Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 82(8): 1528-1542.e10, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35245436

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a global health concern with no approved drugs. High-protein dietary intervention is currently the most effective treatment. However, its underlying mechanism is unknown. Here, using Drosophila oenocytes, the specialized hepatocyte-like cells, we find that dietary essential amino acids ameliorate hepatic steatosis by inducing polyubiquitination of Plin2, a lipid droplet-stabilizing protein. Leucine and isoleucine, two branched-chain essential amino acids, strongly bind to and activate the E3 ubiquitin ligase Ubr1, targeting Plin2 for degradation. We further show that the amino acid-induced Ubr1 activity is necessary to prevent steatosis in mouse livers and cultured human hepatocytes, providing molecular insight into the anti-NAFLD effects of dietary protein/amino acids. Importantly, split-intein-mediated trans-splicing expression of constitutively active UBR2, an Ubr1 family member, significantly ameliorates obesity-induced and high fat diet-induced hepatic steatosis in mice. Together, our results highlight activation of Ubr1 family proteins as a promising strategy in NAFLD treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Amino Acids, Essential/metabolism , Amino Acids, Essential/pharmacology , Amino Acids, Essential/therapeutic use , Animals , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Ubiquitination
2.
Mol Cell ; 81(13): 2722-2735.e9, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34077757

ABSTRACT

Lipid droplets are important for cancer cell growth and survival. However, the mechanism underlying the initiation of lipid droplet lipolysis is not well understood. We demonstrate here that glucose deprivation induces the binding of choline kinase (CHK) α2 to lipid droplets, which is sequentially mediated by AMPK-dependent CHKα2 S279 phosphorylation and KAT5-dependent CHKα2 K247 acetylation. Importantly, CHKα2 with altered catalytic domain conformation functions as a protein kinase and phosphorylates PLIN2 at Y232 and PLIN3 at Y251. The phosphorylated PLIN2/3 dissociate from lipid droplets and are degraded by Hsc70-mediated autophagy, thereby promoting lipid droplet lipolysis, fatty acid oxidation, and brain tumor growth. In addition, levels of CHKα2 S279 phosphorylation, CHKα2 K247 acetylation, and PLIN2/3 phosphorylation are positively correlated with one another in human glioblastoma specimens and are associated with poor prognosis in glioblastoma patients. These findings underscore the role of CHKα2 as a protein kinase in lipolysis and glioblastoma development.


Subject(s)
Choline Kinase/metabolism , Glioblastoma/enzymology , Lipid Droplets/enzymology , Lipolysis , Neoplasm Proteins/metabolism , Protein Kinases/metabolism , Acetylation , Cell Line, Tumor , Choline Kinase/genetics , Glioblastoma/genetics , Humans , Neoplasm Proteins/genetics , Protein Kinases/genetics
3.
Exp Cell Res ; 435(2): 113955, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38301990

ABSTRACT

Perilipin 2 (Plin2) is known to be dysregulated in several human malignancies, which facilitates cancer progression. Recent studies have found that the abnormal expression of Plin2 is associated with poor prognosis of non-small cell lung cancer (NSCLC). However, the specific role of Plin2 and its underlying mechanism remain unclear. This study revealed that Plin2 expression was low in NSCLC tissues, and its relatively higher expression indicated larger tumor size and poorer prognosis. In vitro experiments proved that Plin2 promoted NSCLC cellular proliferation and inhibited autophagy by activating the AKT/mTOR pathway. Meanwhile, treatment with the AKT phosphorylation promoter or inhibitor neutralized the influence of Plin2 depletion or over-expression on proliferation and autophagy, respectively. In vivo study showed that Plin2 stimulated subcutaneous tumorigenesis of NSCLC cells in nude mice. Collectively, this study clarified the carcinogenic role of Plin2 and its molecular mechanism in NSCLC progression, which may facilitate a targeted therapy in the future.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Lung Neoplasms/pathology , Perilipin-2/metabolism , Signal Transduction , Mice, Nude , Cell Line, Tumor , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Autophagy/genetics , Cell Proliferation
4.
Genomics ; 116(2): 110817, 2024 03.
Article in English | MEDLINE | ID: mdl-38431031

ABSTRACT

Perilipin-2 (PLIN2) can anchor to lipid droplets (LDs) and play a crucial role in regulating nascent LDs formation. Bimolecular fluorescence complementation (BiFC) and flow cytometry were examined to verify the PLIN2-CGI-58 interaction efficiency in bovine adipocytes. GST-Pulldown assay was used to detect the key site arginine315 function in PLIN2-CGI-58 interaction. Experiments were also examined to research these mutations function of PLIN2 in LDs formation during adipocytes differentiation, LDs were measured after staining by BODIPY, lipogenesis-related genes were also detected. Results showed that Leucine (L371A, L311A) and glycine (G369A, G376A) mutations reduced interaction efficiencies. Serine (S367A) mutations enhanced the interaction efficiency. Arginine (R315A) mutations resulted in loss of fluorescence in the cytoplasm and disrupted the interaction with CGI-58, as verified by pulldown assay. R315W mutations resulted in a significant increase in the number of LDs compared with wild-type (WT) PLIN2 or the R315A mutations. Lipogenesis-related genes were either up- or downregulated when mutated PLIN2 interacted with CGI-58. Arginine315 in PLIN2 is required for the PLIN2-CGI-58 interface and could regulate nascent LD formation and lipogenesis. This study is the first to study amino acids on the PLIN2 interface during interaction with CGI-58 in bovine and highlight the role played by PLIN2 in the regulation of bovine adipocyte lipogenesis.


Subject(s)
Arginine , Lipid Droplets , Animals , Cattle , Perilipin-2/genetics , Perilipin-2/chemistry , Perilipin-2/metabolism , Arginine/genetics , Arginine/metabolism , Lipid Droplets/metabolism , Mutation , Adipocytes/metabolism , Lipid Metabolism
5.
EMBO Rep ; 23(3): e52669, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35132760

ABSTRACT

The size of lipid droplets varies greatly in vivo and is determined by both intrinsic and extrinsic factors. From an RNAi screen in Drosophila, we found that knocking down subunits of COP9 signalosome (CSN) results in enlarged lipid droplets under high-fat, but not normal, conditions. We identified CG2064, a retinol dehydrogenase (RDH) homolog, as the proteasomal degradation target of CSN in regulating lipid droplet size. RDH/CG2064 interacts with the lipid droplet-resident protein Plin2 and the RDH/CG2064-Plin2 axis acts to reduce the overall level and lipid droplet localization of Bmm/ATGL lipase. This axis is important for larval survival under prolonged starvation. Thus, we discovered an RDH-Plin2 axis modulates lipid droplet size.


Subject(s)
Drosophila , Lipase , Lipid Droplets , Perilipin-2 , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Larva/genetics , Larva/metabolism , Lipase/genetics , Lipase/metabolism , Lipid Droplets/metabolism , Perilipin-2/metabolism
6.
J Lipid Res ; 64(12): 100461, 2023 12.
Article in English | MEDLINE | ID: mdl-37844775

ABSTRACT

Perilipin 2 (Plin2) binds to the surface of hepatic lipid droplets (LDs) with expression levels that correlate with triacylglyceride (TAG) content. We investigated if Plin2 is important for hepatic LD storage in fasted or high-fat diet-induced obese Plin2+/+ and Plin2-/- mice. Plin2-/- mice had comparable body weights, metabolic phenotype, glucose tolerance, and circulating TAG and total cholesterol levels compared with Plin2+/+ mice, regardless of the dietary regime. Both fasted and high-fat fed Plin2-/- mice stored reduced levels of hepatic TAG compared with Plin2+/+ mice. Fasted Plin2-/- mice stored fewer but larger hepatic LDs compared with Plin2+/+ mice. Detailed hepatic lipid analysis showed substantial reductions in accumulated TAG species in fasted Plin2-/- mice compared with Plin2+/+ mice, whereas cholesteryl esters and phosphatidylcholines were increased. RNA-Seq revealed minor differences in hepatic gene expression between fed Plin2+/+ and Plin2-/- mice, in contrast to marked differences in gene expression between fasted Plin2+/+ and Plin2-/- mice. Our findings demonstrate that Plin2 is required to regulate hepatic LD size and storage of neutral lipid species in the fasted state, while its role in obesity-induced steatosis is less clear.


Subject(s)
Lipid Droplets , Lipid Metabolism , Perilipin-2 , Animals , Mice , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Lipids , Liver/metabolism , Obesity/genetics , Obesity/metabolism , Perilipin-2/genetics , Perilipin-2/metabolism
7.
Exp Cell Res ; 418(1): 113244, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35697078

ABSTRACT

PLIN2 has been found to be dysregulated in several human malignancies, which influences cancer progression. However, the roles of PLIN2 in regulating hepatocellular carcinoma (HCC) progression are still unclear. Here, we revealed that PLIN2 was frequently upregulated in HCC cells and tissues, and increased PLIN2 expression was associated with poor prognosis outcomes in HCC. In HCC cells, overexpressing PLIN2 promoted cell proliferation, PLIN2-deficiency inhibited cell vitality. Mechanistically, silencing of PLIN2 expression downregulated hypoxia inducible factor 1-α (HIF1α) expression and this downregulation in turn inhibited the targeting genes of HIF1α. Furthermore, we found that PLIN2 stabilized and retarded the degradation of the HIF1α through autophagy-lysosomal pathway by inhibiting AMPK/ULK1. Collectively, we clarified the carcinogenic role of PLIN2 in HCC and suggested a prognostic biomarker for diagnosis and clinical therapy in the future.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Autophagy/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/pathology , Perilipin-2/metabolism
8.
Reprod Domest Anim ; 58(2): 253-262, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36254397

ABSTRACT

Qianbei Ma goats are one of the three most valued local goat breeds in Guizhou, China; furthermore, it has lower litter size performance. The purpose of this study was to explore the correlation between SNP (single-nucleotide polymorphisms) of PLIN2 gene and lambing performance. The bioinformatics analysis, DNA sequencing, RT-qPCR and correlation analysis methods were used to analyse the evolutionary relationship of PLIN2 protein in 13 species, to detect the expression pattern of PLIN2 gene in the gonad axis of Qianbei sheep, to explore the dominant genotype of PLIN2 related to lambing traits and to screen molecular markers related to lambing performance to guide the breeding of Qianbei Ma goats. Results showed that the Qianbei Ma goat PLIN2 protein had the closest genetic relationship with sheep and the furthest from mice, there were significant or extremely significant differences in the expression levels of the PLIN2 gene in the gonadal axis of the mothers of single- and multi-lamb groups. Compared with the reference sequence, four SNPs were found, which were g.1006 C → A and g.1171 A → G in the first and second intron regions of the PLIN2 gene, g.8514 C → T in the exon 8 region and g.9122 A → T in the 3'UTR. The correlation analysis showed that g.1006 C → A, g.8514 C → T and g.9122 A → T had significant indigenous effects on the lambing performance of Qianbei Ma goats (p < .05). The number of third births for diploid H2H5 was significantly higher than that of diploid H1H2, and the number of first to third births for diploid H2H5 was large and stable. The results showed that PLIN2 gene could be used as a candidate gene related to lambing traits of Qianbei Ma goat.


Subject(s)
Goats , Polymorphism, Single Nucleotide , Female , Pregnancy , Animals , Sheep/genetics , Mice , Goats/genetics , Perilipin-2/genetics , Genotype , Phenotype , Litter Size/genetics
9.
Reprod Domest Anim ; 58(12): 1685-1694, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37786952

ABSTRACT

Niacin is a water-soluble vitamin belonging to the vitamin B complex. It has been found to possess various biological activities, including antioxidant and lipid modification capacities. This study aimed to elucidate the effects of niacin treatment in porcine in vitro culture (IVC) medium on embryo developmental competence after parthenogenetic activation. IVC medium was supplemented with different concentrations of niacin (0 [control], 300, 600 and 900 µM). The results showed that embryos cultured in an IVC medium supplemented with 300 and 600 µM niacin had an increased cleavage rate (p < .05). In addition, 300 µM niacin treatment resulted in a higher blastocyst formation rate than the control and other niacin-treated groups. However, the total cell number did not differ significantly among the experimental groups. Niacin supplementation at 600 µM decreased reactive oxygen species, whereas treatment with 300, 600 and 900 µM increased glutathione levels in day two embryos. On day seven, 300 µM niacin exhibited improved fatty acid levels and fewer lipid droplets than the control group. Furthermore, gene expression at the mRNA level was performed on day two and day seven embryos, treated with or without 300 µM niacin. The expression of anti-apoptotic BCL2 and lipid metabolism PLIN2-related genes were upregulated, whereas the pro-apoptotic BAX and CASPASE3 were downregulated with niacin supplementation compared with the control group. However, SIRT1, a gene related to energy and the oxidative state, was up-regulated in niacin-treated day two embryos (p < .05). Overall, the results indicate that niacin has a beneficial effect on pre-implantation embryo development by modulating lipid metabolism and reducing oxidative stress and apoptosis. The expression patterns of PLIN2 and SIRT1 reported here suggest that these transcripts may be involved in the mechanism by which niacin affects the developmental capacity of IVC embryos.


Subject(s)
Niacin , Swine , Animals , Niacin/pharmacology , Sirtuin 1/metabolism , Embryonic Development , Parthenogenesis , Dietary Supplements , Blastocyst , Embryo Culture Techniques/veterinary
10.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36901715

ABSTRACT

Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in cytosolic and nuclear pools, we mimicked exercise-induced contractions in C2C12 myotubes by electrical pulse stimulation (EPS), with or without BCAA deprivation. The life-long physically active twins displayed an increased IMCL signal in type I fibers when compared to their inactive twin pair. Moreover, the inactive twins showed a decreased association between PLIN2 and IMCL. Similarly, in the C2C12 cell line, PLIN2 dissociated from IMCL when myotubes were deprived of BCAA, especially when contracting. In addition, in myotubes, EPS led to an increase in nuclear PLIN5 signal and its associations with IMCL and PGC-1α. This study demonstrates how physical activity and BCAA availability affects IMCL and their associated proteins, providing further and novel evidence for the link between the BCAA, energy and lipid metabolisms.


Subject(s)
Amino Acids, Branched-Chain , Perilipins , Humans , Amino Acids, Branched-Chain/metabolism , Exercise , Lipids , Muscle, Skeletal/metabolism , Perilipin-2/metabolism , Perilipins/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Proteins/metabolism
11.
J Lipid Res ; 62: 100048, 2021.
Article in English | MEDLINE | ID: mdl-33582145

ABSTRACT

Cholesteryl esters (CEs) are the water-insoluble transport and storage form of cholesterol. Steroidogenic cells primarily store CEs in cytoplasmic lipid droplet (LD) organelles, as contrasted to the majority of mammalian cell types that predominantly store triacylglycerol (TAG) in LDs. The LD-binding Plin2 binds to both CE- and TAG-rich LDs, and although Plin2 is known to regulate degradation of TAG-rich LDs, its role for regulation of CE-rich LDs is unclear. To investigate the role of Plin2 in the regulation of CE-rich LDs, we performed histological and molecular characterization of adrenal glands from Plin2+/+ and Plin2-/- mice. Adrenal glands of Plin2-/- mice had significantly enlarged organ size, increased size and numbers of CE-rich LDs in cortical cells, elevated cellular unesterified cholesterol levels, and increased expression of macrophage markers and genes facilitating reverse cholesterol transport. Despite altered LD storage, mobilization of adrenal LDs and secretion of corticosterone induced by adrenocorticotropic hormone stimulation or starvation were similar in Plin2+/+ and Plin2-/- mice. Plin2-/- adrenals accumulated ceroid-like structures rich in multilamellar bodies in the adrenal cortex-medulla boundary, which increased with age, particularly in females. Finally, Plin2-/- mice displayed unexpectedly high levels of phosphatidylglycerols, which directly paralleled the accumulation of these ceroid-like structures. Our findings demonstrate an important role of Plin2 for regulation of CE-rich LDs and cellular cholesterol balance in the adrenal cortex.


Subject(s)
Lipid Droplets
12.
J Cell Sci ; 132(1)2019 01 09.
Article in English | MEDLINE | ID: mdl-30559250

ABSTRACT

In hepatocytes, PLIN2 is the major protein coating lipid droplets (LDs), an organelle the hepatitis C virus (HCV) hijacks for virion morphogenesis. We investigated the consequences of PLIN2 deficiency on LDs and on HCV infection. Knockdown of PLIN2 did not affect LD homeostasis, likely due to compensation by PLIN3, but severely impaired HCV particle production. PLIN2-knockdown cells had slightly larger LDs with altered protein composition, enhanced local lipase activity and higher ß-oxidation capacity. Electron micrographs showed that, after PLIN2 knockdown, LDs and HCV-induced vesicular structures were tightly surrounded by ER-derived double-membrane sacs. Strikingly, the LD access for HCV core and NS5A proteins was restricted in PLIN2-deficient cells, which correlated with reduced formation of intracellular HCV particles that were less infectious and of higher density, indicating defects in maturation. PLIN2 depletion also reduced protein levels and secretion of ApoE due to lysosomal degradation, but did not affect the density of ApoE-containing lipoproteins. However, ApoE overexpression in PLIN2-deficient cells did not restore HCV spreading. Thus, PLIN2 expression is required for trafficking of core and NS5A proteins to LDs, and for formation of functional low-density HCV particles prior to ApoE incorporation.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Hepacivirus/pathogenicity , Hepatitis C/virology , Hepatocytes/virology , Lipid Droplets/virology , Lipoproteins/metabolism , Perilipin-2/metabolism , Virion/physiology , HEK293 Cells , Hepatitis C/metabolism , Hepatocytes/metabolism , Humans , Lipid Droplets/metabolism , Perilipin-2/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
13.
Neuroendocrinology ; 111(3): 263-272, 2021.
Article in English | MEDLINE | ID: mdl-32422642

ABSTRACT

BACKGROUND: In peripheral tissues, the lipid droplet (LD) organelle links lipid metabolism, inflammation, and insulin resistance. Little is known about the brain LDs. OBJECTIVES: We hypothesized that hypothalamic LDs would be altered in metabolic diseases. METHODS: We used immunofluorescence labeling of the specific LD protein, PLIN2, as the approach to visualize and quantify LDs. RESULTS: LDs were abundant in the hypothalamic third ventricle wall layer with similar heterogeneous distributions between control mice and humans. The LD content was enhanced by high-fat diet (HFD) in both wild-type and in low-density lipoprotein receptor deficient (Ldlr -/- HFD) mice. Strikingly, we observed a lower LD amount in type 2 diabetes mellitus (T2DM) patients when compared with non-T2DM patients. CONCLUSIONS: LDs accumulate in the normal hypothalamus, with similar distributions in human and mouse. Moreover, metabolic diseases differently modify LD content in mouse and human. Our results suggest that hypothalamic LD accumulation is an important target to the study of metabolism.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Hypothalamus/metabolism , Insulin Resistance/physiology , Lipid Droplets/metabolism , Perilipin-2/metabolism , Aged , Aged, 80 and over , Animals , Autopsy , Diet, High-Fat , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/deficiency , Tissue Banks
14.
Mol Biol Rep ; 48(12): 7985-7997, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34716501

ABSTRACT

BACKGROUND: Intramuscular fat content, an important meat quality trait, strongly affects flavor, juiciness, and tenderness. Sex hormones regulate lipid metabolism, and female hormones stimulate fat deposition, thereby making the female chickens always fatter than males. In this study, the effect of sex on IMF deposition was screened following transcriptomics in chickens. METHODS AND RESULTS: Results confirmed significantly higher IMF content of 150-day female chickens as compared to the male chickens. The female chickens manifested higher serum TG, LDL-C, and VLDL, and significantly lower HDL-C contents than male chickens. Moreover, differential expression of genes involved in lipid metabolism were obtained in the muscle and liver between female and male chicken, which could partly interpret the possible reasons for the sex-mediated differences of IMF content. Cellular results revealed that inhibition of PLIN2 significantly inhibited chicken preadipocyte proliferation and induces apoptosis of preadipocytes, as well as promoted adipocyte differentiation. CONCLUSIONS: According to our results, PLIN2 may be considered as a molecular marker for poultry meat quality and applying this gene in early breed selection.


Subject(s)
Adipocytes/metabolism , Chickens/genetics , Perilipin-2/metabolism , Adipocytes/physiology , Adipose Tissue/metabolism , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , China , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Lipid Metabolism/genetics , Male , Meat/analysis , Muscles/metabolism , Perilipin-2/genetics , Poultry/genetics , Poultry/growth & development , Sex Factors , Transcriptome/genetics
15.
Anim Biotechnol ; 31(2): 142-147, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30717637

ABSTRACT

Perilipin 2 (PLIN2) is a cytosolic protein that regulates intracellular lipid storage and mobilization. However, research reports of the relationship between PLIN2 gene and growth traits in cattle are rare. Here, five novel single nucleotide polymorphisms (SNPs)(g.3036G > C, g.3964C > T, g.6458G > T, g.6555C > T and g.8231G > A)were identified within the bovine PLIN2 gene using DNA sequencing and PCR-SSCP methods in 820 individuals from four Chinese indigenous bovine breeds. Overall, five common haplotypes were identified based on the 5 SNPs, with the most common haplotypes (GCGCG) occurring at a frequency of 69.0%. In addition, The 5 novel SNPs were associated with growth traits at 6, 12, 18 and 24 months in Nanyang population, and significant associations were found in body weight and heart girth. These results suggest that PLIN2 possibly is a strong candidate gene marker for body weight in cattle breeding program.


Subject(s)
Cattle/genetics , Perilipin-2/metabolism , Animals , Cattle/growth & development , Female , Haplotypes , Perilipin-2/genetics , Polymorphism, Single Nucleotide
16.
J Cell Mol Med ; 23(4): 2890-2900, 2019 04.
Article in English | MEDLINE | ID: mdl-30710421

ABSTRACT

Both type 2 diabetes (T2D) and obesity are characterized by excessive hyperlipidaemia and subsequent lipid droplet (LD) accumulation in adipose tissue. To investigate whether LDs also accumulate in ß-cells of T2D patients, we assessed the expression of PLIN2, a LD-associated protein, in non-diabetic (ND) and T2D pancreata. We observed an up-regulation of PLIN2 mRNA and protein in ß-cells of T2D patients, along with significant changes in the expression of lipid metabolism, apoptosis and oxidative stress genes. The increased LD buildup in T2D ß-cells was accompanied by inhibition of nuclear translocation of TFEB, a master regulator of autophagy and by down-regulation of lysosomal biomarker LAMP2. To investigate whether LD accumulation and autophagy were influenced by diabetic conditions, we used rat INS-1 cells to model the effects of hyperglycaemia and hyperlipidaemia on autophagy and metabolic gene expression. Consistent with human tissue, both LD formation and PLIN2 expression were enhanced in INS-1 cells under hyperglycaemia, whereas TFEB activation and autophagy gene expression were significantly reduced. Collectively, these results suggest that lipid clearance and overall homeostasis is markedly disrupted in ß-cells under hyperglycaemic conditions and interventions ameliorating lipid clearance could be beneficial in reducing functional impairments in islets caused by glucolipotoxicity.


Subject(s)
Autophagy , Diabetes Mellitus, Type 2/physiopathology , Gene Expression Regulation , Hyperglycemia/pathology , Hyperlipidemias/pathology , Insulin-Secreting Cells/pathology , Lipids/analysis , Animals , Apoptosis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Case-Control Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Humans , Hyperglycemia/etiology , Hyperglycemia/metabolism , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , Insulin-Secreting Cells/metabolism , Insulinoma/genetics , Insulinoma/metabolism , Insulinoma/pathology , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomes/metabolism , Lysosomes/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Perilipin-2/genetics , Perilipin-2/metabolism , Rats , Tumor Cells, Cultured
17.
Int J Cancer ; 145(4): 901-915, 2019 08 15.
Article in English | MEDLINE | ID: mdl-30653260

ABSTRACT

Endothelial lipase (LIPG) is a cell surface associated lipase that displays phospholipase A1 activity towards phosphatidylcholine present in high-density lipoproteins (HDL). LIPG was recently reported to be expressed in breast cancer and to support proliferation, tumourigenicity and metastasis. Here we show that severe oxidative stress leading to AMPK activation triggers LIPG upregulation, resulting in intracellular lipid droplet accumulation in breast cancer cells, which supports survival. Neutralizing oxidative stress abrogated LIPG upregulation and the concomitant lipid storage. In human breast cancer, high LIPG expression was observed in a limited subset of tumours and was significantly associated with shorter metastasis-free survival in node-negative, untreated patients. Moreover, expression of PLIN2 and TXNRD1 in these tumours indicated a link to lipid storage and oxidative stress. Altogether, our findings reveal a previously unrecognized role for LIPG in enabling oxidative stress-induced lipid droplet accumulation in tumour cells that protects against oxidative stress, and thus supports tumour progression.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Lipase/metabolism , Lipids/physiology , Oxidative Stress/physiology , Cell Line, Tumor , Disease Progression , Disease-Free Survival , Female , Humans , Lipid Metabolism/physiology , Lipoproteins, HDL/metabolism , MCF-7 Cells , Middle Aged , Up-Regulation/physiology
18.
Biochem Biophys Res Commun ; 512(1): 119-124, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30876690

ABSTRACT

CYP2A5 is a major enzyme responsible for nicotine and cotinine metabolism in mice. Nicotine and cotinine enhance alcoholic fatty liver in wild type (WT) mice but not in CYP2A5 knockout (KO) mice, and reactive oxygen species (ROS) generated during the CYP2A5-mediated metabolism contributes to the enhancing effect. In combination with ethanol, nicotine and cotinine increased lipid peroxidation end product 4-hydroxynonenal (HNE) in WT mice but not in KO mice. In ethanol-fed KO mice, only 5 and 10 genes were regulated by nicotine and cotinine, respectively. However, in ethanol-fed WT mice, 59 and 104 genes were regulated by nicotine and cotinine, respectively, and 7 genes were up-regulated by both nicotine and cotinine. Plin 2 and Cdkn1a are among the 7 genes. Plin2 encodes adipose differentiation-related protein (ADRP), a lipid droplet-associated protein, which was confirmed to be increased by nicotine and cotinine in WT mice but not in KO mice. Cdkn1a encodes P21 and elevated P21 in nuclei was also confirmed. HNE can increase P21 and P21 inhibit cell proliferation. Consistently, hepatocyte proliferation markers proliferating cell nuclear antigen (PCNA) and Ki67 were decreased in WT mice but not in KO mice by nicotine/ethanol and cotinine/ethanol, respectively. These results suggest that inhibition of liver proliferation via a ROS-HNE-P21 pathway is involved in nicotine- and cotinine-enhanced alcoholic fatty liver.


Subject(s)
Aldehydes/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Fatty Liver, Alcoholic/metabolism , Fatty Liver, Alcoholic/pathology , Animals , Aryl Hydrocarbon Hydroxylases/deficiency , Aryl Hydrocarbon Hydroxylases/genetics , Cell Proliferation/drug effects , Cotinine/administration & dosage , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cytochrome P450 Family 2/deficiency , Cytochrome P450 Family 2/genetics , Disease Models, Animal , Fatty Liver, Alcoholic/genetics , Female , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Regeneration/drug effects , Liver Regeneration/genetics , Mice , Mice, Knockout , Nicotine/administration & dosage , Perilipin-2/genetics , Perilipin-2/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Up-Regulation/drug effects
19.
J Intern Med ; 286(6): 660-675, 2019 12.
Article in English | MEDLINE | ID: mdl-31251843

ABSTRACT

BACKGROUND: Hyperlipidaemia is a major risk factor for cardiovascular disease, and atherosclerosis is the underlying cause of both myocardial infarction and stroke. We have previously shown that the Pro251 variant of perilipin-2 reduces plasma triglycerides and may therefore be beneficial to reduce atherosclerosis development. OBJECTIVE: We sought to delineate putative beneficial effects of the Pro251 variant of perlipin-2 on subclinical atherosclerosis and the mechanism by which it acts. METHODS: A pan-European cohort of high-risk individuals where carotid intima-media thickness has been assessed was adopted. Human primary monocyte-derived macrophages were prepared from whole blood from individuals recruited by perilipin-2 genotype or from buffy coats from the Karolinska University hospital blood central. RESULTS: The Pro251 variant of perilipin-2 is associated with decreased intima-media thickness at baseline and over 30 months of follow-up. Using human primary monocyte-derived macrophages from carriers of the beneficial Pro251 variant, we show that this variant increases autophagy activity, cholesterol efflux and a controlled inflammatory response. Through extensive mechanistic studies, we demonstrate that increase in autophagy activity is accompanied with an increase in liver-X-receptor (LXR) activity and that LXR and autophagy reciprocally activate each other in a feed-forward loop, regulated by CYP27A1 and 27OH-cholesterol. CONCLUSIONS: For the first time, we show that perilipin-2 affects susceptibility to human atherosclerosis through activation of autophagy and stimulation of cholesterol efflux. We demonstrate that perilipin-2 modulates levels of the LXR ligand 27OH-cholesterol and initiates a feed-forward loop where LXR and autophagy reciprocally activate each other; the mechanism by which perilipin-2 exerts its beneficial effects on subclinical atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Autophagy , Carotid Intima-Media Thickness , Liver X Receptors/metabolism , Macrophages/metabolism , Perilipin-2/metabolism , Aged , Disease Progression , Europe , Female , Foam Cells/metabolism , Humans , Lipoproteins/metabolism , Longitudinal Studies , Male , Middle Aged
20.
FASEB J ; 32(1): 130-142, 2018 01.
Article in English | MEDLINE | ID: mdl-28864659

ABSTRACT

Perilipin 2 (PLIN2) is a lipid-droplet protein that is up-regulated in alcoholic steatosis and associated with hepatic accumulation of ceramides, bioactive lipids implicated in alcoholic liver disease pathogenesis. The specific role of ceramide synthetic enzymes in the regulation of PLIN2 and promotion of hepatocellular lipid accumulation is not well understood. We examined the effects of pharmacologic ceramide synthesis inhibition on hepatic PLIN2 expression, steatosis, and glucose and lipid homeostasis in mice with alcoholic steatosis and in ethanol-incubated human hepatoma VL17A cells. In cells, pharmacologic inhibition of ceramide synthase reduced lipid accumulation by reducing PLIN2 RNA stability. The subtype ceramide synthase (CerS)6 was specifically up-regulated in experimental alcoholic steatosis in vivo and in vitro and was up-regulated in zone 3 hepatocytes in human alcoholic steatosis. In vivo ceramide reduction by inhibition of de novo ceramide synthesis reduced PLIN2 and hepatic steatosis in alcohol-fed mice, but only de novo synthesis inhibition, not sphingomyelin hydrolysis, improved glucose tolerance and dyslipidemia. These findings implicate CerS6 as a novel regulator of PLIN2 and suggest that ceramide synthetic enzymes may promote the earliest stage of alcoholic liver disease, alcoholic steatosis.-Williams, B., Correnti, J., Oranu, A., Lin, A., Scott, V., Annoh, M., Beck, J., Furth, E., Mitchell, V., Senkal, C. E., Obeid, L., Carr, R. M. A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis.


Subject(s)
Fatty Liver, Alcoholic/enzymology , Membrane Proteins/metabolism , Sphingosine N-Acyltransferase/metabolism , Animals , Biosynthetic Pathways , Cell Line , Ceramides/biosynthesis , Disease Models, Animal , Ethanol , Fatty Liver, Alcoholic/etiology , Fatty Liver, Alcoholic/genetics , Glucose/metabolism , Humans , Lipid Metabolism , Liver/drug effects , Liver/metabolism , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Perilipin-2/genetics , Perilipin-2/metabolism , RNA Stability , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/metabolism , Sphingosine N-Acyltransferase/antagonists & inhibitors , Sphingosine N-Acyltransferase/genetics , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL