Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.503
Filter
Add more filters

Publication year range
1.
BMC Plant Biol ; 24(1): 423, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760709

ABSTRACT

BACKGROUND: Soil salinity is one of the major menaces to food security, particularly in dealing with the food demand of the ever-increasing global population. Production of cereal crops such as wheat is severely affected by soil salinity and improper fertilization. The present study aimed to examine the effect of selected microbes and poultry manure (PM) on seedling emergence, physiology, nutrient uptake, and growth of wheat in saline soil. A pot experiment was carried out in research area of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. Saline soil (12 dS m- 1 w/w) was developed by spiking using sodium chloride, and used in experiment along with two microbial strains (i.e., Alcaligenes faecalis MH-2 and Achromobacter denitrificans MH-6) and PM. Finally, wheat seeds (variety Akbar-2019) were sown in amended and unamended soil, and pots were placed following a completely randomized design. The wheat crop was harvested after 140 days of sowing. RESULTS: The results showed a 10-39% increase (compared to non-saline control) in agronomic, physiological, and nutritive attributes of wheat plants when augmented with PM and microbes. Microbes together with PM significantly enhanced seedling emergence (up to 38%), agronomic (up to 36%), and physiological (up to 33%) in saline soil as compared to their respective unamended control. Moreover, the co-use of microbes and PM also improved soil's physicochemical attributes and enhanced N (i.e., 21.7%-17.1%), P (i.e., 24.1-29.3%), and K (i.e., 28.7%-25.3%) availability to the plant (roots and shoots, respectively). Similarly, the co-use of amendments also lowered the Na+ contents in soil (i.e., up to 62%) as compared to unamended saline control. This is the first study reporting the effects of the co-addition of newly identified salt-tolerant bacterial strains and PM on seedling emergence, physiology, nutrient uptake, and growth of wheat in highly saline soil. CONCLUSION: Our findings suggest that co-using a multi-trait bacterial culture and PM could be an appropriate option for sustainable crop production in salt-affected soil.


Subject(s)
Manure , Poultry , Salinity , Soil , Triticum , Triticum/growth & development , Soil/chemistry , Animals , Soil Microbiology , Seedlings/growth & development , Fertilizers/analysis , Alcaligenes faecalis/growth & development
2.
Arch Microbiol ; 206(6): 262, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753198

ABSTRACT

The employment of versatile bacterial strains for the efficient degradation of carcinogenic textile dyes is a sustainable technology of bioremediation for a neat, clean, and evergreen globe. The present study has explored the eco-friendly degradation of complex Reactive Green 12 azo dye to its non-toxic metabolites for safe disposal in an open environment. The bacterial degradation was performed with the variable concentrations (50, 100, 200, 400, and 500 mg/L) of Reactive Green 12 dye. The degradation and toxicity of the dye were validated by high-performance liquid chromatography, Fourier infrared spectroscopy analysis, and phytotoxicity and genotoxicity assay, respectively. The highest 97.8% decolorization was achieved within 12 h. Alternations in the peaks and retentions, thus, along with modifications in the functional groups and chemical bonds, confirmed the degradation of Reactive Green 12. The disappearance of a major peak at 1450 cm-1 corresponding to the -N=N- azo link validated the breaking of azo bonds and degradation of the parent dye. The 100% germination of Triticum aestivum seed and healthy growth of plants verified the lost toxicity of degraded dye. Moreover, the chromosomal aberration of Allium cepa root cell treatment also validated the removal of toxicity through bacterial degradation. Thereafter, for efficient degradation of textile dye, the bacterium is recommended for adaptation to the sustainable degradation of dye and wastewater for further application of degraded metabolites in crop irrigation for sustainable agriculture.


Subject(s)
Biodegradation, Environmental , Coloring Agents , Onions , Textile Industry , Triticum , Coloring Agents/metabolism , Coloring Agents/chemistry , Coloring Agents/toxicity , Triticum/microbiology , Onions/drug effects , Azo Compounds/metabolism , Azo Compounds/toxicity , Textiles , Bacteria/metabolism , Bacteria/drug effects , Bacteria/genetics , Mutagenicity Tests
3.
Int Microbiol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748297

ABSTRACT

Pigments are coloring agents used widely in different industrial sectors. There is a demand for using natural pigments rather than synthetic dyes because of the health hazards caused by synthetic dyes. Many natural pigments have different medicinal activities which can contribute to the nutritional value of the product. This study was carried forward with marine yeasts which can produce pigments. A total of 4 marine yeast isolates were recovered from the mangrove area of Sundarbans, West Bengal, India. Among them, the isolate KSB1 produced 856 µg/g total concentration of carotenoid pigment and the dry mass weight was 3.56 g/L. The stability of the extracted pigments was checked using temperature, pH, UV light exposure time, and different saline conditions. The pigments were characterized using HPLC and FTIR analysis. All of the extracted pigments showed good antioxidant activity in DPPH, metal chelating, and reducing power assay. The pigments were also found to have good antibacterial activity against the bacterial pathogens Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. Carotenoid pigment from KSB1 was found to have maximum activity in all the pathogens. The cytogenotoxicity using onion roots and phytotoxicity analysis indicated that the pigments were non-toxic and safe for cells. Finally, the potential marine yeast was identified using 18 s rRNA sequencing and identified as Rhodotorula sp. KSB1 (Accession no. MH782232).

4.
Mol Biol Rep ; 51(1): 51, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165511

ABSTRACT

BACKGROUND: Reactive Red (RR) 141 dye is widely used in various industrial applications, but its environmental impact remains a growing concern. In this study, the phytotoxic and genotoxic effects of RR 141 dye on mung bean seedlings (Vigna radiata (L.) Wilczek) were investigated, serving as a model for potential harm to plant systems. METHODS AND RESULTS: Short-term (14 days) and long-term (60 days) experiments in paddy soil pot culture exposed mung bean seedlings to RR 141 dye. The dye delayed germination and hindered growth, significantly reducing germination percentage and seedling vigor index (SVI) at concentrations of 50 and 100 ml/L. In short-term exposure, plumule and radical lengths dose-dependently decreased, while long-term exposure affected plant length and grain weight, leaving pod-related parameters unaffected. To evaluate genotoxicity, high annealing temperature-random amplified polymorphic DNA (HAT-RAPD) analysis was employed with five RAPD primers having 58-75% GC content. It detected polymorphic band patterns, generating 116 bands (433 to 2857 bp) in plant leaves exposed to the dye. Polymorphisms indicated the appearance/disappearance of DNA bands in both concentrations, with decreased genomic template stability (GTS) values suggesting DNA damage and mutation. CONCLUSION: These findings demonstrate that RR 141 dye has a significant impact on genomic template stability (GTS) and exhibits phytotoxic and genotoxic responses in mung bean seedlings. This research underscores the potential of RR 141 dye to act as a harmful agent within plant model systems, highlighting the need for further assessment of its environmental implications.


Subject(s)
Alkaloids , Vigna , Vigna/genetics , Seedlings , Random Amplified Polymorphic DNA Technique , DNA Damage , DNA
5.
Environ Res ; 260: 119665, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39048062

ABSTRACT

The intensifying production and release into the environment as well as the increasing potential in agricultural applications make the relationship between plants and nickel nanoparticles (Ni NPs) a relevant and timely topic. The aim of this review is to give an overview and discuss the latest findings about the relationship of Ni NPs and plants. Ni NPs can be synthesized using phytochemicals derived from plant parts in an environmentally friendly manner. There are several ways for these nanoparticles to enter plant cells and tissues. This can be demonstrated through various imaging and chemical mapping approaches (e.g., transmission electron microscopy, X-ray fluorescence spectroscopy etc.). NiO NPs affect plants at multiple levels, including subcellular, cellular, tissue, organ, and whole-plant levels. However, the effects of Ni NPs on plants' ecological partners (e.g., rhizobiome, pollinators) remain largely unknown despite their ecotoxicological significance. The main cause of the Ni NPs-triggered damages is the reactive oxygen species imbalance as a consequence of the modulation of antioxidants. In non-tolerant plants, the toxicity of NiO NPs can be mitigated by exogenous treatments such as the application of silicon, salicylic acid, or jasmonic acid, which induce defense mechanisms whereas Ni-hypertolerant plant species possess endogenous defense systems, such as cell wall modifications and nitrosative signaling against NiO NP stress. Research highlights the role of Ni NPs in managing fungal diseases, showcasing their antifungal properties against specific pathogens. Due to the essentiality of Ni, the application of Ni NPs as nanofertilizers might be promising and has recently started to come into view.

6.
Environ Res ; 255: 119192, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38777299

ABSTRACT

The present study evaluates the adsorption efficiency of low-cost carbonaceous adsorbents as fly ash (FA), saw dust biochar (SDB) (untreated and alkali - treated), live/dead pulverized white rot fungus Hypocrea lixii biomass encapsulated in sodium alginate (SA) against the commercially available activated carbon (AC) and graphene oxide (GO) SA beads for removal of benzene phenol derivatives - Bisphenol A (BPA)/triclosan (TCS). Amongst bi - and tri - composites SA beads, tri-composite beads comprising of untreated flyash - dead fungal biomass - sodium alginate (UFA - DB - SA) showed at par results with commercial composite beads. The tri - composite beads with point zero charge (Ppzc) of 6.2 was characterized using FTIR, XRD, surface area BET and SEM-EDX. The batch adsorption using tri - composite beads revealed removal of 93% BPA with adsorption capacity of 16.6 mg/g (pH 6) and 83.72% TCS with adsorption capacity of 14.23 mg/g (pH 5), respectively at 50 ppm initial concentration with 6 % adsorbent dose in 5 h. Freundlich isotherm favoring multilayered adsorption provided a better fit with r2 of 0.9674 for BPA and 0.9605 for TCS respectively. Intraparticle diffusion model showed adsorption of BPA/TCS molecules to follow pseudo - second order kinetics with boundary layer diffusion governed by first step of fast adsorption and intraparticle diffusion within pores by second slow adsorption step. Thermodynamic parameters (ΔH°, ΔS°, ΔG°) revealed adsorption process as exothermic, orderly and spontaneous. Methanol showed better desorbing efficiency leading to five cycles reusability. The phytotoxicity assay revealed increased germination rate of mung bean (Vigna radiata) seeds, sprinkled with post adsorbed treated water (0 h, 5 h and 7 h) initially spiked with 50 ppm BPA/TCS. Overall, UFA - DB - SA tri - composite beads provides a cost effective and eco - friendly matrix for effective removal of hydrophobic recalcitrant compounds.


Subject(s)
Alginates , Benzhydryl Compounds , Phenols , Adsorption , Phenols/chemistry , Alginates/chemistry , Benzhydryl Compounds/chemistry , Graphite/chemistry , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Hypocrea/chemistry , Coal Ash/chemistry
7.
Environ Res ; 242: 117820, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38048867

ABSTRACT

Engineered nanomaterials (ENMs) are inevitably released into the environment with the exponential application of nanotechnology. Parts of ENMs eventually accumulate in the soil environment leading to potential adverse effects on soil ecology, crop production, and human health. Therefore, the safety application of ENMs on soil has been widely discussed in recent years. More detailed safety information and potential soil environmental risks are urgently needed. However, most of the studies on the environmental effects of metal-based ENMs have been limited to single-species experiments, ecosystem processes, or abiotic processes. The present review formulated the source and the behaviors of the ENMs in soil, and the potential effects of single and co-exposure ENMs on soil microorganisms, soil fauna, and plants were introduced. The toxicity mechanism of ENMs to soil organisms was also reviewed including oxidative stress, the release of toxic metal ions, and physical contact. Soil properties affect the transport, transformation, and toxicity of ENMs. Toxic mechanisms of ENMs include oxidative stress, ion release, and physical contact. Joint toxic effects occur through adsorption, photodegradation, and loading. Besides, future research should focus on the toxic effects of ENMs at the food chain levels, the effects of ENMs on plant whole-lifecycle, and the co-exposure and long-term toxicity effects. A fast and accurate toxicity evaluation system and model method are urgently needed to solve the current difficulties. It is of great significance for the sustainable development of ENMs to provide the theoretical basis for the ecological risk assessment and environmental management of ENMs.


Subject(s)
Ecosystem , Nanostructures , Humans , Soil , Nanostructures/toxicity , Nanotechnology , Plants
8.
Environ Res ; 254: 118676, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38763285

ABSTRACT

In this study, magnetic CoFe2O4-PAC nanocatalysts were synthesized through facile hydrothermal and co‒precipitation approaches with ultrasonic irradiation, which were used for the treatment of hypersaline petrochemical wastewater (HPCW). When an ultrasound‒induced synthesis process (US@CoFe2O4‒PAC) was used, a more efficient and stable magnetic spinel CoFe2O4‒PAC nanocatalyst was developed. The application of this nanocatalyst as a PMS activator, not only caused eradication of 90.4% of chemical oxygen demand (COD) of a HPCW after 90 min reaction time under the optimum conditions (pH 5-6, catalyst dose 1.0 g/L and 1.0 mM PMS), but also led to marginal leaching of iron (314 µg/L) and cobalt (95 µg/L) from the nanocatalyst. Recycling experiments over five consecutive runs showed a negligible decrease (7.2%) in COD removal efficiency which proved the stability and reusability of magnetic US@CoFe2O4-PAC. Two main mechanisms of adsorption and catalytic oxidation processes (homogeneous and heterogeneous PMS) are involved simultaneously in the PMS/US@CoFe2O4-PAC system, which are responsible for the destruction of refractory contaminants of HPCW through the generation of SO4•‒ and OH• radicals. COD of HPCW was mainly removed through SO4•- radical attack (73.6%) and the biodegradability of HPCW was enhanced dramatically after 90 min reaction time. The germination index (GI) of raw HPCW was increased 17.1 ± 4.2% and 24.3 ± 8.8% after 15 and 90 min reaction time, respectively, even PMS/US@CoFe2O4-PAC system showed less impact on phytotoxicity mitigation. Hence, it can be recommended to dilute the effluent before using for irrigational purpose. The findings of this study present practical significance of spinel US@CoFe2O4-PAC, which is an environment‒friendly catalyst, easy to handle and can sustain long‒term operation for the treatment of recalcitrant hypersaline wastewater and the other potential practical applications.


Subject(s)
Cobalt , Ferric Compounds , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Cobalt/chemistry , Ferric Compounds/chemistry , Catalysis , Biodegradation, Environmental , Waste Disposal, Fluid/methods , Salinity
9.
J Toxicol Environ Health A ; 87(18): 719-729, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38884257

ABSTRACT

Corn is the second most cultivated crop in Brazil, the number-one country in pesticide consumption. Chemical control of weeds is performed using herbicides such as S-metolachlor with pre- and post-emergence action and thus the toxicity of herbicides constitutes a matter of great concern. The present investigation aimed to examine the effects of an S-metolachlor-based herbicide on Lactuca sativa L. (lettuce) and Zea mays L. (maize) utilizing various bioassays. The test solutions were prepared from commercial products containing the active ingredient. Seeds from the plant models were exposed in petri dishes and maintained under biochemical oxygen demand (BOD) at 24°C. Distilled water was negative and aluminium positive control. Macroscopic analyses (germination and growth) were conducted for both plant species, and microscopic analysis (cell cycle and chromosomal alterations) were performed for L. sativa root tip cells. Detrimental interference of S-metolachlor-based herbicide was noted with lettuce for all parameters tested reducing plant germination by over 50% and the germination speed by over 45% and showing a significant decrease in mitotic index, from 16.25% to 9,28% even on the lowest concentration tested. In maize, there was no significant interference in plant germination; however, speed of germination was significantly hampered, reaching a 51.22% reduction for the highest concentration tested. Data demonstrated that the herbicide was toxic as evidenced by its phyto- and cytotoxicity in L. sativa L. and Z. mays L.


Subject(s)
Acetamides , Herbicides , Lactuca , Zea mays , Zea mays/drug effects , Herbicides/toxicity , Lactuca/drug effects , Lactuca/growth & development , Acetamides/toxicity , Germination/drug effects , Seeds/drug effects , Seeds/growth & development
10.
Ecotoxicol Environ Saf ; 283: 116826, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39106570

ABSTRACT

The utilisation of coated controlled-release fertilizers (CRFs) leads to the persistence of residual plastic films in agricultural soils, posing a potential threat to crop health. This study investigates the impacts of four residual films (0.39 %, w/w) derived from CRFs in soil, including petrochemical polyether, bio-based polyether, castor oil polyester, and wheat straw polyester polyurethane on wheat growth. This study found that PecPEUR significantly reduced wheat plant height, stem diameter, leaf area, and aboveground fresh weight by 24.8 %, 20.2 %, and 25.7 %. Through an in-depth exploration of transcriptomics and metabolomics, it has been discovered that all residual films disrupted glycolysis-related metabolic pathways in wheat roots, affecting seedling growth. Among them, PecPEUR significantly reduced the fresh weight of aboveground parts by 20.5 %. In contrast, polyester polyurethane residue had no discernible impact on aboveground wheat growth. This was attributed to the enrichment of wheat root genes in jasmonic acid and γ-aminobutyric acid metabolic pathways, thus mitigating oxidative stress, enhancing stress resistance, and ensuring normal plant growth. This study, for the first time, provides comprehensive insights into the effects of polyurethane film residue on wheat seedling growth, underscoring its potential as a promising alternative to conventional plastics in soil.

11.
Ecotoxicol Environ Saf ; 280: 116542, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850698

ABSTRACT

The use of disposable face masks (DFMs) increased during the COVID-19 pandemic and has become a threat to the environment due to the release of microplastics (MPs). Although many reports have characterized and explored the release of MPs from DFMs and their effects in aquatic ecosystems, there is a lack of investigation into the effects in terrestrial plants. This report aims to fill this research gap by characterizing whole mask leachates (WMLs) collected at different time points and examining their toxicity on Allium cepa, a terrestrial model plant. Various analytical techniques including FE-SEM, FT-IR, and Raman spectroscopy were used to identify MPs in WMLs. The MPs are composed of polypropylene mostly and the concentration of smaller-sized MPs increased with leachate release time. The WMLs showed a MP concentration-dependent cytogenotoxic effect (72 %, 50 %, and 31 %, on 1, 5, and 11-day WMLs, respectively) on A. cepa root cells due to elevated oxidative stress (19 %, 45 %, and 70 %, on 1, 5, and 11-day WMLs, respectively). Heavy metal content of the WMLs was negligible and, thus, not a significant contributor to toxicity in the plant. Overall, this report highlights the fate of DFMs in the environment and their biological impacts in a model plant.


Subject(s)
Masks , Microplastics , Onions , Onions/drug effects , Microplastics/toxicity , COVID-19 , Oxidative Stress/drug effects , Time Factors , Metals, Heavy/analysis , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Plant Roots
12.
Ecotoxicol Environ Saf ; 282: 116761, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39047370

ABSTRACT

The widespread use of nanomaterials in agriculture may introduce multiple engineered nanoparticles (ENPs) into the environment, posing a combined risk to crops. However, the precise molecular mechanisms explaining how plant tissues respond to mixtures of individual ENPs remain unclear, despite indications that their combined toxicity differs from the summed toxicity of the individual ENPs. Here, we used a variety of methods including physicochemical, biochemical, and transcriptional analyses to examine the combined effects of graphene nanoplatelets (GNPs) and titanium dioxide nanoparticles (TiO2 NPs) on hydroponically exposed lettuce (Lactuca sativa) seedlings. Results indicated that the presence of GNPs facilitated the accumulation of Ti as TiO2 NPs in the seedling roots. Combined exposure to GNPs and TiO2 NPs caused less severe oxidative damage in the roots compared to individual exposures. Yet, GNPs and TiO2 NPs alone and in combination did not cause oxidative damage in the shoots. RNA sequencing data showed that the mixture of GNPs and TiO2 NPs led to a higher number of differentially expressed genes (DEGs) in the seedlings compared to exposure to the individual ENPs. Moreover, the majority of the DEGs encoding superoxide dismutase displayed heightened expression levels in the seedlings exposed to the combination of GNPs and TiO2 NPs. The level of gene ontology (GO) enrichment in the seedlings exposed to the mixture of GNPs and TiO2 NPs was found to be greater than the level of GO enrichment observed after exposure to isolated GNPs or TiO2 NPs. Furthermore, the signaling pathways, specifically the "MAPK signaling pathway-plant" and "phenylpropanoid biosynthesis," exhibited a close association with oxidative stress. This study has provided valuable insights into the molecular mechanisms underlying plant resistance against multiple ENPs.


Subject(s)
Graphite , Lactuca , Seedlings , Titanium , Titanium/toxicity , Lactuca/drug effects , Lactuca/genetics , Lactuca/growth & development , Graphite/toxicity , Seedlings/drug effects , Seedlings/genetics , Nanoparticles/toxicity , Oxidative Stress/drug effects , Plant Roots/drug effects , Gene Expression Regulation, Plant/drug effects , Metal Nanoparticles/toxicity , Superoxide Dismutase/metabolism
13.
Ecotoxicol Environ Saf ; 272: 116059, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38309235

ABSTRACT

Alfalfa (Medicago sativa L.) is a feed crop due to its rich nutrition and high productivity. The utilization of titanium oxide nanoparticles (TiO2 NPs) brings benefits to agricultural production but also has potential hazards. To investigate the duality and related mechanism of TiO2 NPs on alfalfa, its different doses including 0, 50, 100, 200, 500, and 1000 mg L- 1 (CK, Ti-50, Ti-100, Ti-200, Ti-500, and Ti-1000) were sprayed on leaves. The results showed that greater doses of TiO2 NPs (500 and 1000 mg L-1) negatively affected the physiological parameters, including morphology, biomass, leaf ultrastructure, stomata, photosynthesis, pigments, and antioxidant ability. However, 100 mg L-1 TiO2 NPs revealed an optimal positive effect; compared with the CK, it dramatically increased plant height, fresh weight, and dry weight by 22%, 21%, and 41%, respectively. Additionally, TiO2 NPs at low doses significantly protected leaf tissue, promoted stomatal opening, and enhanced the antioxidant system; while higher doses had phytotoxicity. Hence, TiO2 NPs are dose-dependent on alfalfa. The transcriptomic analysis identified 4625 and 2121 differentially expressed genes (DEGs) in the comparison of CK vs. Ti-100 and CK vs. Ti-500, respectively. They were mainly enriched in photosynthesis, chlorophyll metabolism, and energy metabolism. Notably, TiO2 NPs-induced phytotoxicity on photosynthetic parameters happened concurrently with the alterations of the genes involved in the porphyrin and chlorophyll metabolism and carbon fixation in photosynthetic organisms in the KEGG analysis. Similarly, it affected the efficiency of alfalfa energy transformation processes, including pyruvate metabolism and chlorophyll synthesis. Several key related genes in these pathways were validated. Therefore, TiO2 NPs have positive and toxic effects by regulating morphology, leaf ultrastructure, stomata, photosynthesis, redox homeostasis, and genes related to key pathways. It is significant to understand the duality of TiO2 NPs and cultivate varieties resistant to nanomaterial pollution.


Subject(s)
Medicago sativa , Nanoparticles , Medicago sativa/metabolism , Antioxidants/metabolism , Nanoparticles/toxicity , Gene Expression Profiling , Chlorophyll/metabolism
14.
Ecotoxicol Environ Saf ; 280: 116519, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833977

ABSTRACT

The indiscriminate use of zinc oxide nanoparticles (ZnO NPs) in daily life can lead to their release into soil environment. These ZnO NPs can be taken up by crops and translocated to their edible part, potentially causing risks to the ecosystem and human health. In this study, we conducted pot experiments to determine phytotoxicity, bioaccumulation and translocation depending on the size (10 - 30 nm, 80 - 200 nm and 300 nm diameter) and concentration (0, 100, 500 and 1000 mg Zn/kg) of ZnO NPs and Zn ion (Zn2+) in bok choy, a leafy green vegetable crop. After 14 days of exposure, our results showed that large-sized ZnO NPs (i.e., 300 nm) at the highest concentration exhibited greater phytotoxicity, including obstruction of leaf and root weight (42.5 % and 33.8 %, respectively) and reduction of chlorophyll a and b content (50.2 % and 85.2 %, respectively), as well as changes in the activities of oxidative stress responses compared to those of small-sized ZnO NPs, although their translocation ability was relatively lower than that of smaller ones. The translocation factor (TF) values decreased as the size of ZnO NPs increased, with TF values of 0.68 for 10 - 30 nm, 0.55 for 80 - 200 nm, and 0.27 for 300 nm ZnO NPs, all at the highest exposure concentration. Both the results of micro X-ray fluorescence (µ-XRF) spectrometer and bio-transmission electron microscopy (bio-TEM) showed that the Zn elements were mainly localized at the edges of leaves exposed to small-sized ZnO NPs. However, the Zn elements upon exposure to large-sized ZnO NP were primarily observed in the primary veins of leaves in the µ-XRF data, indicating a limitation in their ability to translocate from roots to leaves. This study not only advances our comprehension of the environmental impact of nanotechnology but also holds considerable implications for the future of sustainable agriculture and food safety.


Subject(s)
Bioaccumulation , Brassica , Metal Nanoparticles , Particle Size , Plant Leaves , Soil Pollutants , Zinc Oxide , Zinc Oxide/toxicity , Zinc Oxide/chemistry , Soil Pollutants/toxicity , Brassica/drug effects , Brassica/metabolism , Brassica/growth & development , Plant Leaves/drug effects , Plant Leaves/metabolism , Metal Nanoparticles/toxicity , Soil/chemistry , Chlorophyll/metabolism , Oxidative Stress/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Chlorophyll A/metabolism , Nanoparticles/toxicity
15.
Chem Biodivers ; 21(8): e202400195, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837651

ABSTRACT

Weed species many times possess allelochemicals as a part of their survival strategy. These metabolites can be potential targets in search of natural phytotoxins. This study aims to evaluate the phytotoxic ability of fatty aldehyde-rich essential oil from spiny coriander (Eryngium foetidum) leaves, also known as fitweed or spiritweed and to further identify the active phytotoxins. This oil dose-dependently inhibited the wheatgrass coleoptile and radicle growth in multiple bioassays with half maximal inhibitory concentration (IC50) 30.6-56.7 µg/mL, while exhibiting a less pronounced effect on the germination (IC50 181.8 µg/mL). The phytotoxicity assessment of two oil constituents identified eryngial (trans-2-dodecenal), exclusively major fatty aldehydic constituent as the potent growth inhibitor with IC50 in the range 20.8-36.2 µg/mL during an early phase of wheatgrass emergence. Eryngial-inspired screening of eleven saturated fatty aldehydes and alcohols did not find a significantly higher phytotoxic potency. In an open vessel, eryngial as the supplementation in agar medium, dose-dependently inhibited the growth of pre-germinated seeds of one monocot (bermudagrass) and one dicot (green amaranth) weed species with IC50 in the range 23.8-65.4 µg/mL. The current study identified eryngial, an α,ß-unsaturated fatty aldehyde of coriander origin to be a promising phytotoxic candidate for weed control.


Subject(s)
Aldehydes , Eryngium , Oils, Volatile , Aldehydes/chemistry , Aldehydes/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Eryngium/chemistry , Eryngium/metabolism , Dose-Response Relationship, Drug , Germination/drug effects , Plant Leaves/chemistry , Plant Leaves/metabolism , Molecular Structure
16.
Chem Biodivers ; : e202401367, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923285

ABSTRACT

This study explored the composition of essential oil (EO) and the first phytotoxic screening of EO obtained from the stems and leaves of Mentha vagans Boriss (MVEO) via hydro-distillation technique. The EO ingredients were detected through Gas Chromatography-Mass Spectrometry (GC-MS). GC-MS analysis revealed that MVEO contained 49 constituents, constituting 93.95 % of the total oil. Among MVEO constituents, dihydrocarvone was observed as the dominant constituent (24.14 %), followed by D-carvone (16.28 %) and piperitone (18.14 %). The phytotoxic effects of MVEO and its dominant compounds were examined against Amaranthus retroflexus, Lolium perenne, and Poa annua. Significant inhibition was observed by MVEO in comparison with the major constituents and their mixture, suppressing the seedling growth of tested species at the lowest dosage (0.01 mg/mL); in general, seedling growth of all tested species was markedly inhibited when applied concentration of the EO and its constituents reached 0.05 mg/mL. Our results also indicated that constituents other than the dominant compounds of MVEO possessed considerable phytotoxic effects because the EO's activity was stronger than its major constituents and their mixture. Thus, additional studies are required to investigate MVEO and its constituents and commercialize them as environment-friendly bio-herbicides.

17.
Chem Biodivers ; 21(6): e202301970, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38683904

ABSTRACT

New tranexamic acid (TXA) complexes of ferric(III), cobalt(II), nickel(II), copper(II) and zirconium(IV) were synthesized and characterized by elemental analysis (CHN), conductimetric (Λ), magnetic susceptibility investigations (µeff), Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H-NMR), ultraviolet visible (UV-vis.), optical band gap energy (Eg) and thermal studies (TG/DTG and DTA). TXA complexes were established in 1 : 2 (metal: ligand) stoichiometric ratio according to CHN data. Based on FT-IR and 1H-NMR data the disappeared of the carboxylic proton supported the deprotonating of TXA and linked to metal ions via the carboxylate group's oxygen atom as a bidentate ligand. UV-visible spectra and magnetic moment demonstrated that all chelates have geometric octahedral structures. Eg values indicated that our complexes are more electro conductive. DTA revealed presence of water molecules in inner and outer spheres of the complexes. DTA results showed that endothermic and exothermic peaks were identified in the degradation mechanisms. The ligand and metal complexes were investigated for their antimicrobial and herbicidal efficacy. The Co(II) and Ni(II) complexes showed antimicrobial activity against some tested species. The obtained results showed a promising herbicidal effect of TXA ligand and its metal complexes particularly copper and zirconium against the three tested plants.


Subject(s)
Coordination Complexes , Microbial Sensitivity Tests , Tranexamic Acid , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Fungi/drug effects , Molecular Structure , Structure-Activity Relationship , Tranexamic Acid/pharmacology , Tranexamic Acid/chemistry , Tranexamic Acid/chemical synthesis , Transition Elements/chemistry , Transition Elements/pharmacology , Ferric Compounds/chemical synthesis , Ferric Compounds/chemistry , Ferric Compounds/pharmacology
18.
Int J Phytoremediation ; 26(3): 405-415, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37578104

ABSTRACT

An experiment was carried out to explore the impact of petroleum hydrocarbons (PHs)-degrading microbial consortium (MC) on phytoremediation ability and growth of water hyacinth (WH) plants in water contaminated with lead (Pb) and PHs. Buckets (12-L capacity) were filled with water and WH plants, PHs (2,400 mg L-1) and Pb (10 mg L-1) in respective buckets. Plants were harvested after 30 days of transplanting and results showed that PHs and Pb substantially reduced the agronomic (up to 62%) and physiological (up to 49%) attributes of WH plants. However, the application of MC resulted in a substantial increase in growth (38%) and physiology (22%) of WH plants over uninoculated contaminated control. The WH + MC were able to accumulate 93% Pb and degrade/accumulate 72% of PHs as compared to initial concentration. Furthermore, combined use of WH plants and MC in co-contamination of PHs and Pb, reduced Pb and PHs contents in water by 74% and 68%, respectively, than that of initially applied concentration. Our findings suggest that the WH in combination with PHs-degrading MC could be a suitable nature-based water remediation technology for organic and inorganic contaminants and in future it can be used for decontamination of mix pollutants from water bodies.


Phytoremediation by aquatic macrophytes is a promising technique for the cleanup of environmental toxins from wastewater. To our knowledge, this is the first study reporting the integrated use of water hyacinth (WH) plants and a newly developed multi-trait microbial consortium for the simultaneous remediation of organic (i.e., petroleum hydrocarbons) and inorganic (i.e., lead) pollutants from the contaminated water. Findings of this study provide the basic but important information on the combined use of WH and microbes for remediation of mix pollution from water bodies.


Subject(s)
Eichhornia , Petroleum , Soil Pollutants , Biodegradation, Environmental , Lead , Hydrocarbons , Plants , Soil Pollutants/analysis , Soil
19.
Int J Phytoremediation ; 26(8): 1336-1347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379318

ABSTRACT

This research examined the impact of heavy metals, including Cd, Pb, and Zn, on chlorophyll content and lamina cell structure in Bryum coronatum. After exposure to varying metal concentrations (0.015, 0.065, 0.250, 1, and 4 mg/L), chlorophyll content, chloroplast numbers, lamina cell change, and metal accumulation were investigated. Chlorophyll content was assessed using spectrophotometry, whereas chloroplast numbers and lamina cell changes were examined under a light microscope. Metal accumulation was quantified through ICP-MS. The findings revealed that Cd notably reduced chlorophyll a content, while Pb and Zn showed minimal influence. Cd and Pb exposure decreased the number of chloroplasts in lamina cells, with no impact from Zn. The moss's capacity to absorb metals increased with higher exposure levels, indicating its potential as a biomonitor for heavy metal pollution. Cell mortality occurred in response to Cd and Pb, primarily in the median and apical lamina regions, while Zn had no effect. This study sheds light on heavy metal toxicity in B. coronatum, underscoring its significance for environmental monitoring. Further research on the mechanisms and consequences of heavy metal toxicity in bryophytes is essential for a comprehensive understanding of this critical issue.


The capacity of moss B. coronatum to absorb metals increased with higher exposure levels, providing quantitative data on heavy metal pollution around it.


Subject(s)
Chlorophyll , Metals, Heavy , Metals, Heavy/toxicity , Chlorophyll/metabolism , Biodegradation, Environmental , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Bryophyta , Lead/toxicity , Lead/metabolism , Chloroplasts/metabolism , Bryopsida/metabolism , Bryopsida/drug effects , Cadmium/toxicity , Cadmium/metabolism
20.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000099

ABSTRACT

Copper (Cu) is an essential nutrient for plant growth and development. This metal serves as a constituent element or enzyme cofactor that participates in many biochemical pathways and plays a key role in photosynthesis, respiration, ethylene sensing, and antioxidant systems. The physiological significance of Cu uptake and compartmentalization in plants has been underestimated, despite the importance of Cu in cellular metabolic processes. As a micronutrient, Cu has low cellular requirements in plants. However, its bioavailability may be significantly reduced in alkaline or organic matter-rich soils. Cu deficiency is a severe and widespread nutritional disorder that affects plants. In contrast, excessive levels of available Cu in soil can inhibit plant photosynthesis and induce cellular oxidative stress. This can affect plant productivity and potentially pose serious health risks to humans via bioaccumulation in the food chain. Plants have evolved mechanisms to strictly regulate Cu uptake, transport, and cellular homeostasis during long-term environmental adaptation. This review provides a comprehensive overview of the diverse functions of Cu chelators, chaperones, and transporters involved in Cu homeostasis and their regulatory mechanisms in plant responses to varying Cu availability conditions. Finally, we identified that future research needs to enhance our understanding of the mechanisms regulating Cu deficiency or stress in plants. This will pave the way for improving the Cu utilization efficiency and/or Cu tolerance of crops grown in alkaline or Cu-contaminated soils.


Subject(s)
Copper , Plants , Copper/metabolism , Copper/deficiency , Plants/metabolism , Homeostasis , Oxidative Stress , Stress, Physiological , Biological Transport
SELECTION OF CITATIONS
SEARCH DETAIL