Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 87: 809-837, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29596003

ABSTRACT

To maintain an asymmetric distribution of ions across membranes, protein pumps displace ions against their concentration gradient by using chemical energy. Here, we describe a functionally analogous but topologically opposite process that applies to the lipid transfer protein (LTP) oxysterol-binding protein (OSBP). This multidomain protein exchanges cholesterol for the phosphoinositide phosphatidylinositol 4-phosphate [PI(4)P] between two apposed membranes. Because of the subsequent hydrolysis of PI(4)P, this counterexchange is irreversible and contributes to the establishment of a cholesterol gradient along organelles of the secretory pathway. The facts that some natural anti-cancer molecules block OSBP and that many viruses hijack the OSBP cycle for the formation of intracellular replication organelles highlight the importance and potency of OSBP-mediated lipid exchange. The architecture of some LTPs is similar to that of OSBP, suggesting that the principles of the OSBP cycle-burning PI(4)P for the vectorial transfer of another lipid-might be general.


Subject(s)
Cholesterol/metabolism , Phosphatidylinositol Phosphates/metabolism , Receptors, Steroid/metabolism , Biological Transport, Active , Carrier Proteins/metabolism , Golgi Apparatus/metabolism , Humans , Ligands , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Biological , Models, Molecular , Oxysterols/metabolism , Protein Interaction Domains and Motifs , Receptors, Steroid/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Virus Replication/physiology
2.
Annu Rev Biochem ; 86: 659-684, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28301744

ABSTRACT

The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca2+ dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.


Subject(s)
Calcium/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , ORAI1 Protein/metabolism , Biological Transport , Calcium Signaling , Carrier Proteins/genetics , Cell Membrane/ultrastructure , Endoplasmic Reticulum/ultrastructure , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Gene Expression , Homeostasis , Humans , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/genetics , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Synaptotagmins/genetics , Synaptotagmins/metabolism
3.
Mol Cell ; 73(3): 458-473.e7, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30581148

ABSTRACT

Cholesterol is highly enriched at the plasma membrane (PM), and lipid transfer proteins may deliver cholesterol to the PM in a nonvesicular manner. Here, through a mini-screen, we identified the oxysterol binding protein (OSBP)-related protein 2 (ORP2) as a novel mediator of selective cholesterol delivery to the PM. Interestingly, ORP2-mediated enrichment of PM cholesterol was coupled with the removal of phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) from the PM. ORP2 overexpression or deficiency impacted the levels of PM cholesterol and PI(4,5)P2, and ORP2 efficiently transferred both cholesterol and PI(4,5)P2in vitro. We determined the structure of ORP2 in complex with PI(4,5)P2 at 2.7 Å resolution. ORP2 formed a stable tetramer in the presence of PI(4,5)P2, and tetramerization was required for ORP2 to transfer PI(4,5)P2. Our results identify a novel pathway for cholesterol delivery to the PM and establish ORP2 as a key regulator of both cholesterol and PI(4,5)P2 of the PM.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Hepatocytes/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Receptors, Steroid/metabolism , Biological Transport , Cell Line, Tumor , HEK293 Cells , Humans , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Receptors, Steroid/chemistry , Receptors, Steroid/genetics , Structure-Activity Relationship
4.
J Biol Chem ; 299(11): 105295, 2023 11.
Article in English | MEDLINE | ID: mdl-37774976

ABSTRACT

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.


Subject(s)
Biotinylation , Sterols , rab GTP-Binding Proteins , Humans , Cholesterol/biosynthesis , Cholesterol/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/metabolism , Sterols/biosynthesis , Sterols/metabolism , Cells, Cultured , Gene Knockdown Techniques , Protein Transport/genetics
5.
Chembiochem ; 25(6): e202300679, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38205937

ABSTRACT

The connection between 3d (Cu) and 4d (Mo) via the "Mo-S-Cu" unit is called Mo-Cu antagonism. Biology offers case studies of such interactions in metalloproteins such as Mo/Cu-CO Dehydrogenases (Mo/Cu-CODH), and Mo/Cu Orange Protein (Mo/Cu-ORP). The CODH significantly maintains the CO level in the atmosphere below the toxic level by converting it to non-toxic CO2 for respiring organisms. Several models were synthesized to understand the structure-function relationship of these native enzymes. However, this interaction was first observed in ruminants, and they convert molybdate (MoO4 2- ) into tetrathiomolybdate (MoS4 2- ; TTM), reacting with cellular Cu to yield biological unavailable Mo/S/Cu cluster, then developing Cu-deficiency diseases. These findings inspire the use of TTM as a Cu-sequester drug, especially for treating Cu-dependent human diseases such as Wilson diseases (WD) and cancer. It is well known that a balanced Cu homeostasis is essential for a wide range of biological processes, but negative consequence leads to cell toxicity. Therefore, this review aims to connect the Mo-Cu antagonism in metalloproteins and anti-copper therapy.


Subject(s)
Copper , Metalloproteins , Humans , Copper/metabolism , Molybdenum/pharmacology , Molybdenum/therapeutic use
6.
Environ Sci Technol ; 58(33): 14687-14697, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39115966

ABSTRACT

As global change processes modify the extent and functions of terrestrial-aquatic interfaces, the variability of critical and dynamic transitional zones between wetlands and uplands increases. However, it is still unclear how fluctuating water levels at these dynamic boundaries alter groundwater biogeochemical cycling. Here, we used high-temporal resolution data along gradients from wetlands to uplands and during fluctuating water levels at freshwater coastal areas to capture spatiotemporal patterns of groundwater redox potential (Eh). We observed that topography influences groundwater Eh that is higher in uplands than in wetlands; however, the high variability within TAI zones challenged the establishment of distinct redox zonation. Declining water levels generally decreased Eh, but most locations exhibited significant Eh variability, which is associated with rare instances of short-term water level fluctuations, introducing oxygen. The Eh-oxygen relationship showed distinct hysteresis patterns, reflecting redox poising capacity at higher Eh, maintaining more oxidizing states longer than the dissolved oxygen presence. Surprisingly, we observed more frequent oxidizing states in transitional areas and wetlands than in uplands. We infer that occasional oxygen entering specific wetland-upland boundaries acts as critical biogeochemical control points. High-resolution data can capture such rare yet significant biogeochemical instances, supporting redox-informed models and advancing the predictability of climate change feedback.


Subject(s)
Groundwater , Oxidation-Reduction , Wetlands , Groundwater/chemistry
7.
Exp Cell Res ; 427(1): 113601, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37054771

ABSTRACT

ORP8 has been reported to suppress tumor progression in various malignancies. However, the functions and underlying mechanisms of ORP8 are still unknown in renal cell carcinoma (RCC). Here, decreased expression of ORP8 was detected in RCC tissues and cell lines. Functional assays verified that ORP8 suppressed RCC cell growth, migration, invasion, and metastasis. Mechanistically, ORP8 attenuated Stathmin1 expression by accelerating ubiquitin-mediated proteasomal degradation and led to an increase in microtubule polymerization. Lastly, ORP8 knockdown partly rescued microtubule polymerization, as well as aggressive cell phenotypes induced by paclitaxel. Our findings elucidated that ORP8 suppressed the malignant progression of RCC by increasing Stathmin1 degradation and microtubule polymerization, thus suggesting that ORP8 might be a novel target for the treatment of RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Cell Line , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/pathology , Microtubules/metabolism , Polymerization , Receptors, Steroid/metabolism
8.
Biotechnol Lett ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331306

ABSTRACT

This investigation probes the role of the electron mediator, neutral red (NR), in the electrosynthesis process, specifically examining its effect on the production of succinic acid by Actinobacillus succinogenes. Our findings reveal that NR, when integrated into the cell membrane, is pivotal for sustaining MEC efficiency. Nevertheless, it is susceptible to both intrinsic and MECs-induced degradation. Notably, during the exponential growth phase of the bacteria, NR is readily incorporated into the cell membrane. However, the supplemental addition of NR fails to significantly enhance the MEC's capacity for succinic acid synthesis, no matter what stage of bacterial growth. And significant depletion of membrane-associated NR is not adequately compensated by the NR present in the fermentation liquid. The ORP feedback-regulated MECs adeptly conserve the NR on the cell membrane, which is essential for maintaining the efficiency of long-term electrosynthesis. The presence of NR on the cell membrane is essential for the functionality of MECs, yet its external replenishment hard. Implementing precise electro-potential regulation strategies can effectively diminish the degradation of NR, thus maintaining the system's efficiency.

9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34903667

ABSTRACT

KRAS is mutated in 90% of human pancreatic ductal adenocarcinomas (PDACs). To function, KRAS must localize to the plasma membrane (PM) via a C-terminal membrane anchor that specifically engages phosphatidylserine (PtdSer). This anchor-binding specificity renders KRAS-PM localization and signaling capacity critically dependent on PM PtdSer content. We now show that the PtdSer lipid transport proteins, ORP5 and ORP8, which are essential for maintaining PM PtdSer levels and hence KRAS PM localization, are required for KRAS oncogenesis. Knockdown of either protein, separately or simultaneously, abrogated growth of KRAS-mutant but not KRAS-wild-type pancreatic cancer cell xenografts. ORP5 or ORP8 knockout also abrogated tumor growth in an immune-competent orthotopic pancreatic cancer mouse model. Analysis of human datasets revealed that all components of this PtdSer transport mechanism, including the PM-localized EFR3A-PI4KIIIα complex that generates phosphatidylinositol-4-phosphate (PI4P), and endoplasmic reticulum (ER)-localized SAC1 phosphatase that hydrolyzes counter transported PI4P, are significantly up-regulated in pancreatic tumors compared to normal tissue. Taken together, these results support targeting PI4KIIIα in KRAS-mutant cancers to deplete the PM-to-ER PI4P gradient, reducing PM PtdSer content. We therefore repurposed the US Food and Drug Administration-approved hepatitis C antiviral agent, simeprevir, as a PI4KIIIα inhibitor In a PDAC setting. Simeprevir potently mislocalized KRAS from the PM, reduced the clonogenic potential of pancreatic cancer cell lines in vitro, and abrogated the growth of KRAS-dependent tumors in vivo with enhanced efficacy when combined with MAPK and PI3K inhibitors. We conclude that the cellular ER-to-PM PtdSer transport mechanism is essential for KRAS PM localization and oncogenesis and is accessible to therapeutic intervention.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Phosphatidylserines/metabolism , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Receptors, Steroid/metabolism , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , 1-Phosphatidylinositol 4-Kinase/genetics , 1-Phosphatidylinositol 4-Kinase/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biological Transport/drug effects , Cell Line, Tumor , Drug Delivery Systems , Gene Knockdown Techniques , Humans , Mice , Mice, Nude , Protease Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Receptors, Steroid/genetics , Simeprevir/pharmacology , Xenograft Model Antitumor Assays
10.
BMC Genomics ; 24(1): 7, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36624379

ABSTRACT

BACKGROUND: ORP (Oxysterol-binding protein-related proteins) genes play a role in lipid metabolism, vesicular transferring and signaling, and non-vesicular sterol transport. However, no systematic identification and analysis of ORP genes have been reported in cotton. RESULT: In this study, we identified 14, 14, 7, and 7 ORP genes in G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, respectively. Phylogenetic analysis showed that all ORP genes could be classified into four groups. Gene structure and conserved motif analysis suggest that the function of this gene family was conserved. The Ka/Ks analysis showed that this gene family was exposed to purifying selection during evolution. Transcriptome data showed that four ORP genes, especially GhORP_A02, were induced by abiotic stress treatment. The cis-acting elements in the ORP promoters were responsive to phytohormones and various abiotic stresses. The silenced plants of GhORP_A02 were more sensitive to drought stress when compared to control. CONCLUSION: The major finding of this study shed light on the potential role of ORP genes in abiotic stress and provided a fundamental resource for further analysis in cotton.


Subject(s)
Drought Resistance , Gossypium , Gossypium/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Multigene Family , Stress, Physiological/genetics
11.
Adv Exp Med Biol ; 1422: 327-352, 2023.
Article in English | MEDLINE | ID: mdl-36988887

ABSTRACT

Cholesterol (Chol) is an essential component of all eukaryotic cell membranes that affects the function of numerous peripheral as well as integral membrane proteins. Chol is synthesized in the ER, but it is selectively enriched within the plasma membrane (PM) and other endomembranes, which requires Chol to cross the aqueous phase of the cytoplasm. In addition to the classical vesicular trafficking pathways that are known to facilitate the bulk transport of membrane intermediates, Chol is also transported via non-vesicular lipid transfer proteins that work primarily within specialized membrane contact sites. Some of these transport pathways work against established concentration gradients and hence require energy. Recent studies highlight the unique role of phosphoinositides (PPIns), and phosphatidylinositol 4-phosphate (PI4P) in particular, for the control of non-vesicular Chol transport. In this chapter, we will review the emerging connection between Chol, PPIns, and lipid transfer proteins that include the important family of oxysterol-binding protein related proteins, or ORPs.


Subject(s)
Cholesterol , Phosphatidylinositol Phosphates , Phosphorylation , Cholesterol/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/metabolism , Biological Transport , Membrane Proteins/metabolism , Cell Membrane/metabolism
12.
Traffic ; 21(1): 172-180, 2020 01.
Article in English | MEDLINE | ID: mdl-31650670

ABSTRACT

The role of the endoplasmic reticulum (ER) in phagocytosis has been the subject of debate for over a decade. Proteomic determinations and dynamic microscopy of live cells led to conflicting conclusions. Recent insights into the existence of a variety of membrane contact sites (MCS) may help reconcile the seemingly disparate views. Specifically, earlier results can be rationalized considering that the ER forms specialized MCS with nascent and maturing phagosomes, without undergoing fusion. The composition and function of documented ER-to-phagosome contact sites is described. In addition, we speculate about the possible existence of additional phagosomal contact sites, based on available knowledge of interactions between the ER and other endocytic compartments. The interaction between phagosomes and the ER has been the subject of debate. Earlier observations that led to the suggestion that the ER fuses with the phagosomal membrane can now be explained in the light of recent evidence that intimate contacts form between the two organelles.


Subject(s)
Endoplasmic Reticulum , Proteomics , Intracellular Membranes , Phagocytosis , Phagosomes
13.
J Cell Sci ; 133(6)2020 03 16.
Article in English | MEDLINE | ID: mdl-32041906

ABSTRACT

Oxysterol-binding protein (OSBP)-related proteins (ORPs) mediate non-vesicular lipid transfer between intracellular membranes. Phosphoinositide (PI) gradients play important roles in the ability of OSBP and some ORPs to transfer cholesterol and phosphatidylserine between the endoplasmic reticulum (ER) and other organelle membranes. Here, we show that plasma membrane (PM) association of ORP3 (also known as OSBPL3), a poorly characterized ORP family member, is triggered by protein kinase C (PKC) activation, especially when combined with Ca2+ increases, and is determined by both PI(4,5)P2 and PI4P After activation, ORP3 efficiently extracts PI4P and to a lesser extent phosphatidic acid from the PM, and slightly increases PM cholesterol levels. Full activation of ORP3 resulted in decreased PM PI4P levels and inhibited Ca2+ entry via the store-operated Ca2+ entry pathway. The C-terminal region of ORP3 that follows the strictly defined lipid transfer domain was found to be critical for the proper localization and function of the protein.


Subject(s)
Endoplasmic Reticulum , Oxidoreductases , Phosphatidylinositol Phosphates , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphorylation
14.
Biochem Biophys Res Commun ; 608: 142-148, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35398611

ABSTRACT

Abietic acid (AA), the main component of pine resin that has been traditionally used as Asian medicine, has been reported to demonstrate anti-inflammatory activities. Despite this, little is known about the effects of AA on hepatic endoplasmic reticulum (ER) stress and lipid metabolism. This study investigated the impacts of AA on ER stress and steatosis in in vitro obesity models. We found that Treatment with AA reduced lipid deposition and lipogenesis-related proteins expression in human primary hepatocytes. Augmented expression of ER stress markers (phospho-eukaryotic initiation factor-2α (eIF2α) and C/EBP homologous protein (CHOP)) in palmitate-treated hepatocytes were reversed by AA treatment. Further, AA treatment increased the expression of phospho-AMPK and oxygen-regulated protein 150 (ORP150) in hepatocytes. siRNA-associated knockdown of AMPK or ORP150 expression reduced the effects of AA on not only hepatic ER stress but also lipogenesis and apoptosis. These results denote that AA attenuates lipid accumulation in hepatocytes in the presence of palmitate through the suppression of ER stress by AMPK/ORP150 signaling. AA could be a potential candidate for treating non-alcoholic fatty liver disease.


Subject(s)
AMP-Activated Protein Kinases , Abietanes , Endoplasmic Reticulum Stress , HSP70 Heat-Shock Proteins , Hepatocytes , AMP-Activated Protein Kinases/metabolism , Abietanes/pharmacology , Endoplasmic Reticulum Stress/drug effects , HSP70 Heat-Shock Proteins/metabolism , Hepatocytes/metabolism , Humans , Hypercholesterolemia/metabolism , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Oxygen/metabolism , Palmitates/metabolism , Palmitates/pharmacology
15.
Microb Cell Fact ; 21(1): 178, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050762

ABSTRACT

BACKGROUND: Electro-fermentation (EF) is an emerging tool for bioprocess intensification. Benefits are especially expected for bioprocesses in which the cells are enabled to exchange electrons with electrode surfaces directly. It has also been demonstrated that the use of electrical energy in BES can increase bioprocess performance by indirect secondary effects. In this case, the electricity is used to alter process parameters and indirectly activate desired pathways. In many bioprocesses, oxidation-reduction potential (ORP) is a crucial process parameter. While C. pasteurianum fermentation of glycerol has been shown to be significantly influenced electrochemically, the underlying mechanisms are not clear. To this end, we developed a system for the electrochemical control of ORP in continuous culture to quantitatively study the effects of ORP alteration on C. pasteurianum by metabolic flux analysis (MFA), targeted metabolomics, sensitivity and regulation analysis. RESULTS: In the ORP range of -462 mV to -250 mV, the developed algorithm enabled a stable anodic electrochemical control of ORP at desired set-points and a fixed dilution rate of 0.1 h-1. An overall increase of 57% in the molar yield for 1,3-propanediol was observed by an ORP increase from -462 to -250 mV. MFA suggests that C. pasteurianum possesses and uses cellular energy generation mechanisms in addition to substrate-level phosphorylation. The sensitivity analysis showed that ORP exerted its strongest impact on the reaction of pyruvate-ferredoxin-oxidoreductase. The regulation analysis revealed that this influence is mainly of a direct nature. Hence, the observed metabolic shifts are primarily caused by direct inhibition of the enzyme upon electrochemical production of oxygen. A similar effect was observed for the enzyme pyruvate-formate-lyase at elevated ORP levels. CONCLUSIONS: The results show that electrochemical ORP alteration is a suitable tool to steer the metabolism of C. pasteurianum and increase product yield for 1,3-propanediol in continuous culture. The approach might also be useful for application with further anaerobic or anoxic bioprocesses. However, to maximize the technique's efficiency, it is essential to understand the chemistry behind the ORP change and how the microbial system responds to it by transmitted or direct effects.


Subject(s)
Clostridium , Glycerol , Clostridium/metabolism , Fermentation , Glycerol/metabolism , Oxidation-Reduction , Pyruvates/metabolism
16.
Cell Mol Life Sci ; 78(4): 1689-1708, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32734583

ABSTRACT

OSBP-homologous proteins (ORPs, Oshp) are lipid binding/transfer proteins. Several ORP/Oshp localize to membrane contacts between the endoplasmic reticulum (ER) and the plasma membrane, where they mediate lipid transfer or regulate lipid-modifying enzymes. A common way in which they target contacts is by binding to the ER proteins, VAP/Scs2p, while the second membrane is targeted by other interactions with lipids or proteins.We have studied the cross-talk of secretory SNARE proteins and their regulators with ORP/Oshp and VAPA/Scs2p at ER-plasma membrane contact sites in yeast and murine primary neurons. We show that Oshp-Scs2p interactions depend on intact secretory SNARE proteins, especially Sec9p. SNAP-25/Sec9p directly interact with ORP/Osh proteins and their disruption destabilized the ORP/Osh proteins, associated with dysfunction of VAPA/Scs2p. Deleting OSH1-3 in yeast or knocking down ORP2 in primary neurons reduced the oligomerization of VAPA/Scs2p and affected their multiple interactions with SNAREs. These observations reveal a novel cross-talk between the machineries of ER-plasma membrane contact sites and those driving exocytosis.


Subject(s)
Carrier Proteins/genetics , Endoplasmic Reticulum/genetics , Membrane Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Vesicular Transport Proteins/genetics , Animals , Biological Transport/genetics , Carrier Proteins/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Exocytosis/genetics , Humans , Lipid Metabolism/genetics , Mice , Qc-SNARE Proteins/genetics , Receptors, Steroid/genetics , SNARE Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sterols/metabolism , Synaptosomal-Associated Protein 25/genetics
17.
BMC Urol ; 22(1): 18, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35130897

ABSTRACT

BACKGROUND: Robot-assisted radical prostatectomy (RARP) rates have been increasing worldwide despite a lack of evidence of superior patient-reported outcomes (PROs) compared to open radical prostatectomy (ORP). METHODS: This retrospective study included men who contributed data to the Prostate Cancer Outcomes Registry-Victoria (PCOR-Vic), underwent ORP or RARP between January 2014 and May 2018, and completed the EPIC-26 questionnaire 12 months post-surgery. Urinary and sexual bother items, the urinary incontinence domain score, the urinary irritative/obstructive domain score, the sexual domain score and the pad usage item from the EPIC-26 questionnaire were compared between the two cohorts. Unmatched and propensity score matched cohorts were used to determine if there were differences in urinary and sexual PROs between ORP and RARP after accounting for the patient case-mix and surgeon characteristics. RESULTS: Of 3826 patients undergoing radical prostatectomy (RP), 1047 received ORP and 2779 received RARP. Propensity score matching reduced the magnitude of the observed differences in four out of six outcomes (urinary bother, urinary incontinence domain, pad usage and sexual domain). Using a propensity score matched cohort, there were no statistically significant differences for RARP patients, compared to ORP patients, in terms of urinary bother (Rd = 0.47%, P = 0.707), urinary incontinence domain scores (Coeff = - 0.84, P = 0.506), urinary irritative/obstructive domain scores (Coeff = 1.03, P = 0.105), pad usage (Rd = - 0.75%, P = 0.771) and sexual bother (Rd = - 0.89%, P = 0.731). RARP patients had slightly higher sexual domain scores (Coeff = 3.65, P = 0.005). CONCLUSION: There were no differences in urinary PROs between ORP and RARP when assessed 12 months post-surgery. The sexual domain slightly favoured RARP, however this was not deemed clinically significant.


Subject(s)
Erectile Dysfunction/etiology , Patient Reported Outcome Measures , Prostatectomy/adverse effects , Robotic Surgical Procedures/adverse effects , Urinary Incontinence/etiology , Aged , Humans , Male , Middle Aged , Postoperative Complications/etiology , Propensity Score , Prostatectomy/methods , Registries , Retrospective Studies , Victoria
18.
Traffic ; 19(10): 761-769, 2018 10.
Article in English | MEDLINE | ID: mdl-29900632

ABSTRACT

Lysosomes are highly dynamic organelles that can move rapidly throughout the cell. They distribute in a rather immobile pool located around the microtubule-organizing center in a "cloud," and a highly dynamic pool in the cell periphery. Their spatiotemporal characteristics allow them to carry out multiple biological functions, such as cargo degradation, antigen presentation and plasma membrane repair. Therefore, it is not surprising that lysosomal dysfunction underlies various diseases, including cancer, neurodegenerative and autoimmune diseases. In most of these biological events, the involvement of lysosomes is dependent on their ability to move throughout the cytoplasm, to find and fuse to the correct compartments to receive and deliver substrates for further handling. These dynamics are orchestrated by motor proteins moving along cytoskeletal components. The complexity of the mechanisms responsible for controlling lysosomal transport has recently been appreciated and has yielded novel insights into interorganellar communication, as well as lipid-protein interplay. In this review, we discuss the current understanding of the mechanisms of lysosomal transport and the molecular machineries that control this mobility.


Subject(s)
Cell Movement/physiology , Endocytosis/physiology , Lysosomes/physiology , Biological Transport , Dyneins/metabolism , Intracellular Membranes/metabolism , Intracellular Membranes/physiology , Kinesins/metabolism , Lysosomes/metabolism , Models, Biological , Myosins/metabolism , Phosphatidylinositols/metabolism , Spatio-Temporal Analysis
19.
Semin Cell Dev Biol ; 81: 149-153, 2018 09.
Article in English | MEDLINE | ID: mdl-28733164

ABSTRACT

Oxysterol-binding protein (OSBP) and its related proteins (ORPs) constitute a large, evolutionarily conserved family of lipid-binding proteins that are associated with a wide range of cellular activities. The core function of OSBP/ORPs appears to be moving lipids between cellular membranes in a non-vesicular manner. Recent studies have unveiled a novel, counter-transport mechanism of cellular lipid transfer mediated by OSBP/ORPs at the membrane contact sites that involves phosphatidylinositol 4-phosphate. Importantly, the OSBP/ORPs family has also been implicated in cell signalling pathways and cancer development. Here, we summarize recent progress in understanding the role of OSBP/ORPs in cancer development, and discuss how the lipid transfer function of OSBP/ORPs may underpin their role in tumorigenesis.


Subject(s)
Lipid Metabolism/physiology , Neoplasms/metabolism , Receptors, Steroid/physiology , Signal Transduction/physiology , Animals , Biological Transport , Cell Membrane/metabolism , Oxysterols/metabolism , Phosphatidylinositol Phosphates/metabolism
20.
Biochem Biophys Res Commun ; 529(4): 1005-1010, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32819557

ABSTRACT

Oxysterol-binding protein (OSBP) and its related protein (ORP) constitute a conserved family of lipid transfer proteins (LTPs). ORPs have been implicated as intracellular lipid exchanger and sensor in recent years, which regulate the lipid homeostasis and signal pathway. OSBP-related protein 3 plays key role in controlling cell adhesion and migration and could be developed as the drug target for cancer therapy. Here, we report the crystal structures of human ORP3 ORD to 2.1 Å and ORD-PI4P complex to 3.2 Å. The binding assay in vitro confirms the ORP3 has the capability of PI4P binding. This study further verifies that the PI4P is the common ligand of all ORPs and ORPs should be the lipid exchanger in membrane contact sites(MCS).


Subject(s)
Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/metabolism , Phosphatidylinositol Phosphates/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Binding , Protein Domains , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL