily releasable pool (RRP) in either age group. Yet, fast Ca2+-dependent recovery from STD was attenuated in mature mutant synapses, while it was unchanged in immature mutant synapses. This deficit at mature synapses was rescued by introducing the DH-PH domains of Itsn1 into the presynaptic terminals. Inhibition of dynamin, which interacts with Itsn1 during endocytosis, had no effect on STD recovery. Interestingly, we found a developmental enrichment of Itsn1 near VGCCs, which may underlie the Itsn1-mediated fast replenishment of the RRP. Consequently, the absence of Itsn1 in mature synapses led to a higher failure rate of postsynaptic spiking during high-frequency synaptic transmission. Taken together, our findings suggest that Itsn1 translocation to the vicinity of VGCCs during development is crucial for accelerating Ca2+-dependent RRP replenishment and sustaining high-fidelity neurotransmission. KEY POINTS: Itsn1 is expressed in the pre- and postsynaptic compartments of the calyx of Held synapse. Developmental upregulation of vesicular glutamate transporter-1 is Itsn1 dependent. Itsn1 does not affect basal synaptic transmission at different developmental stages. Itsn1 is required for Ca2+-dependent recovery from short-term depression in mature synapses. Itsn1 mediates the recovery through its DH-PH domains, independent of its interactive partner dynamin. Itsn1 translocates to the vicinity of presynaptic Ca2+ channels during development. Itsn1 supports high-fidelity neurotransmission by enabling rapid recovery from vesicular depletion during repetitive activity.

15.
J Physiol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141823

ABSTRACT

Dynamins are GTPases required for pinching vesicles off the plasma membrane once a critical curvature is reached during endocytosis. Here, we probed dynamin function in central synapses by depleting all three dynamin isoforms in postnatal hippocampal neurons down to negligible levels. We found a decrease in the propensity of evoked neurotransmission as well as a reduction in synaptic vesicle numbers. Recycling of synaptic vesicles during spontaneous or low levels of evoked activity were largely impervious to dynamin depletion, while retrieval of synaptic vesicle components at higher levels of activity was partially arrested. These results suggest the existence of balancing dynamin-independent mechanisms for synaptic vesicle recycling at central synapses. Classical dynamin-dependent mechanisms are not essential for retrieval of synaptic vesicle proteins after quantal single synaptic vesicle fusion, but they become more relevant for membrane retrieval during intense, sustained neuronal activity. KEY POINTS: Loss of dynamin 2 does not impair synaptic transmission. Loss of all three dynamin isoforms mostly affects evoked neurotransmission. Excitatory synapse function is more susceptible to dynamin loss. Spontaneous neurotransmission is only mildly affected by loss of dynamins. Single synaptic vesicle endocytosis is largely dynamin independent.

16.
J Physiol ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367867

ABSTRACT

Communication within the nervous system relies on the calcium-triggered release of neurotransmitter molecules by exocytosis of synaptic vesicles (SVs) at defined active zone release sites. While decades of research have provided detailed insight into the molecular machinery for SV fusion, much less is known about the mechanisms that form functional SVs during the development of synapses and that control local SV reformation following exocytosis in the mature nervous system. Here we review the current state of knowledge in the field, focusing on the pathways implicated in the formation and axonal transport of SV precursor organelles and the mechanisms involved in the local reformation of SVs within nerve terminals in mature neurons. We discuss open questions and outline perspectives for future research.

17.
Glycobiology ; 34(10)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39223703

ABSTRACT

AIM: This study examined the roles of the laminin and proteoglycan receptor dystroglycan (DG) in extracellular matrix stabilization and cellular mechanosensory processes conveyed through communication between the extracellular matrix (ECM) and cytoskeleton facilitated by DG. Specific functional attributes of HS-proteoglycans (HSPGs) are conveyed through interactions with DG and provide synaptic specificity through diverse interactions with an extensive range of cell attachment and adaptor proteins which convey synaptic plasticity. HSPG-DG interactions are important in phototransduction and neurotransduction and facilitate retinal bipolar-photoreceptor neuronal signaling in vision. Besides synaptic stabilization, HSPG-DG interactions also stabilize basement membranes and the ECM and have specific roles in the assembly and function of the neuromuscular junction. This provides neuromuscular control of muscle systems that control conscious body movement as well as essential autonomic control of diaphragm, intercostal and abdominal muscles and muscle systems in the face, mouth and pharynx which assist in breathing processes. DG is thus a multifunctional cell regulatory glycoprotein receptor and regulates a diverse range of biological and physiological processes throughout the human body. The unique glycosylation of the αDG domain is responsible for its diverse interactions with ECM components in cell-ECM signaling. Cytoskeletal cell regulatory switches assembled by the ßDG domain in its role as a nuclear scaffolding protein respond to such ECM cues to regulate cellular behavior and tissue homeostasis thus DG has fascinating and diverse roles in health and disease.


Subject(s)
Dystroglycans , Neuronal Plasticity , Dystroglycans/metabolism , Humans , Neuronal Plasticity/physiology , Animals , Extracellular Matrix/metabolism , Heparan Sulfate Proteoglycans/metabolism
18.
BMC Genomics ; 25(1): 635, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918719

ABSTRACT

BACKGROUND: The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. RESULTS: We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-toned pygmy squid (Idiosepius pygmaeus) to OA conditions, using a de novo transcriptome assembly created with long read PacBio ISO-sequencing data. We then correlated patterns of gene expression with CO2 treatment levels and OA-affected behaviours in the same individuals. OA induced transcriptomic responses within the nervous system related to various different types of neurotransmission, neuroplasticity, immune function and oxidative stress. These molecular changes may contribute to OA-induced behavioural changes, as suggested by correlations among gene expression profiles, CO2 treatment and OA-affected behaviours. CONCLUSIONS: This study provides the first molecular insights into the neurobiological effects of OA on a cephalopod and correlates molecular changes with whole animal behavioural responses, helping to bridge the gaps in our knowledge between environmental change and animal responses.


Subject(s)
Behavior, Animal , Carbon Dioxide , Transcriptome , Animals , Behavior, Animal/drug effects , Carbon Dioxide/metabolism , Seawater/chemistry , Hydrogen-Ion Concentration , Decapodiformes/genetics , Gene Expression Profiling , Cephalopoda/genetics , Oceans and Seas , Ocean Acidification
19.
J Neurophysiol ; 132(2): 418-432, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38838299

ABSTRACT

The appropriate growth of the neurons, accurate organization of their synapses, and successful neurotransmission are indispensable for sensorimotor activities. These processes are highly dynamic and tightly regulated. Extensive genetic, molecular, physiological, and behavioral studies have identified many molecular candidates and investigated their roles in various neuromuscular processes. In this article, we show that Beadex (Bx), the Drosophila LIM only (LMO) protein, is required for motor activities and neuromuscular growth of Drosophila. The larvae bearing Bx7, a null allele of Bx, and the RNAi-mediated neuronal-specific knockdown of Bx show drastically reduced crawling behavior, a diminished synaptic span of the neuromuscular junctions (NMJs) and an increased spontaneous neuronal firing with altered motor patterns in the central pattern generators (CPGs). Microarray studies identified multiple targets of Beadex that are involved in different cellular and molecular pathways, including those associated with the cytoskeleton and mitochondria that could be responsible for the observed neuromuscular defects. With genetic interaction studies, we further show that Highwire (Hiw), a negative regulator of synaptic growth at the NMJs, negatively regulates Bx, as the latter's deficiency was able to rescue the phenotype of the Hiw null mutant, HiwDN. Thus, our data indicate that Beadex functions downstream of Hiw to regulate the larval synaptic growth and physiology.NEW & NOTEWORTHY A novel role for Beadex (Bx) regulates the larval neuromuscular junction (NMJ) structure and function in a tissue-specific manner. Bx is expressed in a subset of Toll-6-expressing neurons and is involved in regulating synaptic span and physiology, possibly through its negative interaction with Highwire (Hiw). The findings of this study provide insights into the molecular mechanisms underlying NMJ development and function and warrant further investigation to understand the role of Bx in these processes fully.


Subject(s)
Drosophila Proteins , Larva , Neuromuscular Junction , Animals , Central Pattern Generators/physiology , Central Pattern Generators/metabolism , Drosophila , Drosophila melanogaster/growth & development , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Larva/growth & development , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Neuromuscular Junction/physiology , Neuromuscular Junction/metabolism , Neuromuscular Junction/growth & development , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
20.
J Neurochem ; 168(9): 2303-2315, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38481090

ABSTRACT

Xanthurenic acid (XA) raises a growing multidisciplinary interest based upon its oxidizing properties, its ability to complex certain metal ions, and its detoxifier capacity of 3-hydroxykynurenine (3-HK), its brain precursor. However, little is still known about the role and mechanisms of action of XA in the central nervous system (CNS). Therefore, many research groups have recently investigated XA and its central functions extensively. The present paper critically reviews and discusses all major data related to XA properties and neuronal activities to contribute to the improvement of the current knowledge on XA's central roles and mechanisms of action. In particular, our data showed the existence of a specific G-protein-coupled receptor (GPCR) for XA localized exclusively in brain neurons exhibiting Ca2+-dependent dendritic release and specific electrophysiological responses. XA properties and central activities suggest a role for this compound in brain intercellular signaling. Indeed, XA stimulates cerebral dopamine (DA) release contrary to its structural analog, kynurenic acid (KYNA). Thus, KYNA/XA ratio could be fundamental in the regulation of brain glutamate and DA release. Cerebral XA may also represent an homeostatic signal between the periphery and several brain regions where XA accumulates easily after peripheral administration. Therefore, XA status in certain psychoses or neurodegenerative diseases seems to be reinforced by its brain-specific properties in balance with its formation and peripheral inputs.


Subject(s)
Brain , Signal Transduction , Xanthurenates , Xanthurenates/metabolism , Xanthurenates/pharmacology , Animals , Humans , Brain/metabolism , Brain/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Neurons/metabolism , Neurons/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL