Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Virol ; 97(11): e0122623, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37861337

ABSTRACT

IMPORTANCE: Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.


Subject(s)
Fish Diseases , Fish Proteins , Peptide Elongation Factor 1 , Rhabdoviridae Infections , Rhabdoviridae , Animals , Fishes , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Rhabdoviridae/physiology , Rhabdoviridae Infections/metabolism , Rhabdoviridae Infections/veterinary , Viral Proteins/genetics , Viral Proteins/metabolism , Fish Proteins/metabolism , Fish Diseases/metabolism
2.
J Biol Chem ; 295(3): 883-895, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31822560

ABSTRACT

The templates for transcription and replication by respiratory syncytial virus (RSV) polymerase are helical nucleocapsids (NCs), formed by viral RNAs that are encapsidated by the nucleoprotein (N). Proper NC assembly is vital for RSV polymerase to engage the RNA template for RNA synthesis. Previous studies of NCs or nucleocapsid-like particles (NCLPs) from RSV and other nonsegmented negative-sense RNA viruses have provided insights into the overall NC architecture. However, in these studies, the RNAs were either random cellular RNAs or average viral genomic RNAs. An in-depth mechanistic understanding of NCs has been hampered by lack of an in vitro assay that can track NC or NCLP assembly. Here we established a protocol to obtain RNA-free N protein (N0) and successfully demonstrated the utility of a new assay for tracking assembly of N with RNA oligonucleotides into NCLPs. We discovered that the efficiency of the NCLP (N-RNA) assembly depends on the length and sequence of the RNA incorporated into NCLPs. This work provides a framework to generate purified N0 and incorporate it with RNA into NCLPs in a controllable manner. We anticipate that our assay for in vitro trackable assembly of RSV-specific nucleocapsids may enable in-depth mechanistic analyses of this process.


Subject(s)
Nucleocapsid/genetics , Nucleoproteins/genetics , RNA, Viral/genetics , Respiratory Syncytial Virus, Human/genetics , Genome, Viral/genetics , Humans , Nucleocapsid/chemistry , Nucleoproteins/chemistry , RNA, Viral/chemistry , Respiratory Syncytial Virus, Human/chemistry , Virus Replication/genetics
3.
BMC Microbiol ; 21(1): 334, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876012

ABSTRACT

BACKGROUND: Peste des Petits Ruminants (PPR) is an acute or peracute contagious transboundary viral disease that mainly affects caprine and ovine and causes significant economic impact in developing countries. After two PPR virus outbreaks in 2011 and 2014, an investigation, from August 2015 to September 2016, was carried out in Northern Iraq when an increased morbidity and mortality rates were reported in the domestic and captive wild goats. In the present study, ten domestic goat farms and seven captive wild goat herds located in seven geographical areas of Northern Iraq were clinically, pathologically, serologically and genotypically characterized to determine the prevalence and potential cause of PPR virus outbreak. RESULTS: The outbreak occurred with rate of morbidity (26.1%) and mortality (11.1%) in domestic goat farms as compared to captive wild goat herds where relatively high mortality (42.9%) and low morbidity (10.9%) rates were recorded. Based on the clinical symptoms (mucopurulent nasal discharges, ulceration and erosion of oral mucosa, profuse watery diarrhea) and necropsy (hemorrhage and congestion on mucous membranes of the colon and rectum with zebra stripes lesions) results, overall, the serological test findings revealed a high frequency (47.9%) of positive samples for anti-PPRV nucleoprotein antibodies. Furthermore, the nucleoprotein (N) gene was detected in 63.2 and 89.1% of samples using conventional and reverse transcription real-time quantitative PCR assays. A phylogenetic analysis of N gene amino acid sequences clustered with the reference strain revealed lineage IV similar to the strains isolated in 2011 and 2014, respectively. However, two sub-types of lineage IV (I and II), significantly distinct from the previous strains, were also observed. CONCLUSION: The phylogenetic analysis suggests that movements of goats are possible cause and one of the important factors responsible for the spread of virus across the region. The study results would help in improving farm management practices by establishing a PPR virus eradication program using regular monitoring and vaccination program to control and mitigate the risk of re-emergence of PPR virus infection in domestic and captive wild goats in Iraq.


Subject(s)
Goat Diseases/virology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/isolation & purification , Animals , Animals, Domestic , Animals, Zoo , Antibodies, Viral/blood , Genotype , Goat Diseases/epidemiology , Goat Diseases/pathology , Goats , Iraq/epidemiology , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/immunology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/pathology , Peste-des-petits-ruminants virus/classification , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/immunology , Phenotype , Phylogeny
4.
J Biol Chem ; 294(10): 3647-3660, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30626736

ABSTRACT

As all the viruses belonging to the Mononegavirales order, the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV) is encapsidated by the viral nucleoprotein N. N protein polymerizes along the genomic and anti-genomic RNAs during replication. This requires the maintenance of the neosynthesized N protein in a monomeric and RNA-free form by the viral phosphoprotein P that plays the role of a chaperone protein, forming a soluble N0-P complex. We have previously demonstrated that residues 1-30 of P specifically bind to N0 Here, to isolate a stable N0-P complex suitable for structural studies, we used the N-terminal peptide of P (P40) to purify truncated forms of the N protein. We show that to purify a stable N0-P-like complex, a deletion of the first 30 N-terminal residues of N (NΔ30) is required to impair N oligomerization, whereas the presence of a full-length C-arm of N is required to inhibit RNA binding. We generated structural models of the RSV N0-P with biophysical approaches, including hydrodynamic measurements and small-angle X-ray scattering (SAXS), coupled with biochemical and functional analyses of human RSV (hRSV) NΔ30 mutants. These models suggest a strong structural homology between the hRSV and the human metapneumovirus (hMPV) N0-P complexes. In both complexes, the P40-binding sites on N0 appear to be similar, and the C-arm of N provides a high flexibility and a propensity to interact with the N RNA groove. These findings reveal two potential sites to target on N0-P for the development of RSV antivirals.


Subject(s)
Nucleoproteins/chemistry , Nucleoproteins/metabolism , Respiratory Syncytial Virus, Human , Viral Proteins/chemistry , Viral Proteins/metabolism , Binding Sites , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Models, Molecular , Mutation , Nucleoproteins/genetics , Protein Conformation , Solutions , Surface Properties , Viral Proteins/genetics
5.
Diagn Microbiol Infect Dis ; 105(4): 115903, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36805620

ABSTRACT

Management of the COVID-19 pandemic relies on molecular diagnostic methods supported by serological tools. Herein, we developed S-RBD- and N- based ELISA assays useful for infection rate surveillance as well as the follow-up of acquired protective immunity against SARS-CoV-2. ELISA assays were optimized using COVID-19 Tunisian patients' sera and prepandemic controls. Assays were further validated in 3 African countries with variable endemic settings. The receiver operating curve was used to evaluate the assay performances. The N- and S-RBD-based ELISA assays performances, in Tunisia, were very high (AUC: 0.966 and 0.98, respectively, p < 0.0001). Cross-validation analysis showed similar performances in different settings. Cross-reactivity, with malaria infection, against viral antigens, was noticed. In head-to-head comparisons with different commercial assays, the developed assays showed high agreement. This study demonstrates, the added value of the developed serological assays in low-income countries, particularly in ethnically diverse populations with variable exposure to local endemic infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Pandemics , Enzyme-Linked Immunosorbent Assay , Tunisia/epidemiology , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL