Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Proteome Res ; 23(8): 3025-3040, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38566450

ABSTRACT

Despite the recent and increasing knowledge surrounding COVID-19 infection, the underlying mechanisms of the persistence of symptoms for a long time after the acute infection are still not completely understood. Here, a multiplatform mass spectrometry-based approach was used for metabolomic and lipidomic profiling of human plasma samples from Long COVID patients (n = 40) to reveal mitochondrial dysfunction when compared with individuals fully recovered from acute mild COVID-19 (n = 40). Untargeted metabolomic analysis using CE-ESI(+/-)-TOF-MS and GC-Q-MS was performed. Additionally, a lipidomic analysis using LC-ESI(+/-)-QTOF-MS based on an in-house library revealed 447 lipid species identified with a high confidence annotation level. The integration of complementary analytical platforms has allowed a comprehensive metabolic and lipidomic characterization of plasma alterations in Long COVID disease that found 46 relevant metabolites which allowed to discriminate between Long COVID and fully recovered patients. We report specific metabolites altered in Long COVID, mainly related to a decrease in the amino acid metabolism and ceramide plasma levels and an increase in the tricarboxylic acid (TCA) cycle, reinforcing the evidence of an impaired mitochondrial function. The most relevant alterations shown in this study will help to better understand the insights of Long COVID syndrome by providing a deeper knowledge of the metabolomic basis of the pathology.


Subject(s)
COVID-19 , Lipidomics , Metabolomics , Mitochondria , SARS-CoV-2 , Humans , COVID-19/blood , COVID-19/virology , COVID-19/metabolism , Metabolomics/methods , Mitochondria/metabolism , Lipidomics/methods , Male , Female , Middle Aged , Aged , Mass Spectrometry/methods , Post-Acute COVID-19 Syndrome , Metabolome , Adult , Citric Acid Cycle , Ceramides/blood , Ceramides/metabolism
2.
Article in English | MEDLINE | ID: mdl-39052056

ABSTRACT

Post-COVID syndrome (PCS) describes a persistent complex of symptoms following a COVID-19 episode, lasting at least 4 to 12 weeks, depending on the specific criteria used for its definition. It is often associated with moderate to severe impairments of daily life and represents a major burden for many people worldwide. However, especially during the first two years of the COVID-19 pandemic, therapeutic and diagnostic uncertainties were prominent due to the novelty of the disease and non-specific definitions that overlooked functional deficits and lacked objective assessment. The present work comprehensively examines the status of PCS definitions as depicted in recent reviews and meta-analyses, alongside exploring associated symptoms and functional impairments. We searched the database Pubmed for reviews and meta-analysis evaluating PCS in the period between May 31, 2022, to December 31, 2023. Out of 95 studies, 33 were selected for inclusion in our analyses. Furthermore, we extended upon prior research by systematically recording the symptoms linked with PCS as identified in the studies. We found that fatigue, neurological complaints, and exercise intolerance were the most frequently reported symptoms. In conclusion, over the past eighteen months, there has been a notable increase in quantity and quality of research studies on PCS. However, there still remains a clear need for improvement, particularly with regard to the definition of the symptoms necessary for diagnosing this syndrome. Enhancing this aspect will render future research more comparable and precise, thereby advancing and understanding PCS.

3.
Eur J Pediatr ; 183(4): 1543-1553, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38279014

ABSTRACT

This review summarizes current knowledge on post-acute sequelae of COVID-19 (PASC) and post-COVID-19 condition (PCC) in children and adolescents. A literature review was performed to synthesize information from clinical studies, expert opinions, and guidelines. PASC also termed Long COVID - at any age comprise a plethora of unspecific symptoms present later than 4 weeks after confirmed or probable infection with severe respiratory syndrome corona virus type 2 (SARS-CoV-2), without another medical explanation. PCC in children and adolescents was defined by the WHO as PASC occurring within 3 months of acute coronavirus disease 2019 (COVID-19), lasting at least 2 months, and limiting daily activities. Pediatric PASC mostly manifest after mild courses of COVID-19 and in the majority of cases remit after few months. However, symptoms can last for more than 1 year and may result in significant disability. Frequent symptoms include fatigue, exertion intolerance, and anxiety. Some patients present with postural tachycardia syndrome (PoTS), and a small number of cases fulfill the clinical criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). To date, no diagnostic marker has been established, and differential diagnostics remains challenging. Therapeutic approaches include appropriate self-management as well as the palliation of symptoms by non-pharmaceutical and pharmaceutical strategies.    Conclusion: PASC in pediatrics present with heterogenous severity and duration. A stepped, interdisciplinary, and individualized approach is essential for appropriate clinical management. Current health care structures have to be adapted, and research was extended to meet the medical and psychosocial needs of young people with PASC or similar conditions. What is Known: • Post-acute sequelae of coronavirus 2019 (COVID-19) (PASC) - also termed Long COVID - in children and adolescents can lead to activity limitation and reduced quality of life. • PASC belongs to a large group of similar post-acute infection syndromes (PAIS). Specific biomarkers and causal treatment options are not yet available. What is New: • In February 2023, a case definition for post COVID-19 condition (PCC) in children and adolescents was provided by the World Health Organization (WHO), indicating PASC with duration of at least 2 months and limitation of daily activities. PCC can present as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). • Interdisciplinary collaborations are necessary and have been established worldwide to offer harmonized, multimodal approaches to diagnosis and management of PASC/PCC in children and adolescents.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Adolescent , Humans , Child , Infant, Newborn , Post-Acute COVID-19 Syndrome , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Quality of Life , SARS-CoV-2 , Disease Progression , COVID-19 Testing
4.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445634

ABSTRACT

Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far it has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; a chronic, low-grade inflammatory response; immune dysregulation and a defective immune response; the reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal and metabolic dysregulation; mitochondrial dysfunction; and autonomic nervous system dysfunction. There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response, although this effort may be hampered by challenges pertaining to the non-specific nature of the majority of clinical manifestations in the LC spectrum, small sample sizes of relevant studies and other methodological issues. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation, including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, the reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; and cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers, their link to etiopathogenetic mechanisms or the diagnostic work-up in a comprehensive manner. Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on pathogenetic mechanisms and the main LC symptomatology in the frame of the epidemiological and clinical aspects of the syndrome and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Acute-Phase Proteins , Biomarkers , Inflammation
5.
Clin Neurophysiol ; 163: 209-222, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772083

ABSTRACT

Fibromyalgia Syndrome (FMS), Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long COVID (LC) are similar multisymptom clinical syndromes but with difference in dominant symptoms in each individual. There is existing and emerging literature on possible functional alterations of the central nervous system in these conditions. This review aims to synthesise and appraise the literature on resting-state quantitative EEG (qEEG) in FMS, ME/CFS and LC, drawing on previous research on FMS and ME/CFS to help understand neuropathophysiology of the new condition LC. A systematic search of MEDLINE, Embase, CINHAL, PsycINFO and Web of Science databases for articles published between December 1994 and September 2023 was performed. Out of the initial 2510 studies identified, 17 articles were retrieved that met all the predetermined selection criteria, particularly of assessing qEEG changes in one of the three conditions compared to healthy controls. All studies scored moderate to high quality on the Newcastle-Ottawa scale. There was a general trend for decreased low-frequency EEG band activity (delta, theta, and alpha) and increased high-frequency EEG beta activity in FMS, differing to that found in ME/CFS. The limited LC studies included in this review focused mainly on cognitive impairments and showed mixed findings not consistent with patterns observed in FMS and ME/CFS. Our findings suggest different patterns of qEEG brainwave activity in FMS and ME/CFS. Further research is required to explore whether there are phenotypes within LC that have EEG signatures similar to FMS or ME/CFS. This could inform identification of reliable diagnostic markers and possible targets for neuromodulation therapies tailored to each clinical syndrome.


Subject(s)
COVID-19 , Electroencephalography , Fatigue Syndrome, Chronic , Fibromyalgia , Humans , Fatigue Syndrome, Chronic/physiopathology , Fatigue Syndrome, Chronic/diagnosis , Fibromyalgia/physiopathology , Fibromyalgia/diagnosis , COVID-19/physiopathology , COVID-19/complications , Electroencephalography/methods , Brain/physiopathology
6.
EBioMedicine ; 91: 104552, 2023 May.
Article in English | MEDLINE | ID: mdl-37037165

ABSTRACT

BACKGROUND: Long-COVID (LC) encompasses diverse symptoms lasting months after the initial SARS-CoV-2 infection. Symptoms can be debilitating and affect the quality of life of individuals with LC and their families. Although the symptoms of LC are well described, the aetiology of LC remains unclear, and consequently, patients may be underdiagnosed. Identification of LC specific biomarkers is therefore paramount for the diagnosis and clinical management of the syndrome. This scoping review describes the molecular and cellular biomarkers that have been identified to date with potential use for diagnosis or prediction of LC. METHODS: This review was conducted using the Joanna Briggs Institute (JBI) Methodology for Scoping Reviews. A search was executed in the MEDLINE and EMBASE databases, as well as in the grey literature for original studies, published until October 5th, 2022, reporting biomarkers identified in participants with LC symptoms (from all ages, ethnicities, and sex), with a previous infection of SARS-CoV-2. Non-English studies, cross-sectional studies, studies without a control group, and pre-prints were excluded. Two reviewers independently evaluated the studies, extracted population data and associated biomarkers. FINDINGS: 23 cohort studies were identified, involving 2163 LC patients [median age 51.8 years, predominantly female sex (61.10%), white (75%), and non-vaccinated (99%)]. A total of 239 candidate biomarkers were identified, consisting mainly of immune cells, immunoglobulins, cytokines, and other plasma proteins. 19 of the 239 candidate biomarkers identified were evaluated by the authors, by means of receiver operating characteristic (ROC) curves. INTERPRETATION: Diverse cellular and molecular biomarkers for LC have been proposed. Validation of candidate biomarkers in independent samples should be prioritized. Modest reported performance (particularly in larger studies) suggests LC may encompass many distinct aetiologies, which should be explored e.g., by stratifying by symptom clusters and/or sex. FUNDING: Dr. Tebbutt has received funding from the Canadian Institutes of Health Research (177747) to conduct this work. The funding source was not involved in this scoping review, or in the decision to submit this manuscript for publication.


Subject(s)
COVID-19 , Humans , Female , Middle Aged , Male , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Cross-Sectional Studies , Quality of Life , Canada , Biomarkers
7.
Autoimmun Rev ; 22(11): 103452, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742748

ABSTRACT

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a devastating disease affecting millions of people worldwide. Due to the 2019 pandemic of coronavirus disease (COVID-19), we are facing a significant increase of ME/CFS prevalence. On May 11th to 12th, 2023, the second international ME/CFS conference of the Charité Fatigue Center was held in Berlin, Germany, focusing on pathomechanisms, diagnosis, and treatment. During the two-day conference, more than 100 researchers from various research fields met on-site and over 700 attendees participated online to discuss the state of the art and novel findings in this field. Key topics from the conference included: the role of the immune system, dysfunction of endothelial and autonomic nervous system, and viral reactivation. Furthermore, there were presentations on innovative diagnostic measures and assessments for this complex disease, cutting-edge treatment approaches, and clinical studies. Despite the increased public attention due to the COVID-19 pandemic, the subsequent rise of Long COVID-19 cases, and the rise of funding opportunities to unravel the pathomechanisms underlying ME/CFS, this severe disease remains highly underresearched. Future adequately funded research efforts are needed to further explore the disease etiology and to identify diagnostic markers and targeted therapies.


Subject(s)
Fatigue Syndrome, Chronic , Humans , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/epidemiology , Fatigue Syndrome, Chronic/therapy , Pandemics , Post-Acute COVID-19 Syndrome , Prevalence
8.
EClinicalMedicine ; 51: 101549, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35875815

ABSTRACT

Background: Post-COVID syndrome (PCS) is an important sequela of COVID-19, characterised by symptom persistence for >3 months, post-acute symptom development, and worsening of pre-existing comorbidities. The causes and public health impact of PCS are still unclear, not least for the lack of efficient means to assess the presence and severity of PCS. Methods: COVIDOM is a population-based cohort study of polymerase chain reaction (PCR) confirmed cases of SARS-CoV-2 infection, recruited through public health authorities in three German regions (Kiel, Berlin, Würzburg) between November 15, 2020 and September 29, 2021. Main inclusion criteria were (i) a PCR confirmed SARS-CoV-2 infection and (ii) a period of at least 6 months between the infection and the visit to the COVIDOM study site. Other inclusion criteria were written informed consent and age ≥18 years. Key exclusion criterion was an acute reinfection with SARS-CoV-2. Study site visits included standardised interviews, in-depth examination, and biomaterial procurement. In sub-cohort Kiel-I, a PCS (severity) score was developed based upon 12 long-term symptom complexes. Two validation sub-cohorts (Würzburg/Berlin, Kiel-II) were used for PCS score replication and identification of clinically meaningful predictors. This study is registered at clinicaltrials.gov (NCT04679584) and at the German Registry for Clinical Studies (DRKS, DRKS00023742). Findings: In Kiel-I (n = 667, 57% women), 90% of participants had received outpatient treatment for acute COVID-19. Neurological ailments (61·5%), fatigue (57·1%), and sleep disturbance (57·0%) were the most frequent persisting symptoms at 6-12 months after infection. Across sub-cohorts (Würzburg/Berlin, n = 316, 52% women; Kiel-II, n = 459, 56% women), higher PCS scores were associated with lower health-related quality of life (EQ-5D-5L-VAS/-index: r = -0·54/ -0·56, all p < 0·0001). Severe, moderate, and mild/no PCS according to the individual participant's PCS score occurred in 18·8%, 48·2%, and 32·9%, respectively, of the Kiel-I sub-cohort. In both validation sub-cohorts, statistically significant predictors of the PCS score included the intensity of acute phase symptoms and the level of personal resilience. Interpretation: PCS severity can be quantified by an easy-to-use symptom-based score reflecting acute phase disease burden and general psychological predisposition. The PCS score thus holds promise to facilitate the clinical diagnosis of PCS, scientific studies of its natural course, and the development of therapeutic interventions. Funding: The COVIDOM study is funded by the Network University Medicine (NUM) as part of the National Pandemic Cohort Network (NAPKON).

SELECTION OF CITATIONS
SEARCH DETAIL