Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Cell ; 84(12): 2353-2367.e5, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38834066

ABSTRACT

CRISPR-associated transposons (CASTs) are mobile genetic elements that co-opt CRISPR-Cas systems for RNA-guided DNA transposition. CASTs integrate large DNA cargos into the attachment (att) site independently of homology-directed repair and thus hold promise for eukaryotic genome engineering. However, the functional diversity and complexity of CASTs hinder an understanding of their mechanisms. Here, we present the high-resolution cryoelectron microscopy (cryo-EM) structure of the reconstituted ∼1 MDa post-transposition complex of the type V-K CAST, together with different assembly intermediates and diverse TnsC filament lengths, thus enabling the recapitulation of the integration complex formation. The results of mutagenesis experiments probing the roles of specific residues and TnsB-binding sites show that transposition activity can be enhanced and suggest that the distance between the PAM and att sites is determined by the lengths of the TnsB C terminus and the TnsC filament. This singular model of RNA-guided transposition provides a foundation for repurposing the system for genome-editing applications.


Subject(s)
CRISPR-Cas Systems , Cryoelectron Microscopy , DNA Transposable Elements , DNA Transposable Elements/genetics , Binding Sites , Gene Editing/methods , Models, Molecular , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Protein Conformation , Nucleic Acid Conformation
2.
Mol Cell ; 82(3): 616-628.e5, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051352

ABSTRACT

Canonical CRISPR-Cas systems utilize RNA-guided nucleases for targeted cleavage of foreign nucleic acids, whereas some nuclease-deficient CRISPR-Cas complexes have been repurposed to direct the insertion of Tn7-like transposons. Here, we established a bioinformatic and experimental pipeline to comprehensively explore the diversity of Type I-F CRISPR-associated transposons. We report DNA integration for 20 systems and identify a highly active subset that exhibits complete orthogonality in transposon DNA mobilization. We reveal the modular nature of CRISPR-associated transposons by exploring the horizontal acquisition of targeting modules and by characterizing a system that encodes both a programmable, RNA-dependent pathway, and a fixed, RNA-independent pathway. Finally, we analyzed transposon-encoded cargo genes and found the striking presence of anti-phage defense systems, suggesting a role in transmitting innate immunity between bacteria. Collectively, this study substantially advances our biological understanding of CRISPR-associated transposon function and expands the suite of RNA-guided transposases for programmable, large-scale genome engineering.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Transposable Elements/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Evolution, Molecular , Transposases/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Escherichia coli/immunology , Escherichia coli/metabolism , Gene Editing , Gene Expression Regulation, Bacterial , Genetic Variation , Immunity, Innate , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Transposases/metabolism
3.
Int Microbiol ; 24(4): 473-498, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34487299

ABSTRACT

A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.


Subject(s)
Archaea , CRISPR-Cas Systems , Archaea/genetics , Bacteria/genetics , Biology
4.
ACS Synth Biol ; 13(3): 901-912, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38445989

ABSTRACT

In genome engineering, the integration of incoming DNA has been dependent on enzymes produced by dividing cells, which has been a bottleneck toward increasing DNA insertion frequencies and accuracy. Recently, RNA-guided transposition with CRISPR-associated transposase (CAST) was reported as highly effective and specific in Escherichia coli. Here, we developed Golden Gate vectors to test CAST in filamentous cyanobacteria and to show that it is effective in Anabaena sp. strain PCC 7120. The comparatively large plasmids containing CAST and the engineered transposon were successfully transferred into Anabaena via conjugation using either suicide or replicative plasmids. Single guide (sg) RNA encoding the leading but not the reverse complement strand of the target were effective with the protospacer-associated motif (PAM) sequence included in the sgRNA. In four out of six cases analyzed over two distinct target loci, the insertion site was exactly 63 bases after the PAM. CAST on a replicating plasmid was toxic, which could be used to cure the plasmid. In all six cases analyzed, only the transposon cargo defined by the sequence ranging from left and right elements was inserted at the target loci; therefore, RNA-guided transposition resulted from cut and paste. No endogenous transposons were remobilized by exposure to CAST enzymes. This work is foundational for genome editing by RNA-guided transposition in filamentous cyanobacteria, whether in culture or in complex communities.


Subject(s)
Anabaena , Cyanobacteria , Humans , RNA, Guide, CRISPR-Cas Systems , RNA , Plasmids/genetics , Anabaena/genetics , Cyanobacteria/genetics , DNA , Escherichia coli/genetics , DNA Transposable Elements/genetics
5.
Front Genet ; 14: 1290146, 2023.
Article in English | MEDLINE | ID: mdl-38098473

ABSTRACT

It has been 70 years since Barbara McClintock discovered transposable elements (TE), and the mechanistic studies and functional applications of transposable elements have been at the forefront of life science research. As an essential part of the genome, TEs have been discovered in most species of prokaryotes and eukaryotes, and the relative proportion of the total genetic sequence they comprise gradually increases with the expansion of the genome. In humans, TEs account for about 40% of the genome and are deeply involved in gene regulation, chromosome structure maintenance, inflammatory response, and the etiology of genetic and non-genetic diseases. In-depth functional studies of TEs in mammalian cells and the human body have led to a greater understanding of these fundamental biological processes. At the same time, as a potent mutagen and efficient genome editing tool, TEs have been transformed into biological tools critical for developing new techniques. By controlling the random insertion of TEs into the genome to change the phenotype in cells and model organisms, critical proteins of many diseases have been systematically identified. Exploiting the TE's highly efficient in vitro insertion activity has driven the development of cutting-edge sequencing technologies. Recently, a new technology combining CRISPR with TEs was reported, which provides a novel targeted insertion system to both academia and industry. We suggest that interrogating biological processes that generally depend on the actions of TEs with TEs-derived genetic tools is a very efficient strategy. For example, excessive activation of TEs is an essential factor in the occurrence of cancer in humans. As potent mutagens, TEs have also been used to unravel the key regulatory elements and mechanisms of carcinogenesis. Through this review, we aim to effectively combine the traditional views of TEs with recent research progress, systematically link the mechanistic discoveries of TEs with the technological developments of TE-based tools, and provide a comprehensive approach and understanding for researchers in different fields.

SELECTION OF CITATIONS
SEARCH DETAIL