ABSTRACT
The molecular mechanisms leading to the establishment of immunological memory are inadequately understood, limiting the development of effective vaccines and durable antitumor immune therapies. Here, we show that ectopic OCA-B expression is sufficient to improve antiviral memory recall responses, while having minimal effects on primary effector responses. At peak viral response, short-lived effector T cell populations are expanded but show increased Gadd45b and Socs2 expression, while memory precursor effector cells show increased expression of Bcl2, Il7r, and Tcf7 on a per-cell basis. Using an OCA-B mCherry reporter mouse line, we observe high OCA-B expression in CD4+ central memory T cells. We show that early in viral infection, endogenously elevated OCA-B expression prospectively identifies memory precursor cells with increased survival capability and memory recall potential. Cumulatively, the results demonstrate that OCA-B is both necessary and sufficient to promote CD4 T cell memory in vivo and can be used to prospectively identify memory precursor cells.
Subject(s)
CD4-Positive T-Lymphocytes , Memory T Cells , Animals , Mice , Immunologic Memory , Memory , Receptors, Interleukin-7 , Trans-Activators , GADD45 Proteins , Antigens, DifferentiationABSTRACT
Pou2af1 encodes for OCA-B, a coactivator of OCT-1/2 transcription factors, which plays a key role in B-cell maturation. The function of OCA-B has also been studied in T cells, where T cells from Pou2af1-/- mice have impaired functions, such as cytokine production and T follicular helper (Tfh) differentiation. Arguably, some of these T-cell phenotypes may result from impaired T-B interactions, secondary to the well-documented B-cell defects in Pou2af1-/- mice. Yet, Pou2af1 is actively transcribed in activated T cells, suggesting a T-cell-intrinsic role. To isolate the T-cell-intrinsic impact of Pou2af1, we generated Pou2af1fl/fl mice with specific genetic disruption of Pou2af1 either in all hematopoietic cells or exclusively in T cells. While we confirm that Pou2af1 is expressed in activated T cells, we surprisingly find that T-cell cytokine production is not impaired in Pou2af1-deficient T cells. Moreover, Pou2af1-sufficient and Pou2af1-deficient T cells have comparable transcriptome profiles, arguing against a T-cell-intrinsic role for Pou2af1. In line with these observations, we demonstrate that Tfh maturation is influenced by T-cell-extrinsic deletion of Pou2af1, as observed both in competitive bone marrow chimeras and in Pou2af1fl/fl mice with specific deletion in B cells. Overall, this study provides strong evidence that Pou2af1 does not act as a transcriptional coactivator in T cells, and conclusively demonstrates that loss of OCA-B in B cells indirectly impacts Tfh differentiation, clarifying the role of OCA-B in the immune system.
Subject(s)
T-Lymphocytes , Transcription Factors , Animals , B-Lymphocytes , Cell Differentiation/genetics , Cytokines , Germinal Center , Mice , T-Lymphocytes, Helper-Inducer , Trans-Activators/geneticsABSTRACT
Follicular T helper (Tfh) cells are key regulators of the germinal center reaction and long-term humoral immunity. Tfh cell differentiation requires the sustained expression of the transcriptional repressor Bcl6; however, its regulation in CD4(+)T cells is incompletely understood. Here, we report that the transcriptional coactivator Bob1, encoded by thePou2af1gene, promotes Bcl6 expression and Tfh cell development. We found that Bob1 together with the octamer transcription factors Oct1/Oct2 can directly bind to and transactivate theBcl6andBtlapromoters. Mixed bone marrow chimeras revealed that Bob1 is required for the expression of normal levels of Bcl6 andBTLA, thereby controlling the pool size and composition of the Tfh compartment in a T cell-intrinsic manner. Our data indicate that T cell-expressed Bob1 is directly involved in Tfh cell differentiation and required for mounting normal T cell-dependent B-cell responses.
Subject(s)
DNA-Binding Proteins/metabolism , T-Lymphocytes, Helper-Inducer/cytology , Trans-Activators/metabolism , Animals , Binding Sites , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation , Immunization , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-6 , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Receptors, Interleukin-21/genetics , Receptors, Interleukin-21/metabolism , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , T-Lymphocytes, Helper-Inducer/physiology , Trans-Activators/geneticsABSTRACT
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic and symmetrical inflammation of synovial tissue with subsequent joint destruction. SUMO1 is an important regulator of apoptosis through non-canonical mechanism in synovial fibroblasts, and POU2AF1 is a known B-cell transcriptional co-activator. The specific objective of this study was to measure the expression of SUMO1 and POU2AF1 on first-degree relatives of patients with RA and also in the preclinical and clinical stages of RA and describe their possible role in RA physiopathology. Blood samples were collected from ACPA+, ACPA-, early and established RA subjects recruited. ACPAs and CarP autoantibodies were determined by ELISA Eurodiagnostica CCplus kit according to previously described protocols. RNA was isolated from blood samples; the purity as integrity was determined. Gene expression analysis was made by RT-qPCR using specific primers for SUMO1 and POU2AF1 mRNAs; relative expression was determined according to the 2-ΔΔct method procedure. Significant differences in the expression of both, SUMO1 and POU2AF1 were identified when comparing arthritis versus healthy or ACPA+ individuals, suggesting that the down regulation of such genes starts after the onset of symptoms in RA patients. Also, a significant correlation was identified for POU2AF1 and disease progression whit a downward trend for those with established RA. The implications of such gene down regulation are discussed in the context of RA physiopathology.
Subject(s)
Arthritis, Rheumatoid/blood , Family , SUMO-1 Protein/blood , Trans-Activators/blood , Adult , Arthritis, Rheumatoid/genetics , Down-Regulation/genetics , Female , Gene Regulatory Networks , Humans , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Risk Factors , SUMO-1 Protein/genetics , Trans-Activators/geneticsABSTRACT
The transcriptional co-activator BOB.1/OBF.1 is crucial for Octamer-driven transcription in B cells. BOB.1/OBF.1-deficiency leads to tremendous defects in B-cell development and function. Therefore, in the past research focused on the identification of BOB.1/OBF.1 target genes. However, the regulation of BOB.1/OBF.1 expression itself is poorly understood. Here we show that in B cells NF-κB as well as to some extent NFAT proteins are involved in the activation of basal as well as inducible BOB.1/OBF.1 expression by direct binding to the BOB.1/OBF.1 promoter. Moreover, the analysis of different inducers of NF-κB, like several TLR ligands, TNF-α, BAFF, or LTα1ß2, revealed that both the canonical and noncanonical NF-κB pathways are involved in the induction of BOB.1/OBF.1 gene. The identification of so far unknown inducers that regulate BOB.1/OBF.1 expression in B cells provides novel insights in the potential function of BOB.1/OBF.1 during different aspects of B-cell development and function.
Subject(s)
B-Lymphocytes/metabolism , NF-kappa B/physiology , Organic Cation Transport Proteins/genetics , Signal Transduction/physiology , Trans-Activators/genetics , Animals , Mice , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Organic Cation Transporter 2 , Promoter Regions, GeneticABSTRACT
Increasing evidence suggests that osteoblast apoptosis contributes to the pathogenesis of postmenopausal osteoporosis (PMOP). This study aimed to identify a hub gene associated with osteoporosis (OP) progression and its functions. We utilized the GSE68303 expression dataset from GEO database and conducted weighted gene co-expression network analysis (WGCNA) to investigate changes in co-expressed genes between sham and ovariectomy (OVX) groups. Differentially expressed genes (DEGs) were identified using the "limma" R package on GSE68303 dataset. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. A protein-protein interaction (PPI) network was constructed using the STRING database, which was visualized by Cytoscape software. The top ten hub genes were screened using the Cytohubba plugin, among which POU class 2 homeobox associating factor 1 (POU2AF1), an OP-related hub gene, showed a significant increase in OVX-induced mouse model based on immunohistochemical staining. Inhibition of POU2AF1 suppressed cell viability, induced cell cycle arrest at the G1 phase, and promoted osteoblast apoptosis as demonstrated by CCK-8 assay, flow cytometry analysis, and TUNEL assay. Moreover, overexpression of POU2AF1 decreased cleaved caspase-3/-8/-9 expression while increasing cyclinD1 and Ki67 expression in MC3T3-E1 and hFOB1.19 cells. Therefore, POU2AF1 may serve as a potential diagnostic biomarker for slowing down the progression of OP.
ABSTRACT
Hepatocellular carcinoma, also referred to as HCC, is the most frequent form of primary liver cancer. It is anticipated that the discovery of the molecular pathways related with HCC would open up new possibilities for the treatment of HCC.WGCNA (Weighted gene co-expression network analysis) and molecular docking analysis were used to study the structural characteristics of POU2AF1 recombinant protein and its interaction with related proteins. Normal samples were placed in one group, and tumor samples were placed in another group inside the GEO database. We continued our investigation of the DEGs by performing an enrichment analysis using GO and KEGG. The GSCA platform is utilized in the process of doing an analysis of the connection between gene expression and medication sensitivity. In the end, the core target and the active molecule were both given the green light for a molecular docking investigation. POU2AF1 is being considered as a possible therapeutic target for HCC, and the results of our work have presented novel concepts for the treatment of HCC.
Subject(s)
Liver Neoplasms , Molecular Docking Simulation , Recombinant Proteins , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Gene Expression Regulation, Neoplastic , Octamer Transcription Factor-1/metabolism , Octamer Transcription Factor-1/chemistry , Octamer Transcription Factor-1/genetics , Disease Progression , Gene Regulatory Networks , Gene Expression Profiling , Protein BindingABSTRACT
PURPOSE: In a previous baboon-study, a total of 29 genes were identified for clinical outcome prediction of the hematologic, acute, radiation, syndrome (H-ARS) severity. Among them, four genes (FDXR, DDB2, POU2AF1, WNT3) appeared promising and were validated in five leukemia patients. Within this study, we sought further in-vivo validation in a larger number of whole-body irradiated patients. MATERIAL AND METHODS: Peripheral blood was drawn from 10 leukemia patients before and up to 3 days during a fractionated (2 Gy/day) total-body irradiation (TBI) with 2-12Gy. After RNA-isolation, gene expression (GE) was evaluated on 31 genes widely used in biodosimetry and H-ARS prediction employing qRT-PCR. A customized low-density-array (LDA) allowed simultanously analyzing all genes, the 96-well format further examined the four most promising genes. Fold-changes (FC) in GE relative to pre-irradiation were calculated. RESULTS: Five patients suffering from acute-lymphoblastic-leukemia (ALL) respectively non-Hodgkin-lymphoma (NHL) revealed sufficient RNA-amounts and corresponding lymphocyte and neutrophile counts for running qRT-PCR, while acute-myeloid-leukemia (AML) and one myelofibrosis patient could not supply enough RNA. Generally, 1-2µg total RNA was isolated, whereas up to 10-fold differences in RNA-quantities (associated suppressed GE-changes) were identified among pre-exposure and exposure samples. From 31 genes, 23 were expressed in at least one of the pre-exposure samples. Relative to pre-exposure, the number of expressed genes could halve at 48 and 72h after irradiation. Using the LDA, 13 genes were validated in human samples. The four most promising genes (vid. sup.) were either undetermined or too close to pre-exposure. However, they were measured using the more sensitive 96-well format, except WNT3, which wasn´t detectable. As in previous studies, an opposite regulation in GE for FDXR in leukemia patients (up-regulated) relative to baboons (down-regulated) was reconfirmed. Radiation-induced GE-changes of DDB2 (up-regulated) and POU2AF1 (down-regulated) behaved similarly in both species. Hence, 16 out of 23 genes of two species showed GE-changes in the same direction, and up-regulated FDXR as in human studies were revalidated. CONCLUSION: Identified genes for H-ARS severity prediction, previously detected in baboons, were validated in ALL but not in AML patients. Limitations related to leukemia type, associated reduced RNA amounts, suppressed GE changes, and methodological challenges must be considered as factors negatively affecting the total number of validated genes. Based on that, we propose additional controls including blood cell counts and preferably fluorescence-based RNA quantity measurements for selecting promising samples and using a more sensitive 96-well format for candidate genes with low baseline copy numbers.
Subject(s)
Leukemia, Myeloid, Acute , RNA , Humans , Animals , Whole-Body Irradiation , Blood Cell Count , Papio/genetics , Leukemia, Myeloid, Acute/geneticsABSTRACT
The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.
ABSTRACT
The POU2F3-POU2AF2/3 transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we identify a specific dependence of the POU2F3 molecular subtype of SCLC (SCLC-P) on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. Treatment of SCLC-P cells with a proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases evicts POU2F3 and its coactivators from chromatin and attenuates downstream signaling. B cell malignancies which are dependent on the POU2F1/2 cofactor, POU2AF1, are also sensitive to mSWI/SNF ATPase degraders, with treatment leading to chromatin eviction of POU2AF1 and IRF4 and decreased IRF4 signaling in multiple myeloma cells. An orally bioavailable mSWI/SNF ATPase degrader significantly inhibits tumor growth in preclinical models of SCLC-P and multiple myeloma without signs of toxicity. This study suggests that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.
Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Transcription Factors , Humans , Animals , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Xenograft Model Antitumor Assays , Signal Transduction , Gene Expression Regulation, Neoplastic , Octamer Transcription Factor-2ABSTRACT
The transcriptional co-activator BOB.1/OBF.1 is expressed in both B and T cells. The main characteristic of conventional BOB.1/OBF.1 deficient mice is the complete absence of germinal centers (GCs). This defect was mainly attributed to the defective B cell compartment. However, it is unknown whether and how BOB.1/OBF.1 expression in T cells contributes to the GC reaction. To finally clarify this question, we studied the in vivo function of BOB.1/OBF.1 in CD4+ T and follicular T helper (TFH) cell subpopulations by conditional mutagenesis, in the presence of immunocompetent B lymphocytes. BOB.1/OBF.1 deletion in CD4+ T as well as TFH cells resulted in impaired GC formation demonstrating that the impaired GC reaction described for conventional BOB.1/OBF.1-deficient mice cannot exclusively be traced back to the B cell compartment. Furthermore, we show a requirement of BOB.1/OBF.1 for T helper (TH) cell subsets, particularly for TFH cell differentiation.
Subject(s)
Germinal Center , Lymphocyte Activation , Animals , B-Lymphocytes/metabolism , Cell Differentiation , Mice , Trans-Activators , Transcription Factors/metabolismABSTRACT
Tumor heterogeneity and the unclear metastasis mechanisms are the leading cause for the unavailability of effective targeted therapy for Triple-negative breast cancer (TNBC), a breast cancer (BrCa) subtype characterized by high mortality and high frequency of distant metastasis cases. The identification of prognostic biomarker can improve prognosis and personalized treatment regimes. Herein, we collected gene expression datasets representing TNBC and Non-TNBC BrCa. From the complete dataset, a subset reflecting solely known cancer driver genes was also constructed. Recursive Feature Elimination (RFE) was employed to identify top 20, 25, 30, 35, 40, 45, and 50 gene signatures that differentiate TNBC from the other BrCa subtypes. Five machine learning algorithms were employed on these selected features and on the basis of model performance evaluation, it was found that for the complete and driver dataset, XGBoost performs the best for a subset of 25 and 20 genes, respectively. Out of these 45 genes from the two datasets, 34 genes were found to be differentially regulated. The Kaplan-Meier (KM) analysis for Distant Metastasis Free Survival (DMFS) of these 34 differentially regulated genes revealed four genes, out of which two are novel that could be potential prognostic genes (POU2AF1 and S100B). Finally, interactome and pathway enrichment analyses were carried out to investigate the functional role of the identified potential prognostic genes in TNBC. These genes are associated with MAPK, PI3-AkT, Wnt, TGF-ß, and other signal transduction pathways, pivotal in metastasis cascade. These gene signatures can provide novel molecular-level insights into metastasis.
ABSTRACT
Excessive production of visceral adipose is a major risk factor of many diseases. Inhibiting the adipogenesis of mesenchymal stem cells (MSCs) will be an efficient way to block adipose production. We illuminated POU class 2 homeobox associating factor 1 (POU2AF1) may promote MSCs adipogenesis by histone deacetylases 1 (HDAC1) signalling. Human retroperitoneal adipose-derived mesenchymal stem cells were isolated from overweight and control groups of patients. IncRNA microarray was used to identified gene expression levels. Adenovirus transduction and cellular small-interfering RNA transfection were used to achieve overexpression and interference of POU2AF1 or HDAC1. Adipogenesis was identified by Oil-red O staining, triglycende, cholesterol assay, real-time PCR and Western Blot. POU2AF1 expression was upregulated in retroperitoneal adipose tissue of overweight patients, and increased during adipogenesis. Overexpression of POU2AF1 promoted spontaneous adipogenesis without adipogenic treatment. Silencing of endogenous POU2AF1 in MSCs inhibited adipogenesis. Overexpression of POU2AF1 alleviated the translocation of HDAC1 to the nucleus. The mRNA level of HDAC1 was also reduced. Co-transfection of Ad-POU2AF1 and Ad-HDAC1 partially reversed the promotion effect of POU2AF1 overexpression in MSCs spontaneous adipogenic differentiation. POU2AF1 involves in the natural differentiation of human mesenchymal stem cells. Overexpression or silencing POU2AF1 could effectively induce or inhibit the adipogenesis by HDAC1 signaling.