Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters

Publication year range
1.
J Infect Dis ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912968

ABSTRACT

BACKGROUND: The mechanisms that mediate immune protection in individuals with subclinical (SC) or asymptomatic infection with L. braziliensis are largely unknown. Neutrophils (PMNs) have been implicated in progressive symptomatic cutaneous leishmaniasis (CL), but their potential participation in maintenance of subclinical infection is unexplored. The aim of this study was to compare the phenotypic and functional profiles of PMNs in individuals with SC infection versus patients with symptomatic CL due to L. braziliensis. METHODS: Subjects were recruited in the endemic region of Corte de Pedra, Bahia, Brazil. Surface markers to define activation status were characterized by flow cytometry. Functional responses of PMNs including phagocytic capacity, production of oxidative species, and oxidative killing of intracellular parasites were studied in vitro. RESULTS: PMNs from individuals with SC infection displayed a more activated phenotype and greater ability to control the infection than PMNs from patients with CL. In contrast, PMNs from patients with CL exhibited higher expression of HLA-DR and higher production of oxidative species than PMNs from subjects with SC infection. CONCLUSION: PMNs from individuals with SC infection can control the infection more efficiently than PMNs from patients with CL, despite the lower production of oxidants. Our observations suggest that L. braziliensis may evade microbicidal mechanisms of PMNs from patients with CL, contributing to parasite dissemination and the establishment of disease.

2.
Infect Immun ; 92(5): e0052223, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629842

ABSTRACT

Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.


Subject(s)
Pneumococcal Infections , Animals , Female , Mice , Disease Models, Animal , Lung/microbiology , Lung/pathology , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/drug effects , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Reactive Oxygen Species/metabolism , Streptococcus pneumoniae/drug effects
3.
Immun Ageing ; 21(1): 34, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840213

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (pneumococcus) is a leading cause of pneumonia in older adults. Successful control of pneumococci requires robust pulmonary neutrophil influx early in infection. However, aging is associated with aberrant neutrophil recruitment and the mechanisms behind that are not understood. Here we explored how neutrophil recruitment following pneumococcal infection changes with age and the host pathways regulating this. RESULTS: Following pneumococcal infection there was a significant delay in early neutrophil recruitment to the lungs of aged mice. Neutrophils from aged mice showed defects in trans-endothelial migration in vitro compared to young controls. To understand the pathways involved, we examined immune modulatory extracellular adenosine (EAD) signaling, that is activated upon cellular damage. Signaling through the lower affinity A2A and A2B adenosine receptors had no effect on neutrophil recruitment to infected lungs. In contrast, inhibition of the high affinity A1 receptor in young mice blunted neutrophil recruitment to the lungs following infection. A1 receptor inhibition decreased expression of CXCR2 on circulating neutrophils, which is required for trans-endothelial migration. Indeed, A1 receptor signaling on neutrophils was required for their ability to migrate across endothelial cells in response to infection. Aging was not associated with defects in EAD production or receptor expression on neutrophils. However, agonism of A1 receptor in aged mice rescued the early defect in neutrophil migration to the lungs and improved control of bacterial burden. CONCLUSIONS: This study suggests age-driven defects in EAD damage signaling can be targeted to rescue the delay in pulmonary neutrophil migration in response to bacterial pneumonia.

4.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892404

ABSTRACT

Reproductive failure in dogs is often due to unknown causes, and correct diagnosis and treatment are not always achieved. This condition is associated with various congenital and acquired etiologies that develop inflammatory processes, causing an increase in the number of leukocytes within the female reproductive tract (FRT). An encounter between polymorphonuclear neutrophils (PMNs) and infectious agents or inflammation in the FRT could trigger neutrophil extracellular traps (NETs), which are associated with significantly decreased motility and damage to sperm functional parameters in other species, including humans. This study describes the interaction between canine PMNs and spermatozoa and characterizes the release of NETs, in addition to evaluating the consequences of these structures on canine sperm function. To identify and visualize NETs, May-Grünwald Giemsa staining and immunofluorescence for neutrophil elastase (NE) were performed on canine semen samples and sperm/PMN co-cultures. Sperm viability was assessed using SYBR/PI and acrosome integrity was assessed using PNA-FITC/PI by flow cytometry. The results demonstrate NETs release in native semen samples and PMN/sperm co-cultures. In addition, NETs negatively affect canine sperm function parameters. This is the first report on the ability of NETs to efficiently entrap canine spermatozoa, and to provide additional data on the adverse effects of NETs on male gametes. Therefore, NETs formation should be considered in future studies of canine reproductive failure, as these extracellular fibers and NET-derived pro-inflammatory capacities will impede proper oocyte fertilization and embryo implantation. These data will serve as a basis to explain certain reproductive failures of dogs and provide new information about triggers and molecules involved in adverse effects of NETosis for domestic pet animals.


Subject(s)
Extracellular Traps , Neutrophils , Spermatozoa , Animals , Dogs , Extracellular Traps/metabolism , Male , Spermatozoa/metabolism , Neutrophils/metabolism , Sperm Motility , Female , Leukocyte Elastase/metabolism , Coculture Techniques , Acrosome/metabolism
5.
BMC Infect Dis ; 23(1): 886, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114951

ABSTRACT

Post-malaria neurological syndrome (PMNS) is a rare, self-limiting condition that presents with a wide range of neurological manifestations after clearance of malarial infection, especially 𝘗𝘭𝘢𝘴𝘮𝘰𝘥𝘪𝘶𝘮 f𝘢𝘭𝘤𝘪𝘱𝘢𝘳𝘶𝘮, most patients recover without residual deficits. Here we present a case of a 29-year-old, male with a recent history of malaria treated successfully, who presented due to a generalized tonic-clonic seizure, without any other neurological symptoms, the examination and labs were unremarkable, he underwent a computer tomography (CT) scan and Magnetic resonant imaging (MRI) which both showed two areas of vasogenic edema involving the subcortical white matter of left frontal and right posterior parasagittal regions, all autoimmune screens, infection workup from blood and CSF were negative, he underwent a brain biopsy that showed intense perivascular inflammation with neuronal loss and gliosis, findings are nonspecific and can be seen in a variety of condition. The patient's condition improved, and he was discharged without any complications.


Subject(s)
Malaria , Humans , Male , Adult , Malaria/complications , Brain/diagnostic imaging , Seizures/complications , Syndrome , Biopsy
6.
J Reprod Dev ; 69(2): 95-102, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36775285

ABSTRACT

This in vivo study aimed to investigate local and systemic immune responses induced by sperm in cows after artificial insemination (AI). Initially, 12 multiparous Japanese Black cows were subjected to intrauterine AI (AI group, n = 6) or saline infusion (control group, n = 6). The uterine body and horn ipsilateral to the ovulatory follicle were mini-flushed with 2 ml of RPMI-1640 medium at different time points (0, 1, 6, 10, 24, 48 h, and 7 days after AI), centrifuged, and the sediments were examined under a light microscope. Vaginal smears were prepared at 0, 1, 6, and 10 h after AI to investigate the sperm backflow. Subsequently, another experiment was conducted by assigning cows to three groups: intrauterine AI (AI group, n = 5), heat-inactivated AI (Heat-AI group, n = 5), or saline infusion (control group, n = 5). Blood samples were collected, and polymorphonuclear neutrophils (PMNs) and peripheral blood mononuclear cells (PBMCs) were separated and analyzed for gene expression using real-time PCR. The results showed that most sperm were rapidly transported either forward into the uterine horn or backward into the vagina within 1 h after AI. The PMNs migrated into the uterine lumen 6 hours after AI. Only active sperm-induced proinflammatory responses in PMNs and PBMCs via upregulation of TNFa, IL8, IL1B, and PGES and downregulation of IL10 at 6 h after AI. These data provide evidence that sperm generate transient proinflammatory responses locally in the uterus and systemically in the peripheral immune cells, which may be prerequisites for uterine clearance, embryo receptivity, and implantation in cows.


Subject(s)
Leukocytes, Mononuclear , Semen , Female , Cattle , Male , Animals , Uterus/physiology , Spermatozoa/metabolism , Insemination, Artificial/veterinary , Insemination, Artificial/methods
7.
Int J Mol Sci ; 24(11)2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37298680

ABSTRACT

Inflammatory bowel disease (IBD), characterized by infiltration of polymorphonuclear neutrophils (PMNs), increases the risk of colon cancer. PMN activation corresponds to the accumulation of intracellular Lipid Droplets (LDs). As increased LDs are negatively regulated by transcription factor Forkhead Box O3 (FOXO3), we aim to determine the significance of this regulatory network in PMN-mediated IBD and tumorigenesis. Affected tissue of IBD and colon cancer patients, colonic and infiltrated immune cells, have increased LDs' coat protein, PLIN2. Mouse peritoneal PMNs with stimulated LDs and FOXO3 deficiency have elevated transmigratory activity. Transcriptomic analysis of these FOXO3-deficient PMNs showed differentially expressed genes (DEGs; FDR < 0.05) involved in metabolism, inflammation, and tumorigenesis. Upstream regulators of these DEGs, similar to colonic inflammation and dysplasia in mice, were linked to IBD and human colon cancer. Additionally, a transcriptional signature representing FOXO3-deficient PMNs (PMN-FOXO3389) separated transcriptomes of affected tissue in IBD (p = 0.00018) and colon cancer (p = 0.0037) from control. Increased PMN-FOXO3389 presence predicted colon cancer invasion (lymphovascular p = 0.015; vascular p = 0.046; perineural p = 0.03) and poor survival. Validated DEGs from PMN-FOXO3389 (P2RX1, MGLL, MCAM, CDKN1A, RALBP1, CCPG1, PLA2G7) are involved in metabolism, inflammation, and tumorigenesis (p < 0.05). These findings highlight the significance of LDs and FOXO3-mediated PMN functions that promote colonic pathobiology.


Subject(s)
Colonic Neoplasms , Inflammatory Bowel Diseases , Humans , Animals , Mice , Neutrophils/metabolism , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Inflammation/genetics , Inflammation/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism
8.
Int J Mol Sci ; 24(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37108529

ABSTRACT

Centrifugation steps are regularly used for neutrophil isolation. Thereby, the influences of applied g-forces on the functionality of PMNs have hardly been analyzed and could consequently have been overlooked or led to biased results. We now hypothesize that blood PMNs-when gently isolated-can be long-lived cells and they physiologically become apoptotic rather than NETotic. Neutrophils were isolated from whole blood without centrifugation using a sedimentation enhancer (gelafundin). PMNs were analyzed via live-cell imaging for migratory activity and vitality condition by fluorescent staining. Native neutrophils showed still relevant migratory activity after more than 6 days ex vivo. The percentage of cells that were annexin V+ or PI+ increased successively with increasing ex vivo time. In addition, the characteristics of DAPI staining of gently isolated granulocytes differed markedly from those obtained by density gradient separation (DGS). We conclude that NETosis occurring after DGS is the consequence of applied g-forces and not a physiological phenomenon. Future studies on neutrophils should be performed with most native cells (applied g-time load as low as possible).


Subject(s)
Extracellular Traps , Neutrophils , Annexin A5 , Centrifugation, Density Gradient , Centrifugation
9.
Molecules ; 28(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36615625

ABSTRACT

The use of essential oils is increasingly being investigated among new therapeutic approaches based on medicinal plants and their extracts. With the wide use of synthetic and semi-synthetic antimicrobial drugs, the spread of drug-resistant clinical isolates has increased, and research is directed towards natural products, such as essential oils, as useful antimicrobial resources. In the context of a prospective infection, we compared the impact of essential oils and common antimicrobial agents on the microbicidal activity of human phagocytes. Here, we present the results of our decades-long investigation into the effectiveness of thyme red oil (26.52% thymol chemotype), tea tree oil (TTO), and Mentha of Pancalieri [(Mentha x piperita (Huds) var. officinalis (Sole), form rubescens (Camus) (Lamiaceae)] essential oils on human polymorphonuclear leukocytes (PMNs) capacity to kill clinical strains of Candida albicans and C. krusei when compared to three antifungal drugs used to treat candidiasis (fluconazole, anidulafungin, and caspofungin) These essential oils demonstrate antifungal drug-like and/or superior efficacy in enhancing intracellular killing by PMNs, even at subinhibitory concentrations. Our results are compared with data in the literature on essential oils and immune system interactions. This comparison would aid in identifying therapeutic solutions to the increasingly prevalent antibiotic resistance as well as filling in any remaining knowledge gaps on the bioactivity of essential oils.


Subject(s)
Anti-Infective Agents , Oils, Volatile , Humans , Oils, Volatile/pharmacology , Antifungal Agents/pharmacology , Prospective Studies , Fluconazole/pharmacology , Plant Oils/pharmacology , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests
10.
Molecules ; 28(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298992

ABSTRACT

Malaria is an infectious disease caused by a Plasmodium genus parasite that remains the most widespread parasitosis. The spread of Plasmodium clones that are increasingly resistant to antimalarial molecules is a serious public health problem for underdeveloped countries. Therefore, the search for new therapeutic approaches is necessary. For example, one strategy could consist of studying the redox process involved in the development of the parasite. Regarding potential drug candidates, ellagic acid is widely studied due to its antioxidant and parasite-inhibiting properties. However, its low oral bioavailability remains a concern and has led to pharmacomodulation and the synthesis of new polyphenolic compounds to improve antimalarial activity. This work aimed at investigating the modulatory effect of ellagic acid and its analogues on the redox activity of neutrophils and myeloperoxidase involved in malaria. Overall, the compounds show an inhibitory effect on free radicals as well as on the enzyme horseradish peroxidase- and myeloperoxidase (HRP/MPO)-catalyzed oxidation of substrates (L-012 and Amplex Red). Similar results are obtained with reactive oxygen species (ROS) produced by phorbol 12-mystate acetate (PMA)-activated neutrophils. The efficiency of ellagic acid analogues will be discussed in terms of structure-activity relationships.


Subject(s)
Antimalarials , Malaria , Plasmodium , Humans , Antioxidants/chemistry , Antimalarials/pharmacology , Reactive Oxygen Species/pharmacology , Neutrophils , Ellagic Acid/pharmacology , Peroxidase/metabolism , Oxidation-Reduction , Plasmodium/metabolism
11.
Clin Immunol ; 238: 108994, 2022 05.
Article in English | MEDLINE | ID: mdl-35390547

ABSTRACT

Chemotaxis is the directed movement of neutrophils towards an infected site. This physiological process can be reproduced using a modified Boyden chamber, such as the Transwell® support. Different techniques can be used to count neutrophils after migration to the lower chamber of the holder. The present study supports the use of an optimized Transwell® assay coupled with a flow cytometry-based method (Sysmex XN-9000) to detect chemotaxis abnormalities. A reference interval of neutrophil's chemotaxis was determined as part of this work. A first step involves the extraction of neutrophils from whole blood. The migration of neutrophils from the upper to the lower support chamber is subsequently directed by a chemoattractant gradient using N-formyl-l-Methionyl-l-Leucyl-l-Phenylalanine (fMLP). Neutrophils collected in the lower chamber are finally counted by flow cytometry. The original protocol was optimized through the comparison of different parameters. The use of Polymorphprep®, in the extraction of neutrophils, showed an improvement of the neutrophils yield of 1.65 times (57.5% of recovery) compared to the extraction using the Ficoll-Hypaque® gradient. A solution containing 5% of Bovin Serum Albumin (BSA) was used to suspend the extracted neutrophils, stabilize their viability and preserve their integrity. The mechanical agitation of the Transwell® permeable supports during migration did not show an increase in neutrophil yield. A migration time of 1 h 30 was identified as the best time for collecting the largest number of neutrophils after migration. Finally, we demonstrated that scraping the bottom of the well after migration improved neutrophil collection from the lower chamber by 1.9-fold compared to a non-scraping method. In conclusion, our results support the use of Polymorphprep® and a 5% BSA solution in the suspension, without agitation of the medium. An incubation time of 1 h 30 was identified as optimal for neutrophil migration through the chamber. Scraping the bottom after neutrophil migration improved neutrophil collection yield. Normal adult values were obtained with directed migration equal to 32.4% ±13.41% on 15 men and 18 women.


Subject(s)
Chemotaxis , Neutrophils , Adult , Chemotaxis, Leukocyte/physiology , Female , Flow Cytometry , Humans , Male , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/physiology
12.
Arch Biochem Biophys ; 732: 109452, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36336122

ABSTRACT

Polymorphonuclear neutrophils (PMNs)-derived ROS are involved in the regulation of multiple functions of PMNs critical in both inflammation and its timely resolution. Selenium is an essential trace element that functions as a gatekeeper of cellular redox homeostasis in the form of selenoproteins. Despite their well-studied involvement in regulating functions of various immune cells, limited studies have focused on the regulation of selenoproteins in PMN and their associated functions. Ex-vivo treatment of murine primary bone marrow derived PMNs with bacterial endotoxin lipopolysaccharide (LPS) indicated temporal regulation of several selenoprotein genes at the mRNA level. However, only glutathione peroxidase 4 (Gpx4) was significantly upregulated, while Selenof, Selenow, and Gpx1 were significantly downregulated in a temporal manner at the protein level. Exposure of PMNs isolated from tRNASec (Trsp)fl/fl S100A8Cre (TrspN) PMN-specific selenoprotein knockout mice, to the Gram-negative bacterium, Citrobacter rodentium, showed decreased bacterial growth, reduced phagocytosis, as well as impaired neutrophil extracellular trap (NET) formation ability, when compared to the wild-type PMNs. Increased extracellular ROS production upon LPS stimulation was also observed in TrspN PMNs that was associated with upregulation of Alox12, Cox2, and iNOS, as well as proinflammatory cytokines such as TNFα and IL-1ß. Our data indicate that the inhibition of selenoproteome expression results in alteration of PMN proinflammatory functions, suggesting a potential role of selenoproteins in the continuum of inflammation and resolution.


Subject(s)
Lipopolysaccharides , Neutrophils , Animals , Mice , Neutrophils/metabolism , Lipopolysaccharides/pharmacology , Reactive Oxygen Species , Selenoproteins/genetics , Selenoproteins/metabolism , Inflammation , Mice, Knockout
13.
Environ Dev Sustain ; : 1-13, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35975212

ABSTRACT

India is affected strongly by the Coronavirus and within a short period, it becomes the second-highest country based on the infected case. Earlier, there was an indication of the impact of pollution on COVID-19 transmission from a few studies with early COVID-19 data. The study of the effect of pollution on COVID-19 in Indian metropolitan cities is ideal due to the high level of pollution and COVID-19 transmission in these cities. We study the impact of different air pollutants on the spread of coronavirus in different cities in India. A correlation is studied with daily confirmed COVID-19 cases with a daily mean of ozone, particle matter (PM) in size ≤ 10 µ m, carbon monoxide, sulfur dioxide, and nitrogen dioxide of different cities. It is found that particulate matter concentration decreases during the nationwide lockdown period and the air quality index improves for different Indian regions. A correlation between the daily confirmed cases with particulate matter (PM 2.5 and PM 10 both) is observed. The air quality index also shows a positive correlation with the daily confirmed cases for most of the metropolitan Indian cities. The correlation study also indicates that different air pollutants may have a role in the spread of the virus.

14.
Infect Immun ; 89(10): e0007221, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34125599

ABSTRACT

Genital infections with Chlamydia trachomatis can lead to uterine and oviduct tissue damage in the female reproductive tract. Neutrophils are strongly associated with tissue damage during chlamydial infection, while an adaptive CD4 T cell response is necessary to combat infection. Activation of triggering receptor expressed on myeloid cells-1 (TREM-1) on neutrophils has previously been shown to induce and/or enhance degranulation synergistically with Toll-like receptor (TLR) signaling. Additionally, TREM-1 can promote neutrophil transepithelial migration. In this study, we sought to determine the contribution of TREM-1,3 to immunopathology in the female mouse genital tract during Chlamydia muridarum infection. Relative to control mice, trem1,3-/- mice had no difference in chlamydial burden or duration of lower-genital-tract infection. We also observed a similar incidence of hydrosalpinx 45 days postinfection in trem1,3-/- compared to wild-type (WT) mice. However, compared to WT mice, trem1,3-/- mice developed significantly fewer hydrometra in uterine horns. Early in infection, trem1,3-/- mice displayed a notable decrease in the number of uterine glands containing polymorphonuclear cells and uterine horn lumens had fewer neutrophils, with increased granulocyte colony-stimulating factor (G-CSF). trem1,3-/- mice also had reduced erosion of the luminal epithelium. These data indicate that TREM-1,3 contributes to transepithelial neutrophil migration in the uterus and uterine glands, promoting the occurrence of hydrometra in infected mice.


Subject(s)
Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Receptors, Immunologic/immunology , Triggering Receptor Expressed on Myeloid Cells-1/immunology , Uterus/immunology , Adaptive Immunity/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , Cell Movement/immunology , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/immunology , Disease Models, Animal , Epithelium/immunology , Epithelium/metabolism , Epithelium/microbiology , Female , Genitalia, Female/immunology , Genitalia, Female/metabolism , Genitalia, Female/microbiology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Oviducts/immunology , Oviducts/metabolism , Oviducts/microbiology , Receptors, Immunologic/metabolism , Reproductive Tract Infections/immunology , Reproductive Tract Infections/metabolism , Reproductive Tract Infections/microbiology , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Uterus/metabolism , Uterus/microbiology
15.
Infect Immun ; 89(11): e0025821, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34310891

ABSTRACT

Neutrophils are required for host resistance against Streptococcus pneumoniae, but their function declines with age. We previously found that CD73, an enzyme required for antimicrobial activity, is downregulated in neutrophils (also known as polymorphonuclear leukocytes [PMNs]) from aged mice. This study explored transcriptional changes in neutrophils induced by S. pneumoniae to identify pathways controlled by CD73 and dysregulated with age. Pure bone marrow-derived neutrophils isolated from wild-type (WT) young and old and CD73 knockout (CD73KO) young mice were mock challenged or infected with S. pneumoniae ex vivo. RNA sequencing (RNA-Seq) was performed to identify differentially expressed genes (DEGs). We found that infection triggered distinct global transcriptional changes across hosts that were strongest in CD73KO neutrophils. Surprisingly, there were more downregulated than upregulated genes in all groups upon infection. Downregulated DEGs indicated a dampening of immune responses in old and CD73KO hosts. Further analysis revealed that CD73KO neutrophils expressed higher numbers of long noncoding RNAs (lncRNAs) than those in WT controls. Predicted network analysis indicated that CD73KO-specific lncRNAs control several signaling pathways. We found that genes in the c-Jun N-terminal kinase (JNK)-mitogen-activated protein kinase (MAPK) pathway were upregulated upon infection in CD73KO mice and in WT old mice, but not in WT young mice. This corresponded to functional differences, as phosphorylation of the downstream AP-1 transcription factor component c-Jun was significantly higher in neutrophils from infected CD73KO mice and old mice. Importantly, inhibition of JNK/AP-1 rescued the ability of these neutrophils to kill S. pneumoniae. Together, our findings revealed that the ability of neutrophils to modify their gene expression to better adapt to bacterial infection is in part regulated by CD73 and declines with age.


Subject(s)
5'-Nucleotidase/physiology , Gene Expression Profiling , Neutrophils/immunology , Streptococcus pneumoniae/immunology , Age Factors , Animals , MAP Kinase Signaling System/physiology , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , RNA, Long Noncoding/analysis , RNA, Messenger/analysis , Transcription Factor AP-1/physiology
16.
Biochem Biophys Res Commun ; 553: 37-43, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33765557

ABSTRACT

Previously, we reported that the presence of multiple day 7 (D7) bovine embryos in the uterus induces systemic immune responses in circulating polymorphonuclear neutrophils (PMNs), but with unknown mechanism. Thus, this study aimed to investigate the direct impact of D7 bovine embryo on PMNs' immune responses in vitro and whether these PMNs can amplify and transfer embryo signals further to another PMN population. PMNs were directly stimulated by embryo culture media (ECM) or interferon tau (IFNT) (10 ng/ml) followed by evaluating mRNA expression by real-time PCR and phenotypic analysis by flow cytometry. To test whether PMNs can transfer embryo signals to a new PMN population, PMNs triggered by ECM or IFNT, were thoroughly washed and diluted to remove any media components, and again were incubated in fresh culture media for 3 h, from which culture supernatants were collected and used as PMN conditioned media (CM) to stimulate a new PMN population. Similar to ECM, IFNT directly stimulated expressions of IFNs (IFNA, IFNG), interferon-stimulated genes (ISGs; OAS1, ISG15, MX1), STAT1, TGFB and IL8, and downregulated TNFA in PMNs. Flow cytometrical analyses demonstrated that IFNT stimulated expressions of pregnancy-related phenotypic markers, CD16 and arginase-1 (ARG1), in PMNs. Most importantly, PMN CM induced ISGs and STAT1 mRNA in fresh PMNs. Since IFNT directly upregulated IFNA expression in PMNs, the impact of IFNA on PMNs' immune responses was further tested. Stimulation of PMNs with IFNA, especially at a low level (1 pg/ml), induced IFNT-like immune responses comparable to those induced by PMN CM. Together, these findings indicated that D7 bovine embryos induce direct anti-inflammatory responses with upregulation of ISGs expressions in PMNs mainly via IFNT. Additionally, PMNs can amplify and transfer embryo signals to a new PMN population in a cell-to-cell communication mechanism possibly mediated in part by IFNA. Such a novel immunological crosstalk might contribute to embryo tolerance and pregnancy establishment in cattle.


Subject(s)
Embryo, Mammalian/immunology , Embryo, Mammalian/metabolism , Gene Expression Regulation , Interferon Type I/immunology , Neutrophils/immunology , Pregnancy Proteins/immunology , Pregnancy/genetics , Pregnancy/immunology , Animals , Arginase/genetics , Cattle , Culture Media, Conditioned/pharmacology , Female , Gene Expression Regulation/drug effects , Immunity, Innate , In Vitro Techniques , Interferon Type I/pharmacology , Neutrophils/drug effects , Neutrophils/metabolism , Phenotype , Pregnancy Proteins/pharmacology , Receptors, IgG/genetics
17.
Med Microbiol Immunol ; 210(4): 197-209, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34091753

ABSTRACT

Polymorphonuclear leukocytes (PMNs) are regarded as vehicles for the hematogenous dissemination of human cytomegalovirus (HCMV). In cell culture, this concept has been validated with cell-free laboratory strains but not yet with clinical HCMV isolates that grow strictly cell-associated. We, therefore, aimed to evaluate whether PMNs can also transmit such isolates from initially infected fibroblasts to other cell types, which might further clarify the role of PMNs in HCMV dissemination and provide a model to search for potential inhibitors. PMNs, which have been isolated from HCMV-seronegative individuals, were added for 3 h to fibroblasts infected with recent cell-associated HCMV isolates, then removed and transferred to various recipient cell cultures. The transfer efficiency in the recipient cultures was evaluated by immunofluorescence staining of viral immediate early antigens. Soluble derivatives of the cellular HCMV entry receptor PDGFRα were analyzed for their potential to interfere with this transfer. All of five tested HCMV isolates could be transferred to fibroblasts, endothelial and epithelial cells with transfer rates ranging from 2 to 9%, and the transferred viruses could spread focally in these recipient cells within 1 week. The PDGFRα-derived peptides IK40 and GT40 reduced transfer by 40 and 70% when added during the uptake step. However, when added during the transfer step, only IK40 was effective, inhibiting transmission by 20% on endothelial cells and 50-60% on epithelial cells and fibroblasts. These findings further corroborate the assumption of cell-associated HCMV dissemination by PMNs and demonstrate that it is possible to inhibit this transmission mode.


Subject(s)
Cytomegalovirus Infections/transmission , Cytomegalovirus Infections/virology , Cytomegalovirus/drug effects , Cytomegalovirus/physiology , Neutrophils/virology , Peptides/pharmacology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Antigens, Viral/metabolism , Antiviral Agents/pharmacology , Cell Line , Cytomegalovirus/isolation & purification , Endothelial Cells/virology , Epithelial Cells/virology , Fibroblasts/virology , Humans , Peptides/chemistry , Virus Internalization/drug effects
18.
Purinergic Signal ; 17(4): 713-724, 2021 12.
Article in English | MEDLINE | ID: mdl-34604944

ABSTRACT

Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response. Extracellular nucleotides are considered damage-associated molecular patterns and are involved in the control of inflammation. Their levels are finely tuned by the membrane-associated ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family. Although previous studies have addressed the role of NTPDase1 (CD39), the role of the other extracellular NTPDases, NTPDase2, -3, and -8, in sepsis is unclear. In the present studies we identified NTPDase8 as a top downregulated gene in the liver of mice submitted to cecal ligation-induced sepsis. Immunohistochemical analysis confirmed the decrease of NTPDase8 expression at the protein level. In vitro mechanistic studies using HepG2 hepatoma cells demonstrated that IL-6 but not TNF, IL-1ß, bacteria, or lipopolysaccharide are able to suppress NTPDase8 gene expression. NTPDase8, as well as NTPDase2 and NTPDase3 mRNA was downregulated, whereas NTPDase1 (CD39) mRNA was upregulated in polymorphonuclear leukocytes from both inflamed and septic patients compared to healthy controls. Although the host's inflammatory response of polymicrobial septic NTPDase8 deficient mice was no different from that of wild-type mice, IL-6 levels in NTPDase8 deficient mice were higher than IL-6 levels in wild-type mice with pneumonia. Altogether, the present data indicate that extracellular NTPDases are differentially regulated during sepsis.


Subject(s)
Adenosine Triphosphatases/metabolism , Inflammation/metabolism , Leukocytes/metabolism , Sepsis/metabolism , Adenosine Triphosphatases/genetics , Animals , Female , Humans , Inflammation/genetics , Liver/metabolism , Male , Mice , Mice, Knockout , Sepsis/genetics
19.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34948374

ABSTRACT

Peritonitis and peritonitis-associated sepsis are characterized by an increased formation of platelet-neutrophil complexes (PNCs), which contribute to an excessive migration of polymorphonuclear neutrophils (PMN) into the inflamed tissue. An important neutrophilic mechanism to capture and kill invading pathogens is the formation of neutrophil extracellular traps (NETs). Formation of PNCs and NETs are essential to eliminate pathogens, but also lead to aggravated tissue damage. The chemokine receptors CXCR4 and CXCR7 on platelets and PMNs have been shown to play a pivotal role in inflammation. Thereby, CXCR4 and CXCR7 were linked with functional adenosine A2B receptor (Adora2b) signaling. We evaluated the effects of selective CXCR4 and CXCR7 inhibition on PNCs and NETs in zymosan- and fecal-induced sepsis. We determined the formation of PNCs in the blood and, in addition, their infiltration into various organs in wild-type and Adora2b-/- mice by flow cytometry and histological methods. Further, we evaluated NET formation in both mouse lines and the impact of Adora2b signaling on it. We hypothesized that the protective effects of CXCR4 and CXCR7 antagonism on PNC and NET formation are linked with Adora2b signaling. We observed an elevated CXCR4 and CXCR7 expression in circulating platelets and PMNs during acute inflammation. Specific CXCR4 and CXCR7 inhibition reduced PNC formation in the blood, respectively, in the peritoneal, lung, and liver tissue in wild-type mice, while no protective anti-inflammatory effects were observed in Adora2b-/- animals. In vitro, CXCR4 and CXCR7 antagonism dampened PNC and NET formation with human platelets and PMNs, confirming our in vivo data. In conclusion, our study reveals new protective aspects of the pharmacological modulation of CXCR4 and CXCR7 on PNC and NET formation during acute inflammation.


Subject(s)
Extracellular Traps/drug effects , Receptor, Adenosine A2B/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Cells, Cultured , Extracellular Traps/metabolism , Humans , Male , Mice, Inbred C57BL , Neutrophils/drug effects , Neutrophils/metabolism , Receptors, CXCR/metabolism , Receptors, CXCR4/metabolism
20.
Gastroenterology ; 156(5): 1467-1482, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30550822

ABSTRACT

BACKGROUND & AIMS: Neutrophils are among the most prevalent immune cells in the microenvironment of colon tumors; they are believed to promote growth of colon tumors, and their numbers correlate with outcomes of patients with colon cancer. Trials of inhibitors of neutrophil trafficking are underway in patients with cancer, but it is not clear how neutrophils contribute to colon tumorigenesis. METHODS: Colitis-associated colon cancer was induced in mice with conditional deletion of neutrophils (LysMCre;Mcl1fl/fl) and wild-type littermates (LysMCre;Mcl1wt/wt, control mice) by administration of azoxythmethane and/or dextran sulfate sodium. Sporadic colon tumorigenesis was assessed in neutrophil-deficient and neutrophil-replete mice with conditional deletion of colon epithelial Apc (Cdx2-CreERT2;Apcfl/fl). Primary colon tumor tissues from these mice were assessed by histology, RNA sequencing, quantitative polymerase chain reaction, and fluorescence in situ hybridization analyses. Fecal and tumor-associated microbiota were assessed by 16s ribosomal RNA sequencing. RESULTS: In mice with inflammation-induced and sporadic colon tumors, depletion of neutrophils increased the growth, proliferation, and invasiveness of the tumors. RNA sequencing analysis identified genes that regulate antimicrobial and inflammatory processes that were dysregulated in neutrophil-deficient colon tumors compared with colon tumors from control mice. Neutrophil depletion correlated with increased numbers of bacteria in tumors and proliferation of tumor cells, tumor-cell DNA damage, and an inflammatory response mediated by interleukin 17 (IL17). The 16s ribosomal RNA sequencing identified significant differences in the composition of the microbiota between colon tumors from neutrophil-deficient vs control mice. Administration of antibiotics or a neutralizing antibody against IL17 to neutrophil-deficient mice resulted in development of less-invasive tumors compared with mice given vehicle. We found bacteria in tumors to induce production of IL17, which promotes influx of intratumor B cells that promote tumor growth and progression. CONCLUSIONS: In comparisons of mice with vs without neutrophils, we found neutrophils to slow colon tumor growth and progression by restricting numbers of bacteria and tumor-associated inflammatory responses.


Subject(s)
Adenocarcinoma/immunology , Bacteria/growth & development , Cell Movement , Cell Proliferation , Colonic Neoplasms/immunology , Neutrophils/immunology , Adenocarcinoma/genetics , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Animals , Anti-Bacterial Agents/pharmacology , Antibodies, Neutralizing/pharmacology , Azoxymethane , Bacteria/drug effects , Bacteria/immunology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Dextran Sulfate , Disease Models, Animal , Disease Progression , Female , Host-Pathogen Interactions , Interleukin-17/antagonists & inhibitors , Interleukin-17/immunology , Male , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Invasiveness , Neutrophils/drug effects , Tumor Burden , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL