Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891803

ABSTRACT

Rabies virus (RABV) is a neurotropic virus that causes fatal neurological disease, raising serious public health issues and attracting extensive attention in society. To elucidate the molecular mechanism of RABV-induced neuronal damage, we used hematoxylin-eosin staining, transmission electron microscopy, transcriptomics analysis, and immune response factor testing to investigate RABV-infected neurons. We successfully isolated the neurons from murine brains. The specificity of the isolated neurons was identified by a monoclonal antibody, and the viability of the neurons was 83.53-95.0%. We confirmed that RABV infection induced serious damage to the neurons according to histochemistry and transmission electron microscope (TEM) scanning. In addition, the transcriptomics analysis suggested that multiple genes related to the pyroptosis pathway were significantly upregulated, including gasdermin D (Gsdmd), Nlrp3, caspase-1, and IL-1ß, as well as the chemokine genes Ccl2, Ccl3, Ccl4, Ccl5, Ccl7, Ccl12, and Cxcl10. We next verified this finding in the brains of mice infected with the rRC-HL, GX074, and challenge virus standard strain-24 (CVS-24) strains of RABV. Importantly, we found that the expression level of the Gsdmd protein was significantly upregulated in the neurons infected with different RABV strains and ranged from 691.1 to 5764.96 pg/mL, while the basal level of mock-infected neurons was less than 100 pg/mL. Taken together, our findings suggest that Gsdmd-induced pyroptosis is involved in the neuron damage caused by RABV infection.


Subject(s)
Neurons , Phosphate-Binding Proteins , Pyroptosis , Rabies virus , Rabies , Animals , Neurons/virology , Neurons/metabolism , Neurons/pathology , Rabies virus/pathogenicity , Rabies virus/physiology , Rabies/virology , Rabies/pathology , Rabies/metabolism , Mice , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Brain/virology , Brain/pathology , Brain/metabolism , Gasdermins
2.
Mol Ecol ; 32(18): 5140-5155, 2023 09.
Article in English | MEDLINE | ID: mdl-37540190

ABSTRACT

In epidemiology, endemicity characterizes sustained pathogen circulation in a geographical area, which involves a circulation that is not being maintained by external introductions. Because it could potentially shape the design of public health interventions, there is an interest in fully uncovering the endemic pattern of a disease. Here, we use a phylogeographic approach to investigate the endemic signature of rabies virus (RABV) circulation in Cambodia. Cambodia is located in one of the most affected regions by rabies in the world, but RABV circulation between and within Southeast Asian countries remains understudied. Our analyses are based on a new comprehensive data set of 199 RABV genomes collected between 2014 and 2017 as well as previously published Southeast Asian RABV sequences. We show that most Cambodian sequences belong to a distinct clade that has been circulating almost exclusively in Cambodia. Our results thus point towards rabies circulation in Cambodia that does not rely on external introductions. We further characterize within-Cambodia RABV circulation by estimating lineage dispersal metrics that appear to be similar to other settings, and by performing landscape phylogeographic analyses to investigate environmental factors impacting the dispersal dynamic of viral lineages. The latter analyses do not lead to the identification of environmental variables that would be associated with the heterogeneity of viral lineage dispersal velocities, which calls for a better understanding of local dog ecology and further investigations of the potential drivers of RABV spread in the region. Overall, our study illustrates how phylogeographic investigations can be performed to assess and characterize viral endemicity in a context of relatively limited data.


Subject(s)
Rabies virus , Rabies , Animals , Dogs , Rabies/epidemiology , Rabies/veterinary , Cambodia/epidemiology , Rabies virus/genetics , Phylogeography , Sequence Analysis, DNA , Phylogeny
3.
Microb Pathog ; 185: 106425, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37923181

ABSTRACT

Rabies, caused by the rabies virus (RABV), is the most fatal zoonotic disease. It is a neglected tropical disease which remains a major public health problem, causing approximately 59,000 deaths worldwide annually. Despite the existence of effective vaccines, the high incidence of human rabies is mainly linked to tedious vaccine immunisation procedures and the overall high cost of post-exposure prophylaxis. Therefore, it is necessary to develop an effective vaccine that has a simple procedure and is affordable to prevent rabies infection in humans. RABV belongs to the genus Lyssavirus and family Rhabdoviridae. Previous phylogenetic analyses have identified seven major clades of RABV in China (China I-VII), confirmed by analysing nucleotide sequences from both the G and N proteins. This study evaluated the immunogenicity and protective capacity of SYS6008, an mRNA rabies vaccine expressing rabies virus glycoprotein, in mice and cynomolgus macaques. We demonstrated that SYS6008 induced sufficient levels of rabies neutralising antibody (RVNA) in mice. In addition, SYS6008 elicited strong and durable RVNA responses in vaccinated cynomolgus macaques. In the pre-exposure prophylaxis murine model, one or two injections of SYS6008 at 1/10 or 1/30 of dosage provided protection against a challenge with a 30-fold LD50 of rabies virus (China I and II clades). We also demonstrated that in the post-exposure prophylaxis murine model, which was exposed to lethal rabies virus (China I-VII clades) before vaccination, one or two injections of SYS6008 at both 1/10 and 1/30 dosages provided better protection against rabies virus challenge than the immunization by five injections of commercial vaccines at the same dosage. In addition, we proved that SYS6008-induced RVNAs could neutralise RABV from the China I-VII clades. Finally, 1/10 of the dosage of SYS6008 was able to stimulate significant RABV-G specificity in the T cell response. Furthermore, we found that SYS6008 induced high cellular immunity, including RABV-G-specific T cell responses and memory B cells. Our results imply that the SYS6008 rabies vaccine, with a much simpler vaccination procedure, better immunogenicity, and enhanced protective capacity, could be a candidate vaccine for post-exposure prophylaxis of rabies infections.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Humans , Animals , Mice , Rabies/prevention & control , Rabies Vaccines/genetics , Rabies virus/genetics , Post-Exposure Prophylaxis/methods , Disease Models, Animal , Phylogeny , Antibodies, Viral , Macaca
4.
Adv Exp Med Biol ; 1407: 191-208, 2023.
Article in English | MEDLINE | ID: mdl-36920698

ABSTRACT

Lyssaviruses, which belong to the family Rhabdoviridae, are enveloped and bullet-shaped ssRNA viruses with genetic diversity. All members of Lyssavirus genus are known to infect warm-blooded animals and cause the fatal disease rabies. The rabies virus (RABV) in lyssavirus is the major pathogen to cause fatal rabies. The pseudotyped RABV is constructed to study the biological functions of G protein and evaluation of anti-RABV products including vaccine-induced antisera, rabies immunoglobulins (RIG), neutralizing mAbs, and other antiviral inhibitors. In this chapter, we focus on RABV as a representative and describe the construction of RABV G protein bearing pseudotyped virus and its applications. Other non-RABV lyssaviruses are also included.


Subject(s)
Lyssavirus , Rabies Vaccines , Rabies virus , Rabies , Rhabdoviridae Infections , Animals , Lyssavirus/genetics , Viral Pseudotyping , Rabies virus/genetics , Rabies Vaccines/genetics , Rabies Vaccines/metabolism
5.
Virol J ; 19(1): 184, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371169

ABSTRACT

Rabies is a lethal zoonotic disease that is mainly caused by the rabies virus (RABV). Although effective vaccines have long existed, current vaccines take both time and cost to produce. Messenger RNA (mRNA) technology is an emergent vaccine platform that supports rapid vaccine development on a large scale. Here, an optimized mRNA vaccine construct (LVRNA001) expressing rabies virus glycoprotein (RABV-G) was developed in vitro and then evaluated in vivo for its immunogenicity and protective capacity in mice and dogs. LVRNA001 induced neutralizing antibody production and a strong Th1 cellular immune response in mice. In both mice and dogs, LVRNA001 provided protection against challenge with 50-fold lethal dose 50 (LD50) of RABV. With regards to protective efficiency, an extended dosing interval (14 days) induced greater antibody production than 3- or 7-day intervals in mice. Finally, post-exposure immunization against RABV was performed to evaluate the survival rates of dogs receiving two 25 µg doses of LVRNA001 vs. five doses of inactivated vaccine over the course of three months. Survival rate in the LVRNA001 group was 100%, whereas survival rate in the inactivated vaccine control group was only 33.33%. In conclusion, these results demonstrated that LVRNA001 induced strong protective immune responses in mice and dogs, which provides a new and promising prophylactic strategy for rabies.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Dogs , Mice , Animals , Rabies Vaccines/genetics , RNA, Messenger , Antibodies, Viral , Rabies virus/genetics , Vaccines, Inactivated , Antibody Formation , mRNA Vaccines
6.
J Virol ; 94(22)2020 10 27.
Article in English | MEDLINE | ID: mdl-32847861

ABSTRACT

Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales mimic RNA synthesis of their eukaryotic counterparts by utilizing multifunctional RNA polymerases to replicate entire viral genomes and transcribe viral mRNAs from individual viral genes as well as synthesize 5' methylated cap and 3' poly(A) tail of the transcribed viral mRNAs. The catalytic subunit large protein (L) and cofactor phosphoprotein (P) constitute the Mononegavirales polymerases. In this review, we discuss the shared and unique features of RNA synthesis, the monomeric multifunctional enzyme L, and the oligomeric multimodular adapter P of Mononegavirales We outline the structural analyses of the Mononegavirales polymerases since the first structure of the vesicular stomatitis virus (VSV) L protein determined in 2015 and highlight multiple high-resolution cryo-electron microscopy (cryo-EM) structures of the polymerases of Mononegavirales, namely, VSV, RABV, HRSV, human metapneumovirus (HMPV), and human parainfluenza virus (HPIV), that have been reported in recent months (2019 to 2020). We compare the structures of those polymerases grouped by virus family, illustrate the similarities and differences among those polymerases, and reveal the potential RNA synthesis mechanisms and models of highly conserved Mononegavirales We conclude by the discussion of remaining questions, evolutionary perspectives, and future directions.


Subject(s)
Mononegavirales/enzymology , Mononegavirales/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Animals , Cryoelectron Microscopy , Humans , Metapneumovirus , Models, Molecular , Mononegavirales/classification , Protein Conformation , RNA, Messenger , RNA, Viral/genetics , Rabies virus , Respiratory Syncytial Virus, Human , Vesicular stomatitis Indiana virus/enzymology , Vesicular stomatitis Indiana virus/genetics , Virus Replication
7.
J Virol ; 93(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31243136

ABSTRACT

Our previous study showed that pentagalloylglucose (PGG), a naturally occurring hydrolyzable phenolic tannin, possesses significant anti-rabies virus (RABV) activity. In BHK-21 cells, RABV induced the overactivation of signal transducer and activator of transcription 3 (STAT3) by suppressing the expression of suppressor of cytokine signaling 3 (SOCS3). Inhibition of STAT3 by niclosamide, small interfering RNA, or exogenous expression of SOCS3 all significantly suppressed the replication of RABV. Additionally, RABV-induced upregulation of microRNA 455-5p (miR-455-5p) downregulated SOCS3 by directly binding to the 3' untranslated region (UTR) of SOCS3. Importantly, PGG effectively reversed the expression of miR-455-5p and its following SOCS3/STAT3 signaling pathway. Finally, activated STAT3 elicited the expression of interleukin-6 (IL-6), thereby contributing to RABV-associated encephalomyelitis; however, PGG restored the level of IL-6 in vitro and in vivo in a SOCS3/STAT3-dependent manner. Altogether, these data identify a new miR-455-5p/SOCS3/STAT3 signaling pathway that contributes to viral replication and IL-6 production in RABV-infected cells, with PGG exerting its antiviral effect by inhibiting the production of miR-455-5p and the activation of STAT3.IMPORTANCE Rabies virus causes lethal encephalitis in mammals and poses a serious public health threat in many parts of the world. Numerous strategies have been explored to combat rabies; however, their efficacy has always been unsatisfactory. We previously reported a new drug, PGG, which possesses a potent inhibitory activity on RABV replication. Herein, we describe the underlying mechanisms by which PGG exerts its anti-RABV activity. Our results show that RABV induces overactivation of STAT3 in BHK-21 cells, which facilitates viral replication. Importantly, PGG effectively inhibits the activity of STAT3 by disrupting the expression of miR-455-5p and increases the level of SOCS3 by directly targeting the 3' UTR of SOCS3. Furthermore, the downregulated STAT3 inhibits the production of IL-6, thereby contributing to a reduction in the inflammatory response in vivo Our study indicates that PGG effectively inhibits the replication of RABV by the miR-455-5p/SOCS3/STAT3/IL-6-dependent pathway.


Subject(s)
Hydrolyzable Tannins/pharmacology , Rabies virus/drug effects , Virus Replication/drug effects , Animals , Cell Line , Cricetinae , Interleukin-6/metabolism , MicroRNAs/drug effects , MicroRNAs/genetics , Rabies/virology , Rabies virus/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Suppressor of Cytokine Signaling 3 Protein/metabolism
8.
Virus Genes ; 56(3): 361-368, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32236772

ABSTRACT

Rabies is the most critical zoonotic disease in Iran, which imposes many extra costs on health care system in each country. The present study aimed to determine the molecular characteristics of the wild circulating strains of the rabies virus (RABV) collected in Iran during 2015-2017. Rabies-suspected samples were collected from different regions of Iran and identified for RABV antigen confirmation using fluorescent antibody tests. Polymerase chain reaction (PCR) was performed on positive samples and gene sequencing was done on rabies nucleoprotein and glycoprotein genes to determine the rabies molecular characteristics. Accordingly, nine street RABVes were isolated. Then, N (802 bp) and G (735 bp) genes were amplified with specific primers using PCR. The sequence of nine strains was determined and compared with another 50 close to them, and the phylogenetic tree was plotted using neighbor-joining method by Mega 7 software. The molecular characteristic results indicated that all new strains belong to RABV wild species. As a result, the most prevalent strains of RABV in northwest, west, center, and south of Iran were identified. The present study may provide a better insight into the identification of all RABV strains, and understanding the evolutionary nature of RABV and how its hosts change in the world over the centuries.


Subject(s)
Phylogeny , RNA, Viral , Rabies virus/classification , Rabies virus/genetics , Rabies/epidemiology , Rabies/virology , History, 21st Century , Humans , Iran/epidemiology , Molecular Epidemiology , Phylogeography , Polymerase Chain Reaction , Sequence Analysis, DNA
9.
Virol J ; 16(1): 80, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31196105

ABSTRACT

BACKGROUND: Rabies virus (RABV), a member of Lyssavirus of Rhabdoviridae family, is a kind of negative-strand RNA virus. The zoonosis caused by RABV leads to high mortality in animals and humans. Though with the extensive investigation, the mechanisms of RABV entry into cells have not been well characterized. METHODS: Chemical inhibitors and RNA interference (RNAi) were used to analysis RABV internalization pathway. The expression level of viral N protein was examined by quantitative PCR and western blot, and the virus infection in the cells was visualized by fluorescence microscopy. RESULTS: We firstly examined the endocytosis pathway of the challenge virus standard (CVS) -11 strain in N2a cells. Chlorpromazine treatment and knockdown of clathrin heavy chain (CHC) significantly reduced viral entry, which proved clathrin was required. Meanwhile neither nystatin nor knocking down caveolin-1 (Cav1) in N2a cells had an effect on CVS-11 infection, suggesting that caveolae was independent for CVS-11 internalization. And when cholesterol of cell membrane was extracted by MßCD, viral infection was strongly impacted. Additionally by using the specific inhibitor dynasore and ammonium chloride, we verified that dynamin and a low-pH environment were crucial for RABV infection, which was confirmed by confocal microscopy. CONCLUSIONS: Our results demonstrated that CVS-11 entered N2a cells through a clathrin-mediated, cholesterol-, pH-, dynamin-required, and caveolae-independent endocytic pathway.


Subject(s)
Cholesterol/metabolism , Clathrin/metabolism , Dynamins/metabolism , Endocytosis , Rabies virus/physiology , Virus Internalization , Cell Line , Chlorpromazine/pharmacology , Hydrogen-Ion Concentration , Nucleocapsid Proteins/genetics , RNA Interference , Rabies virus/drug effects
10.
Mol Biol Evol ; 34(10): 2563-2571, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28651357

ABSTRACT

Rabies is an important zoonotic disease distributed worldwide. A key question in rabies epidemiology is the identification of factors that impact virus dispersion. Here we apply new analytical methods, based on phylogeographic reconstructions of viral lineage movement, to undertake a comparative evolutionary-epidemiological study of the spatial dynamics of rabies virus (RABV) epidemics in different hosts and habitats. We compiled RABV data sets from skunk, raccoon, bat and domestic dog populations in order to investigate the viral diffusivity of different RABV epidemics, and to detect and compare the environmental factors that impact the velocity of viral spread in continuous spatial landscapes. We build on a recently developed statistical framework that uses spatially- and temporally-referenced phylogenies. We estimate several spatial statistics of virus spread, which reveal a higher diffusivity of RABV in domestic dogs compared with RABV in other mammals. This finding is explained by subsequent analyses of environmental heterogeneity, which indicate that factors relating to human geography play a significant role in RABV dispersion in domestic dogs. More generally, our results suggest that human-related factors are important worldwide in explaining RABV dispersion in terrestrial host species. Our study shows that phylogenetically informed viral movements can be used to elucidate the factors that impact virus dispersal, opening new opportunities for a better understanding of the impact of host species and environmental conditions on the spatial dynamics of rapidly evolving populations.


Subject(s)
Phylogeography/methods , Rabies/epidemiology , Rabies/genetics , Animals , Biological Evolution , Dogs , Epidemics , Genes, Viral , Humans , Phylogeny , Rabies virus/pathogenicity , Zoonoses/genetics
11.
Int J Mol Sci ; 19(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110957

ABSTRACT

Rabies virus (RABV) and other lyssaviruses can cause rabies and rabies-like diseases, which are a persistent public health threat to humans and other mammals. Lyssaviruses exhibit distinct characteristics in terms of geographical distribution and host specificity, indicative of a long-standing diversification to adapt to the environment. However, the evolutionary diversity of lyssaviruses, in terms of codon usage, is still unclear. We found that RABV has the lowest codon usage bias among lyssaviruses strains, evidenced by its high mean effective number of codons (ENC) (53.84 ± 0.35). Moreover, natural selection is the driving force in shaping the codon usage pattern of these strains. In summary, our study sheds light on the codon usage patterns of lyssaviruses, which can aid in the development of control strategies and experimental research.


Subject(s)
Codon , Evolution, Molecular , Rabies virus/genetics , Selection, Genetic , Animals , Humans
12.
Zoonoses Public Health ; 71(5): 600-608, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38706119

ABSTRACT

BACKGROUND: Rabies virus (RABV) is the etiologic agent of rabies, a fatal brain disease in mammals. Rabies circulation has historically involved the dog has the main source of human rabies worldwide. Nevertheless, in Colombia, cats (Felis catus) have become a relevant species in the epidemiology of rabies. AIMS: To characterize rabies cases in humans in Colombia in the last three decades in the context of the epidemiology of the aggressor animal. MATERIALS AND METHODS: We conducted a retrospective longitudinal epidemiological study of human rabies caused by cats' aggression, collecting primary and secondary information. Variables considered included the demography of the patient, symptoms, information about the aggressor animal as the source of infection and the viral variant identified. RESULTS: We found that the distribution of rabies incidence over the years has been constant in Colombia. Nevertheless, between 2003 and 2012 a peak of cases occurred in rural Colombia where cats were the most frequent aggressor animal reported. Most cats involved in aggression were unvaccinated against rabies. Cat's clinical signs at the time of the report of the human cases included hypersalivation and changes in behaviour. Human patients were mostly children and female and the exposure primarily corresponded to bite and puncture lacerations in hands. The RABV lineage detected in most cases corresponded to variant 3, linked to the common vampire bat (Desmodus rotundus). The geographical presentation of cat borne RABV in humans occurred along the Andes mountains, epidemiologically known as the rabies red Andean corridor. DISCUSSION: By finding cats as the primary source of rabies spillover transmission in Colombia, this report highlights the importance of revising national rabies control and prevention protocol in countries in the Andes region. CONCLUSION: Our results demonstrate that rabies vaccination for outdoor cats needs to prioritize to reduce the number of rabies-related human deaths.


Subject(s)
Cat Diseases , Rabies virus , Rabies , Rabies/epidemiology , Rabies/veterinary , Animals , Cats , Humans , Colombia/epidemiology , Male , Female , Cat Diseases/epidemiology , Cat Diseases/virology , Retrospective Studies , Rabies virus/isolation & purification , Child , Adolescent , Adult , Child, Preschool , Bites and Stings/epidemiology , Young Adult , Middle Aged , Longitudinal Studies , Zoonoses/epidemiology , Incidence
13.
J Vet Res ; 68(2): 175-180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947152

ABSTRACT

Introduction: Rabies is endemic in Europe and red foxes are the vector and reservoir of the rabies virus (RABV). Based on classification established in the early 1990s, four variants of the rabies virus have been distinguished in Europe. Rabies broke out in January 2021 in the Mazowieckie voivodeship in central north-eastern Poland. The virus spread rapidly, reaching the Swietokrzyskie voivodeship in the central southern part and the Lubelskie voivodeship in the eastern part in the next months. Nine rabies cases were reported in the Podkarpackie voivodeship in south-eastern Poland between 2021 and 2023, mainly in red foxes but also in dogs and wildcat. The aim of the study was the identification of RABV variants in wildlife and domestic animals in Poland between 2021 and 2023. Material and Methods: The study involved 157 animal brains tested positive for rabies using a fluorescent antibody test. From 10% w/v brain homogenates, RNA was isolated and full-length RABV genomes were high-throughput sequenced with an RABV-enriched approach. Complete genomes of RABV isolates were phylogenetically analysed and the variants were estimated. Results: Molecular and phylogenetic studies revealed 147 (93.6%) of the RABV strains out of 157 which had rapidly spread in the wildlife of the Mazowieckie, Swietokrzyskie and Lubelskie voivodeships to be Central European strains. Nine RABVs (5.7%) detected in foxes, a wildcat and a dog in the Podkarpackie voivodeship were identified as North-Eastern European. A vaccine-induced rabies case was detected in a red fox in the Lubelskie voivodeship in May 2023. Conclusion: Central European and North-Eastern European RABVs were circulating in Poland between 2021 and 2023.

14.
Braz J Microbiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980651

ABSTRACT

With the successful control of rabies transmitted by dogs in Brazil, wild animals have played a relevant epidemiological role in the transmission of rabies virus (RABV). Bats, non-human primates and wild canines are the main wild animals that transmit RABV in the country. It is worth highlighting the possibility of synanthropic action of these species, when they become adapted to urban areas, causing infections in domestic animals and eventually in humans. This work aimed to evaluate the circulation of RABV in the Pedra Branca Forest, an Atlantic Forest area, located in the state of Rio de Janeiro, Southeast Brazil. Saliva and blood samples were obtained from 60 individuals of eight species of bats, captured with mist nets, and 13 individuals of callitrichid primates, captured with tomahawk traps. Saliva samples were subjected to Reverse Transcription Polymerase Chain Reaction (RT-PCR), targeting the RABV N gene, with all samples being negative. Blood samples of all animals were submitted to the Rapid Fluorescent Focus Inhibition Test (RFFIT) to detect neutralizing antibodies (Ab) for RABV. Six bat samples (8%) were seropositive for RABV with antibody titers greater than or equal to 0.1 IU/mL. The detection of Ab but not viral RNA indicates exposure rather than current RABV transmission in the analyzed populations. The results presented here reinforce the importance of serological studies in wildlife to access RABV circulation in a region.

15.
Vaccine ; 42(5): 1116-1121, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38262810

ABSTRACT

Rabies is a lethal zoonotic disease that kills approximately 60,000 people each year. As the sole virion-surface protein, the rabies virus glycoprotein (RABV-G) mediates its host-cell entry. RABV-G's pre-fusion conformation displays major known neutralizing antibody epitopes, which can be used as immunogen for prophylaxis. H270P targeted mutation can stabilize RABV-G in the pre-fusion conformation. Herein, we report the development of a highly promising rabies mRNA vaccine composed of H270P targeted mutation packaged in lipid nanoparticle (LNP), named LNP-mRNA-G-H270P. Humoral and cellular immunity of this vaccine were assessed in mice comparing to the unmodified LNP-mRNA-G and a commercially available inactivated vaccine using one-way analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test. The results show the titer of RABV-G-specific IgG and virus-neutralization antibody titers (VNTs) in LNP-mRNA-G-H270P group were significant higher than those in LNP-mRNA-G and inactivated vaccine groups. Likewise, IFN-γ-secreting splenocytes, level of IL-2 in the supernatant of spleen cells, as well as IFN-γ-producing CD4+ T cells in LNP-mRNA-G-H270P group were significant higher than those in the other two vaccine groups. Hence, these results demonstrated that targeting the H270P mutation in RABV-G through an mRNA-LNP vaccine platform represents a promising strategy for developing a more efficacious rabies vaccine.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Humans , Animals , Mice , Rabies Vaccines/genetics , mRNA Vaccines , Immunity, Humoral , RNA, Messenger , Antibodies, Viral , Glycoproteins , Vaccines, Inactivated
16.
Microbes Infect ; 26(4): 105321, 2024.
Article in English | MEDLINE | ID: mdl-38461968

ABSTRACT

Rabies virus (RABV) is a lethal neurotropic virus that causes 60,000 human deaths every year globally. RABV infection is characterized by the suppression of the interferon (IFN)-mediated antiviral response. However, molecular mechanisms leading to RABV sensing by RIG-I-like receptors (RLR) that initiates IFN signaling currently remain elusive. Here, we showed that RABV RNAs are primarily recognized by the RIG-I RLR, resulting in an IFN response in the infected cells, but this response varied according to the type of RABV used. Pathogenic RABV strain RNAs, Tha, were poorly detected in the cytosol by RIG-I and therefore caused a weak antiviral response. However, we revealed a strong IFN activity triggered by the attenuated RABV vaccine strain RNAs, SAD, mediated by RIG-I. We characterized two major 5' copy-back defective interfering (5'cb DI) genomes generated during SAD replication. Furthermore, we identified an interaction between 5'cb DI genomes, and RIG-I correlated with a high stimulation of the type I IFN signaling. This study indicates that wild-type RABV RNAs poorly activate the RIG-I pathway, while the presence of 5'cb DIs in the live-attenuated vaccine strain serves as an intrinsic adjuvant that strengthens its efficiency by enhancing RIG-I detection thus strongly stimulates the IFN response.


Subject(s)
DEAD Box Protein 58 , Rabies virus , Humans , Cell Line , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/immunology , Interferon Type I/metabolism , Interferon Type I/immunology , Rabies/immunology , Rabies/virology , Rabies Vaccines/immunology , Rabies virus/immunology , Rabies virus/genetics , Rabies virus/pathogenicity , Receptors, Immunologic/metabolism , RNA, Viral/genetics , Signal Transduction , Virus Replication
17.
Autophagy ; 20(8): 1723-1740, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38566321

ABSTRACT

Lyssaviruses are well-known worldwide and often cause fatal encephalitis. Previous studies have shown that autophagy is beneficial for the replication of rabies virus (RABV), the representative lyssavirus, but the detailed mechanism remains obscure. In this study, we showed that the rabies virus matrix protein (RABV-M) used its PPxY motif to interact with the E3 ubiquitin-protein ligase NEDD4. NEDD4 then recruited MAP1LC3/LC3 via its LC3-interacting region (LIR). Interestingly, after binding to the ubiquitinated RABV-M, NEDD4 could bind more LC3 and enhance autophagosome accumulation, while NEDD4 knockdown significantly reduced M-induced autophagosome accumulation. Further study revealed that RABV-M prevented autophagosome-lysosome fusion and facilitated viral budding. Inhibition of RABV-M-induced autophagosome accumulation reduced the production of extracellular virus-like particles. We also found that M proteins of most lyssaviruses share the same mechanism to accumulate autophagosome by hijacking NEDD4. Collectively, this study revealed a novel strategy for lyssaviruses to achieve efficient viral replication by exploiting the host autophagy system.Abbreviations: ABLV: Australian bat lyssavirus; ATG5: autophagy related 5; Baf A1:bafilomycin A1;co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EBLV:European bat lyssavirus; GFP: green fluorescent protein; GST:glutathione S-transferase; hpi: hours post-infection; hpt: hourspost-transfection; LIR: LC3-interactingregion;MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mCherry:red fluorescent protein; MOI: multiplicity of infection; NC: negativecontrol; MVB: multivesicular body; NEDD4: neural precursorcell-expressed developmentally down-regulated 4; RABV: rabies virus;SQSTM1/p62: sequestosome 1; VLP: virus-like particle; VPS4B: vacuolarprotein sorting 4B; TEM: transmission electron microscopy; WB:western blotting; WT: wild-type; µm: micrometer; µM: micromole.


Subject(s)
Autophagosomes , Nedd4 Ubiquitin Protein Ligases , Viral Matrix Proteins , Nedd4 Ubiquitin Protein Ligases/metabolism , Autophagosomes/metabolism , Humans , Viral Matrix Proteins/metabolism , Virus Release/physiology , Autophagy/physiology , Amino Acid Motifs , Animals , HEK293 Cells , Microtubule-Associated Proteins/metabolism , Protein Binding , Lysosomes/metabolism , Virus Replication/physiology , Ubiquitination
18.
Mol Phylogenet Evol ; 69(3): 687-93, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23872529

ABSTRACT

The genome of Irkut virus, isolate IRKV-THChina12, the first non-rabies lyssavirus from China (of bat origin), has been completely sequenced. In general, coding and non-coding regions of this viral genome are similar to those of other lyssaviruses. However, alignment of the deduced amino acid sequences of the structural proteins of IRKV-THChina12 with those of other lyssavirus representatives revealed significant variability between viral species. The nucleoprotein and matrix protein were found to be the most conserved, followed by the large protein, glycoprotein and phosphoprotein. Differences in the antigenic sites in glycoprotein may result in only partial protection of the available rabies biologics against Irkut virus, which is of particular concern for pre- and post-exposure rabies prophylaxis.


Subject(s)
Genome, Viral , Lyssavirus/genetics , Phylogeny , Amino Acid Sequence , Animals , China , Chiroptera/virology , Nucleoproteins/genetics , Sequence Alignment , Sequence Analysis, DNA , Viral Matrix Proteins/genetics
19.
Vet Microbiol ; 284: 109823, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37392666

ABSTRACT

Rabies, which caused by rabies virus (RABV), is a zoonotic and life-threatening disease with 100% mortality, and there is no effective treatment thus far due to the unclear pathogenesis and less of treatment targets. Interferon-induced transmembrane protein 3 (IFITM3) has recently been identified as an important anti-viral host effector induced by type I interferon. However, the role of IFITM3 in RABV infection has not been elucidated. In this study, we demonstrated that IFITM3 is a crucial restriction factor for RABV, the viral-induced IFITM3 significantly inhibited RABV replication, while knockdown of IFITM3 had the opposite effect. We then identified that IFNß induces the upregulation of IFITM3 in the absence or presence of RABV infection, meanwhile, IFITM3 positively regulates RABV-triggered production of IFNß in a feedback manner. In-depth research we found that IFITM3 not only inhibits the virus absorb and entry, but also inhibits viral replication through mTORC1-dependent autophagy. All these findings broaden our understanding of IFITM3 function and uncover a novel mechanism against RABV infection.


Subject(s)
Interferon Type I , Rabies virus , Rabies , Animals , Rabies/veterinary , Virus Internalization , Virus Replication , Interferon Type I/metabolism , Autophagy
20.
Virol Sin ; 38(2): 244-256, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36587795

ABSTRACT

Many studies suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect various animals and transmit among animals, and even to humans, posing a threat to humans and animals. There is an urgent need to develop inexpensive and efficient animal vaccines to prevent and control coronavirus disease 2019 (COVID-19) in animals. Rabies virus (RABV) is another important zoonotic pathogen that infects almost all warm-blooded animals and poses a great public health threat. The present study constructed two recombinant chimeric viruses expressing the S1 and RBD proteins of the SARS-CoV-2 Wuhan01 strain based on a reverse genetic system of the RABV SRV9 strain and evaluated their immunogenicity in mice, cats and dogs. The results showed that both inactivated recombinant viruses induced durable neutralizing antibodies against SARS-CoV-2 and RABV and a strong cellular immune response in mice. Notably, inactivated SRV-nCoV-RBD induced earlier antibody production than SRV-nCoV-S1, which was maintained at high levels for longer periods. Inactivated SRV-nCoV-RBD induced neutralizing antibodies against both SARS-CoV-2 and RABV in cats and dogs, with a relatively broad-spectrum cross-neutralization capability against the SARS-CoV-2 pseudoviruses including Alpha, Beta, Gamma, Delta, and Omicron, showing potential to be used as a safe bivalent vaccine candidate against COVID-19 and rabies in animals.


Subject(s)
COVID-19 , Rabies Vaccines , Rabies virus , Rabies , Humans , Animals , Mice , Cats , Dogs , Rabies virus/genetics , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Immunity, Cellular , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL