Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
New Phytol ; 240(4): 1548-1560, 2023 11.
Article in English | MEDLINE | ID: mdl-37264995

ABSTRACT

Plant life and growth forms (shortened to 'plant forms') represent key functional strategies of plants in relation to their environment and provide important insights into the ecological constraints acting on the distribution of biodiversity. Despite their functional importance, how the spectra of plant forms contribute to global gradients of plant diversity is unresolved. Using a novel dataset comprising > 295 000 species, we quantify the contribution of different plant forms to global gradients of vascular plant diversity. Furthermore, we establish how plant form distributions in different biogeographical regions are associated with contemporary and paleoclimate conditions, environmental heterogeneity and phylogeny. We find a major shift in representation of woody perennials in tropical latitudes to herb-dominated floras in temperate and boreal regions, following a sharp latitudinal gradient in plant form diversity from the tropics to the poles. We also find significant functional differences between regions, mirroring life and growth form responses to environmental conditions, which is mostly explained by contemporary climate (18-87%), and phylogeny (6-62%), with paleoclimate and heterogeneity playing a lesser role (< 23%). This research highlights variation in the importance of different plant forms to diversity gradients world-wide, shedding light on the ecological and evolutionary pressures constraining plant-trait distributions.


Subject(s)
Biological Evolution , Tracheophyta , Phylogeny , Biodiversity , Climate , Plants , Tropical Climate
2.
Ann Bot ; 131(2): 261-274, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36048726

ABSTRACT

BACKGROUND AND AIMS: The Atlantic Forest biodiversity hotspot is a complex mosaic of habitat types. However, the diversity of the rain forest at the core of this complex has received far more attention than that of its marginal habitats, such as cloud forest, semi-deciduous forest or restinga. Here, we investigate broad-scale angiosperm tree diversity patterns along elevation gradients in the south-east Atlantic Forest and test if the diversity of marginal habitats is shaped from the neighbouring rain forest, as commonly thought. METHODS: We calculated phylogenetic indices that capture basal [mean pairwise phylogenetic distance (MPD)] and terminal [mean nearest taxon distance (MNTD)] phylogenetic variation, phylogenetic endemism (PE) and taxonomic and phylogenetic beta diversity (BD and PBD) for 2074 angiosperm tree species distributed in 108 circular sites of 10 km diameter across four habitat types i.e. rain forest, cloud forest, semi-deciduous forest and coastal vegetation known as restinga. We then related these metrics to elevation and environmental variables. KEY RESULTS: Communities in wetter and colder forests show basal phylogenetic overdispersion and short phylogenetic distances towards the tips, respectively. In contrast, communities associated with water deficit and salinity show basal phylogenetic clustering and no phylogenetic structure toward the tips. Unexpectedly, rain forest shows low PE given its species richness, whereas cloud and semi-deciduous forests show unusually high PE. The BD and PBD between most habitat types are driven by the turnover of species and lineages, except for restinga. CONCLUSIONS: Our results contradict the idea that all marginal habitat types of the Atlantic Forest are sub-sets of the rain forest. We show that marginal habitat types have different evolutionary histories and may act as 'equilibrium zones for biodiversity' in the Atlantic Forest, generating new species or conserving others. Overall, our results add evolutionary insights that reinforce the urgency of encompassing all habitat types in the Atlantic Forest concept.


Subject(s)
Ecosystem , Magnoliopsida , Forests , Biological Evolution , Biodiversity , Phylogeny
3.
Parasitology ; 150(5): 455-467, 2023 04.
Article in English | MEDLINE | ID: mdl-36799019

ABSTRACT

We investigated phylogenetic patterns in flea assemblages from 80 regions in 6 biogeographic realms and asked whether (a) flea phylogenetic turnover is driven by host phylogenetic turnover, environmental dissimilarity or geographic distance; (b) the relative importance of these drivers differs between realms; and (c) the environmental drivers of flea phylogenetic turnover are similar to those of host phylogenetic turnover. We also asked whether the phylogenetic originality of a flea species correlates with the degree of its host specificity and whether the phylogenetic originality of a host species correlates with the diversity of its flea assemblages. We found that host phylogenetic turnover was the best predictor of flea phylogenetic turnover in all realms, whereas the effect of the environment was weaker. Environmental predictors of flea phylogenetic turnover differed between realms. The importance of spatial distances as a predictor of the phylogenetic dissimilarity between regional assemblages varied between realms. The responses of host turnover differed from those of fleas. In 4 of the 6 realms, geographic distances were substantially better predictors of host phylogenetic turnover than environmental gradients. We also found no general relationship between flea phylogenetic originality and its host specificity in terms of either host species richness or host phylogenetic diversity. We conclude that flea phylogenetic turnover is determined mainly by the phylogenetic turnover of their hosts rather than by environmental gradients. Phylogenetic patterns in fleas are manifested at the level of regional assemblages rather than at the level of individual species.


Subject(s)
Flea Infestations , Siphonaptera , Animals , Siphonaptera/physiology , Phylogeny , Mammals , Host Specificity , Flea Infestations/veterinary , Host-Parasite Interactions
4.
J Environ Manage ; 325(Pt A): 116547, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36419283

ABSTRACT

The mechanisms of phylogenetic turnover of microbial communities to environmental perturbations in sediments remain unclear. In this study, the molecular mechanisms of phylogenetic turnover, and impact of antibiotics and antibiotic resistance genes (ARGs) on the modification of microbial assemblages were unravelled. We investigated 306 ARGs, 8 transposases, and 4 integron integrases, bacteria, and eukaryotic diversity through high-throughput quantitative PCR and illumina sequencing, 21 antibiotics and 3 tetracycline byproducts. The freshwater and estuary ecosystems were mainly dominated by genus Sulfurovum and colonised by closely related species compared with the estuary (closeness centrality = 0.42 vs. 0.46), which was dominated by genus Mycobacterium. Eighty-six percent of the ecological process in the bacterial community was driven by stochastic processes, while the rest was driven by deterministic processes. Environmental-related concentrations of antibiotics (0.15-32.53 ng/g) stimulated the proliferation of ARGs which potentially modulated the microbial community assembly. ARG acquisition significantly (P < 0.001) increased eukaryotic diversity through protection mechanisms. ARGs showed complex interrelationships with the microbial communities, and phylum arthropods and Nematea demonstrated the strongest ARG acquisition potential. This study provides key insights for environmental policymakers into understanding the ecological impact of antibiotics and the role of ARGs in modulating the phylogenetic turnover of microbial communities and trophic transfer mechanisms.


Subject(s)
Anti-Bacterial Agents , Microbiota , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Genes, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics , Drug Resistance, Bacterial , Biodiversity , Bacteria/genetics
5.
Microbiol Res ; 282: 127651, 2024 May.
Article in English | MEDLINE | ID: mdl-38430888

ABSTRACT

Climate change and anthropogenic disturbances are known to influence soil biodiversity. The objectives of this study were to compare the community composition, species coexistence patterns, and ecological assembly processes of soil microbial communities in a paired setting featuring a natural and an anthropogenic ecosystem facing each other at identical climatic, pedological, and vegetational conditions. A transect gradient from forest to seashore allowed for sampling across different habitats within both sites. The field survey was carried out at two adjacent strips of land within the Po River delta lagoon system (Veneto, Italy) one of which is protected within a natural preserve and the other has been converted for decades into a tourist resort. The anthropogenic pressure interestingly led to an increase in the α-diversity of soil microbes but was accompanied by a reduction in ß-diversity. The community assembly mechanisms of microbial communities differentiate in natural and anthropic ecosystems: for bacteria, in natural ecosystems deterministic variables and homogeneous selection play a main role (51.92%), while stochastic dispersal limitation (52.15%) is critical in anthropized ecosystems; for fungi, stochastic dispersal limitation increases from 38.1% to 66.09% passing from natural to anthropized ecosystems. We are on calcareous sandy soils and in more natural ecosystems a variation of topsoil pH favors the deterministic selection of bacterial communities, while a divergence of K availability favors stochastic selection. In more anthropized ecosystems, the deterministic variable selection is influenced by the values of SOC. Microbial networks in the natural system exhibited higher numbers of nodes and network edges, as well as higher averages of path length, weighted degree, clustering coefficient, and density than its equivalent sites in the more anthropically impacted environment. The latter on the other hand presented a stronger modularity. Although the influence of stochastic processes increases in anthropized habitats, niche-based selection also proves to impose constraints on communities. Overall, the functionality of the relationships between groups of microorganisms co-existing in communities appeared more relevant to the concept of functional biodiversity in comparison to the plain number of their different taxa. Fewer but functionally more organized lineages displayed traits underscoring a better use of the resources than higher absolute numbers of taxa when those are not equally interconnected in their habitat exploitation. However, considering that network complexity can have important implications for microbial stability and ecosystem multifunctionality, the extinction of complex ecological interactions in anthropogenic habitats may impair important ecosystem services that soils provide us.


Subject(s)
Ecosystem , Microbiota , Soil Microbiology , Biodiversity , Forests , Soil/chemistry , Bacteria/genetics
6.
Ecology ; 105(1): e4189, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37877169

ABSTRACT

Root-centric studies have revealed fast taxonomic turnover across root neighborhoods, but how such turnover is accompanied by changes in species functions and phylogeny (i.e., ß diversity) remains largely unknown. As ß diversity can reflect the degree of community-wide biotic homogenization, such information is crucial for better inference of below-ground assembly rules, community structuring, and ecosystem processes. We collected 2480 root segments from 625 0-30 cm soil profiles in a subtropical forest in China. Root segments were identified into 138 species with DNA-barcoding with six root morphological and architectural traits measured per species. By using the mean pairwise (Dpw ) and mean nearest neighbor distance (Dnn ) to quantify species ecological differences, we first tested the non-random functional and phylogenetic turnover of root neighborhoods that would lend more support to deterministic over stochastic community assembly processes. Additionally, we examined the distance-decay pattern of ß diversity, and finally partitioned ß diversity into geographical and environmental components to infer their potential drivers of environmental filtering, dispersal limitation, and biotic interactions. We found that functional turnover was often lower than expected given the taxonomic turnover, whereas phylogenetic turnover was often higher than expected. Phylogenetic Dpw (e.g., interfamily species) turnover exhibited a distance-decay pattern, likely reflecting limited dispersal or abiotic filtering that leads to the spatial aggregation of specific plant lineages. Conversely, both functional and phylogenetic Dnn (e.g., intrageneric species) exhibited an inverted distance-decay pattern, likely reflecting strong biotic interactions among spatially and phylogenetically close species leading to phylogenetic and functional divergence. While the spatial distance was generally a better predictor of ß diversity than environmental distance, the joint effect of environmental and spatial distance usually overrode their respective pure effects. These findings suggest that root neighborhood functional homogeneity may somewhat increase forest resilience after disturbance by exhibiting an insurance effect. Likewise, root neighborhood phylogenetic heterogeneity may enhance plant fitness by hindering the transmission of host-specific pathogens through root networks or by promoting interspecific niche complementarity not captured by species functions. Our study highlights the potential role of root-centric ß diversity in mediating community structures and functions largely ignored in previous studies.


Subject(s)
Biodiversity , Ecosystem , Phylogeny , Forests , Soil , Plants
7.
Sci Total Environ ; 761: 144018, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33352349

ABSTRACT

Aridity is a critical driver of the diversity and composition of plant communities. However, how aridity influences the phylogenetic structure of functional groups (i.e. annual and perennial species) is far less understood than its effects on species richness. As perennials have to endure stressful conditions during the summer drought, as opposed to annuals that avoid it, they may be subjected to stronger environmental filtering. In contrast, annuals may be more susceptible to interannual climatic variability. Here we studied the phylogenetic structure of the annual and perennial components of understorey plant communities, along a regional aridity gradient in Mediterranean drylands. Specifically, we asked: (1) How do species richness (S) and phylogenetic structure (PS) of annuals and perennials in plant communities respond to aridity? (2) What is the contribution of other climatic and topo-edaphic variables in predicting S and PS for both components? (3) How does the taxonomic and phylogenetic turnover of annuals and perennials vary with spatial and environmental distances? We assessed annuals' and perennials' species richness, the phylogenetic structure at deep and shallow phylogenetic levels, and taxonomic and phylogenetic turnover along spatial and environmental distances. We found no relationship between annuals' richness and aridity, whereas perennials' richness showed a unimodal pattern. The phylogenetic structure of annuals and perennials showed contrasting responses to aridity and negatively correlated with topo-edaphic variables. We found phylogenetic clustering at intermediate-to-higher aridity levels for annuals, and at lower aridity levels for perennials. Both taxonomic and phylogenetic turnover in annuals and perennials correlated with the environmental distance rather than with spatial distance between communities, suggesting adaptation to local factors. Overall, our results show a decoupling in the response of the phylogenetic structure of annual and perennial components of plant communities to aridity in Mediterranean drylands. Our findings have significant implications for land management strategies under climate change.


Subject(s)
Biodiversity , Plants , Climate Change , Phylogeny , Seasons
8.
Sci Total Environ ; 720: 137570, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32135287

ABSTRACT

A large number of urban wetland parks have been established, but knowledge about the effects of tourism development on the microbial diversity and ecosystem functioning remains limited. This study aimed to clarify the responses of bacterial communities to tourism development targeted the Xixi National Wetland Park, China. By analyzing the diversity, composition, assembly pattern, and environmental drivers of bacterial communities, we found that tourism development considerably affected the water quality, which further decreased the α-diversity but increased the ß-diversity in open areas for landscaping and recreation. Specifically, there was higher Simpson dissimilarity across functional wetland areas, indicating that species replacement mainly explained ß-diversity patterns of bacterial communities. RDA analysis and ecological processes quantification further suggested that TOC and TC were the major factors in the open areas driving bacterial communities in water and sediment, respectively. Also, typical anti-disturbance taxa (Gammaproteobacteria) and potential pathogens (Bacillus) were enriched in the wetlands under more anthropogenic disturbances. Findings of the present study highlighted the effects of tourism development on bacterial communities resulted in obvious spatial variation in the Xixi National Wetland Park. This study gives us useful information for ecological assessments of urban wetlands, and further can provide references in making appropriate strategies to manage wetland ecosystems.


Subject(s)
Wetlands , Bacteria , China , Microbiota , Parks, Recreational
9.
FEMS Microbiol Ecol ; 97(1)2020 12 29.
Article in English | MEDLINE | ID: mdl-33068395

ABSTRACT

Hypolithic microbial communities (hypolithons) are complex assemblages of phototrophic and heterotrophic organisms associated with the ventral surfaces of translucent minerals embedded in soil surfaces. Past studies on the assembly, structure and function of hypolithic communities have tended to use composite samples (i.e. bulked hypolithic biomass) with the underlying assumption that samples collected from within a 'homogeneous' locality are phylogenetically homogeneous. In this study, we question this assumption by analysing the prokaryote phylogenetic diversity of multiple individual hypolithons: i.e. asking the seemingly simple question of 'Are all hypolithons the same'? Using 16S rRNA gene-based phylogenetic analysis of hypolithons recovered for a localized moraine region in the Taylor Valley, McMurdo Dry Valleys, Antarctica, we demonstrate that these communities are heterogeneous at very small spatial scales (<5 m). Using null models of phylogenetic turnover, we showed that this heterogeneity between hypolithons is probably due to stochastic effects such as dispersal limitations, which is entirely consistent with the physically isolated nature of the hypolithic communities ('islands in the sand') and the almost complete absence of a liquid continuum as a mode of microbial transport between communities.


Subject(s)
Microbiota , Soil Microbiology , Antarctic Regions , Islands , Phylogeny , RNA, Ribosomal, 16S/genetics , Sand
10.
Front Plant Sci ; 10: 55, 2019.
Article in English | MEDLINE | ID: mdl-30804955

ABSTRACT

Environmental and geographical variables are known drivers of community assembly, however their influence on phylogenetic structure and phylogenetic beta diversity of lineages within different bioregions is not well-understood. Using Neotropical palms as a model, we investigate how environmental and geographical variables affect the assembly of lineages into bioregions across an evolutionary time scale. We also determine lineage shifts between tropical (TRF) and non-tropical (non-TRF) forests. Our results identify that distance and area explain phylogenetic dissimilarity among bioregions. Lineages in smaller bioregions are a subset of larger bioregions and contribute significantly to the nestedness component of phylogenetic dissimilarity, here interpreted as evidence for a bioregional shift. We found a significant tendency of habitat shifts occurring preferentially between TRF and non-TRF bioregions (31 shifts) than from non-TRF to TRF (24) or from TRF to TRF (11) and non-TRF to non-TRF (9). Our results also present cases where low dissimilarity is found between TRF and non-TRF bioregions. Most bioregions showed phylogenetic clustering and larger bioregions tended to be more clustered than smaller ones, with a higher species turnover component of phylogenetic dissimilarity. However, phylogenetic structure did not differ between TRF and non-TRF bioregions and diversification rates were higher in only two lineages, Attaleinae and Bactridinae, which are widespread and overabundant in both TRF and non-TRF bioregions. Area and distance significantly affected Neotropical palm community assembly and contributed more than environmental variables. Despite palms being emblematic humid forest elements, we found multiple shifts from humid to dry bioregions, showing that palms are also important components of these environments.

11.
Water Res ; 161: 98-107, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31181451

ABSTRACT

Identifying vertical and horizontal assemblage drivers of bacterial community is important for improving the efficacies of ecological evaluation and remediation for a huge contaminated river (e.g. black-odor urban river). However, little is known about the effect of stochastic vs. deterministic processes on the reliability of the identification processes. Here, a comprehensive analysis was performed to reveal vertical and horizontal assemblage drivers of bacterial community in a heavily polluted urban river (total area of 4.23 km2 and total length of 9.3 km), considering the relative importance of stochastic and deterministic processes. Heterogeneous bacterial community assemblages were observed in both vertical and horizontal profiles and the differences in the bacterial community between depths were relatively significant at genus level. The higher values for the Simpson dissimilarity index (horizontal ßSIM = 0.59 ±â€¯0.02; vertical ßSIM = 0.48 ±â€¯0.03) compared to the nestedness-resultant dissimilarity index (horizontal ßNES = 0.05 ±â€¯0.02; vertical ßNES = 0.05 ±â€¯0.05) showed that species replacement explained both the vertical and horizontal beta-diversity patterns. Comparison of horizontal and vertical Sørensen dissimilarity indices further indicated that the biodiversity of vertical community deserved more attention due to the shorter geographical distance with similar beta-diversity patterns compared to horizontal assemblages. Various traditional analysis without consideration for phylogenetic turnover revealed that TN, TP, NH4+-N, DO, ORP, Conductivity and CODMn were all the related environmental factors that influenced bacterial community. However, after taking stochastic vs. deterministic processes into account, only NH4+-N and ORP were identified as the main driving forces of trends in the vertical and in the horizontal assembly of bacterial community in the polluted urban river, respectively. This study is helpful for improving ecological assessment methodology and remediation strategy for contaminated urban rivers.


Subject(s)
Biodiversity , Rivers , Bacteria , China , Phylogeny , Reproducibility of Results
12.
Ecol Evol ; 5(22): 5272-5283, 2015 Nov.
Article in English | MEDLINE | ID: mdl-30151130

ABSTRACT

Allopatric or sympatric speciation influence the degree to which closely related species coexist in different manners, altering the patterns of phylogenetic structure and turnover among and between communities. The objective of this study was to examine whether phylogenetic community structure and turnover in the Brazilian Atlantic Forest permit conclusions about the dominant process for the formation of extant angiosperm richness of tree species. Therefore, we analyzed phylogenetic community structure (MPD, MNTD) as well as taxonomic (Jaccard similarity) and phylogenetic turnover (betaMPD, betaMNTD) among and between 49 tree communities distributed among three different habitat types. Mean annual precipitation and mean annual temperature in each survey area were estimated. Phylogenetic community structure does not differ between habitat types, although MPD reduces with mean annual temperature. Jaccard similarity decreases and betaMNTD increases with spatial distance and environmental differences between study sites. Spatial distance explains the largest portions of variance in the data, indicating dispersal limitation and the spatial aggregation of recently formed taxa, as betaMNTD is related to more recent evolutionary events. betaMPD, that is related to deep evolutionary splits, shows no spatial or environmental pattern, indicating that older clades are equally distributed across the Brazilian Atlantic Forest. While similarity pattern indicates dispersal limitations, the spatial turnover of betaMNTD is consistent with a high degree of sympatric speciation generating extant diversity and endemism in the Brazilian Atlantic Forest. More comprehensive approaches are necessary to reduce spatial sampling bias, uncertainties regarding angiosperm diversification patterns and confirm sympatric speciation as the dominant generator for the formation of extant species diversity in the Brazilian Atlantic Forest.

13.
Front Microbiol ; 4: 323, 2013.
Article in English | MEDLINE | ID: mdl-24312082

ABSTRACT

Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg(2+) and SO(2-) 4) and irradiation over the annual cycle. We examined spatiotemporal variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function.

14.
Acta amaz ; 48(3): 248-256, July-Sept. 2018. map, ilus, tab
Article in English | LILACS, VETINDEX | ID: biblio-1455360

ABSTRACT

Although inselbergs from around the world are iconic ecosystems, little is known on the underlying mechanisms of community assembly, especially in their characteristic patchy outcrop vegetation. Environmental constraints are expected to cause phylogenetic clustering when ecological niches are conserved within evolutionary lineages. We tested whether vegetation patches from rock outcrops of the Piedra La Tortuga Natural Monument, in the northern Amazon region, are phylogenetically clustered, indicating that environmental filtering is the dominant driver of community assemblage therein. We classified all patches according to their size as very small (< 1 m2), small (1-4 m2), medium-sized (4-8 m2), and large patches (8-15 m2). From each class, we randomly selected 10 patches, totalizing 40 patches covering 226 m2. All individuals found in the 40 isolated patches were identified to the species level. We also correlated measurements of phylogenetic community structure with patch size. We found that species from patches are restricted to the clades monocots, fabids, malvids, and lamiids. We conclude that vegetation in this rock outcrop is phylogenetically clustered. Furthermore, we found that phylogenetic turnover between pairs of patches increases with patch size, which is consistent with a scenario of higher environmental stress in smaller patches. Further research is necessary to identify nurse species in inselberg vegetation, which is pivotal for conservation and restoration of this particular ecosystem.


Ainda que os inselbergs ao redor do mundo sejam ecossistemas icônicos, pouco se sabe sobre os mecanismos subjacentes que estruturam suas comunidades vegetais, especialmente nas manchas de vegetação sobre afloramentos rochosos. Espera-se que as restrições ambientais causem agrupamento filogenético quando os nichos ecológicos são conservados dentro das linhagens evolutivas. Nós testamos se as manchas de vegetação dos afloramentos rochosos do Monumento Natural Piedra La Tortuga, no norte da região amazônica, apresentam indicadores filogenéticos de que a filtragem ambiental é o principal direcionador da estruturação da comunidade. Classificamos todas as manchas de acordo com seu tamanho como muito pequenas (<1 m2), pequenas (1-4 m2), médias (4-8 m2) e grandes (8-15 m2). Selecionamos aleatoriamente 10 manchas em cada classe de tamanho, totalizando 40 manchas cobrindo 226 m2. Todos os indivíduos encontrados nas 40 manchas foram identificados ao nível de espécie. Correlacionamos as medidas da estrutura filogenética da comunidade com o tamanho das manchas e encontramos que as espécies das manchas são restritas aos clados das monocotiledôneas, fabídeas, malvídeas e lamiídeas. Concluímos que a vegetação neste afloramento rochoso é agrupada filogeneticamente. Além disso, encontramos que o turnover filogenético entre pares de manchas aumenta com o tamanho da mancha, o que é consistente com um cenário de alto estresse ambiental nas manchas menores. São necessárias mais pesquisas para identificar espécies facilitadoras, que são fundamentais para a conservação e restauração destes ecossistemas.


Subject(s)
Phylogeny , Plants/classification , Plants/genetics , Genetic Variation , Amazonian Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL