Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Neurosci Res ; 100(1): 251-264, 2022 01.
Article in English | MEDLINE | ID: mdl-34075613

ABSTRACT

Opioids are potent analgesics, but their pain-relieving effects diminish with repeated use. The reduction in analgesic potency is a hallmark of opioid analgesic tolerance, which hampers opioid pain therapy. In the central nervous system, opioid analgesia is critically modulated by adenosine, a purine nucleoside implicated in the beneficial and detrimental actions of opioid medications. Here, we focus on the A3 adenosine receptor (A3 AR) in opioid analgesic tolerance. Intrathecal administration of the A3 AR agonist MRS5698 with daily systemic morphine in male rats attenuated the reduction in morphine antinociception over 7 days. In rats with established morphine tolerance, intrathecal MRS5698 partially restored the antinociceptive effects of morphine. However, when MRS5698 was discontinued, these animals displayed a reduced antinociceptive response to morphine. Our results suggest that MRS5698 acutely and transiently potentiates morphine antinociception in tolerant rats. By contrast, in morphine-naïve rats MRS5698 treatment did not impact thermal nociceptive threshold or affect antinociceptive response to a single injection of morphine. Furthermore, we found that morphine-induced adenosine release in cerebrospinal fluid was blunted in tolerant animals, but total spinal A3 AR expression was not affected. Collectively, our findings indicate that spinal A3 AR activation acutely potentiates morphine antinociception in the opioid tolerant state.


Subject(s)
Analgesics, Opioid , Morphine , Adenosine/metabolism , Adenosine/pharmacology , Analgesics, Opioid/pharmacology , Animals , Drug Tolerance , Injections, Spinal , Male , Morphine/pharmacology , Rats , Receptors, Purinergic P1/metabolism , Spinal Cord/metabolism
2.
J Neurosci Res ; 100(6): 1359-1369, 2022 06.
Article in English | MEDLINE | ID: mdl-35316547

ABSTRACT

Interleukin-18 (IL-18), a pro-inflammatory cytokine, is thought to be associated with inflammation in many neurological diseases such as ischemic stroke and poststroke depression, but the role of IL-18 in inflammatory injury after intracerebral hemorrhage (ICH) remains unclear. In this study, we established the ICH model in male mice and found that IL-18 expression including protein and mRNA levels was significantly increased in brain tissues after ICH. Meanwhile, exogenous IL-18 exacerbated cerebral hematoma and neurological deficits following ICH. In the IL-18 knockout group, the size of hematoma and neurological functions after ICH was decreased compared with the wild-type group, suggesting the critical role of IL-18 on the modulation of brain injury after ICH. Importantly, exogenous IL-18 increased microglial activation in brain tissues after ICH. Furthermore, IL-18 knockout resulted in the reduction of activated microglia after ICH. These results indicated that IL-18 may regulate the inflammatory response after ICH through the activation of microglia. Thus, IL-18 is expected to be a promising therapeutic target for secondary brain injury after ICH.


Subject(s)
Brain Injuries , Interleukin-18 , Animals , Brain Injuries/complications , Brain Injuries/metabolism , Cerebral Hemorrhage/drug therapy , Hematoma/complications , Hematoma/metabolism , Male , Mice , Microglia/metabolism
3.
J Neurosci Res ; 99(12): 3121-3147, 2021 12.
Article in English | MEDLINE | ID: mdl-34716617

ABSTRACT

Astrocytes are abundant cells of the central nervous system (CNS) and are involved in processes including synapse formation/function, ion homeostasis, neurotransmitter uptake, and neurovascular coupling. Recent evidence indicates that astrocytes show diverse molecular, structural, and physiological properties within the CNS. This heterogeneity is reflected in differences in astrocyte structure, gene expression, functional properties, and responsiveness to injury/pathological conditions. Deeper investigation of astrocytic heterogeneity is needed to understand how astrocytes are configured to enable diverse roles in the CNS. While much has been learned about astrocytic heterogeneity in rodents, much less is known about astrocytic heterogeneity in the primate brain where astrocytes have greater size and complexity. The common marmoset (Callithrix jacchus) is a promising non-human primate model because of similarities between marmosets and humans with respect to genetics, brain anatomy, and cognition/behavior. Here, we investigated the molecular and structural heterogeneity of marmoset astrocytes using an array of astrocytic markers, multi-label confocal microscopy, and quantitative analysis. We used male and female marmosets and found that marmoset astrocytes show differences in expression of astrocytic markers in cortex, hippocampus, and cerebellum. These differences were accompanied by intra-regional variation in expression of markers for glutamate/GABA transporters, and potassium and water channels. Differences in astrocyte structure were also found, along with complex interactions with blood vessels, microglia, and neurons. This study contributes to our knowledge of the cellular and molecular features of marmoset astrocytes and is useful for understanding the complex properties of astrocytes in the primate CNS.


Subject(s)
Astrocytes , Callithrix , Animals , Astrocytes/metabolism , Brain/metabolism , Central Nervous System , Female , Male , Neurons/metabolism
4.
J Neurosci Res ; 99(1): 110-123, 2021 01.
Article in English | MEDLINE | ID: mdl-33141462

ABSTRACT

ACTL6B is a component of the neuronal BRG1/brm-associated factor (nBAF) complex, which is required for chromatin remodeling in postmitotic neurons. We recently reported biallelic pathogenic variants in ACTL6B in patients diagnosed with early infantile epileptic encephalopathy, subtype 76 (EIEE-76), presenting with severe, global developmental delay, epileptic encephalopathy, cerebral atrophy, and abnormal central nervous system myelination. However, the pathophysiological mechanisms underlying their phenotype is unknown. Here, we investigate the molecular pathogenesis of ACTL6B p.(Val421_Cys425del) using in silico 3D protein modeling predictions and patient-specific induced pluripotent stem cell-derived neurons. We found neurons derived from EIEE-76 patients showed impaired accumulation of ACTL6B compared to unaffected relatives, caused by reduced protein stability. Furthermore, EIEE-76 patient-derived neurons had dysregulated nBAF target gene expression, including genes important for neuronal development and disease. Multielectrode array system analysis unveiled elevated electrophysiological activity of EIEE-76 patients-derived neurons, consistent with the patient phenotype. Taken together, our findings validate a new model for EIEE-76 and reveal how reduced ACTL6B expression affects neuronal function.


Subject(s)
Actins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Models, Molecular , Neurons/physiology , Spasms, Infantile/genetics , Actins/chemistry , Actins/metabolism , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Induced Pluripotent Stem Cells , Mutation , Protein Stability , Spasms, Infantile/physiopathology
5.
J Neurosci Res ; 98(2): 384-403, 2020 02.
Article in English | MEDLINE | ID: mdl-31407399

ABSTRACT

The cAMP-dependent protein kinase A family (PKAs), protein kinase C family (PKCs), and Src family kinases (SFKs) are found to play important roles in pain hypersensitivity. However, more detailed investigations are still needed in order to understand the mechanisms underlying the actions of PKAs, PKCs, and SFKs. Neurons in the hypothalamic arcuate nucleus (ARC) are found to be involved in the regulation of pain hypersensitivity. Here we report that the action potential (AP) firing activity of ARC neurons in culture was up-regulated by application of the adenylate cyclase activator forskolin or the PKC activator PMA, and that the forskolin or PMA application-induced up-regulation of AP firing activity could be blocked by pre-application of the SFK inhibitor PP2. SFK activation also up-regulated the AP firing activity and this effect could be prevented by pre-application of the inhibitors of PKCs, but not of PKAs. Furthermore, we identified that forskolin or PMA application caused increases in the phosphorylation not only in PKAs at T197 or PKCs at S660 and PKCα/ßII at T638/641, but also in SFKs at Y416. The forskolin or PMA application-induced increase in the phosphorylation of PKAs or PKCs was not affected by pre-treatment with PP2. The regulations of the SFK and AP firing activities by PKCs were independent upon the translocation of either PKCα or PKCßII. Thus, it is demonstrated that PKAs may act as an upstream factor(s) to enhance SFKs while PKCs and SFKs interact reciprocally, and thereby up-regulate the AP firing activity in hypothalamic ARC neurons.


Subject(s)
Action Potentials/physiology , Arcuate Nucleus of Hypothalamus/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Neurons/metabolism , Protein Kinase C/metabolism , src-Family Kinases/metabolism , Action Potentials/drug effects , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Cells, Cultured , Colforsin/pharmacology , Female , Male , Neurons/drug effects , Oligopeptides/pharmacology , Patch-Clamp Techniques , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Vasodilator Agents/pharmacology
6.
J Neurosci Res ; 98(10): 1905-1932, 2020 10.
Article in English | MEDLINE | ID: mdl-32557778

ABSTRACT

In Alzheimer's disease, amyloid plaque formation is associated with the focal death of oligodendrocytes and soluble amyloid ß impairs the survival of oligodendrocytes in vitro. However, the response of oligodendrocyte progenitor cells (OPCs) to early amyloid pathology remains unclear. To explore this, we performed a histological, electrophysiological, and behavioral characterization of transgenic mice expressing a pathological form of human amyloid precursor protein (APP), containing three single point mutations associated with the development of familial Alzheimer's disease (PDGFB-APPSw.Ind , also known as J20 mice). PDGFB-APPSw.Ind transgenic mice had impaired survival from weaning, were hyperactive by 2 months of age, and developed amyloid plaques by 6 months of age, however, their spatial memory remained intact over this time course. Hippocampal OPC density was normal in P60-P180 PDGFB-APPSw.Ind transgenic mice and, by performing whole-cell patch-clamp electrophysiology, we found that their membrane properties, including their response to kainate (100 µM), were largely normal. However, by P100, the response of hippocampal OPCs to GABA was elevated in PDGFB-APPSw.Ind transgenic mice. We also found that the nodes of Ranvier were shorter, the paranodes longer, and the myelin thicker for hippocampal axons in young adult PDGFB-APPSw.Ind transgenic mice compared with wildtype littermates. Additionally, oligodendrogenesis was normal in young adulthood, but increased in the hippocampus, entorhinal cortex, and fimbria of PDGFB-APPSw.Ind transgenic mice as pathology developed. As the new oligodendrocytes were not associated with a change in total oligodendrocyte number, these cells are likely required for cell replacement.


Subject(s)
Amyloidosis/pathology , Brain/pathology , Myelin Sheath/pathology , Neurogenesis/physiology , Oligodendroglia/pathology , Age Factors , Amyloidosis/genetics , Animals , Female , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Myelin Sheath/genetics
7.
J Neurosci Res ; 98(11): 2317-2332, 2020 11.
Article in English | MEDLINE | ID: mdl-32799373

ABSTRACT

Interaction between autoreactive immune cells and astroglia is an important part of the pathologic processes that fuel neurodegeneration in multiple sclerosis. In this inflammatory disease, immune cells enter into the central nervous system (CNS) and they spread through CNS parenchyma, but the impact of these autoreactive immune cells on the activity pattern of astrocytes has not been defined. By exploiting naïve astrocytes in culture and CNS-infiltrated immune cells (CNS IICs) isolated from rat with experimental autoimmune encephalomyelitis (EAE), here we demonstrate previously unrecognized properties of immune cell-astrocyte interaction. We show that CNS IICs but not the peripheral immune cell application, evokes a rapid and vigorous intracellular Ca2+ increase in astrocytes by promoting glial release of ATP. ATP propagated Ca2+ elevation through glial purinergic P2X7 receptor activation by the hemichannel-dependent nucleotide release mechanism. Astrocyte Ca2+ increase is specifically triggered by the autoreactive CD4+ T-cell application and these two cell types exhibit close spatial interaction in EAE. Therefore, Ca2+ signals may mediate a rapid astroglial response to the autoreactive immune cells in their local environment. This property of immune cell-astrocyte interaction may be important to consider in studies interrogating CNS autoimmune disease.


Subject(s)
Astrocytes/metabolism , Calcium Signaling , Immunity, Cellular , Receptors, Purinergic/immunology , Adenosine Triphosphate/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Neuroglia/metabolism , Rats , Receptors, Purinergic P2X7/immunology , Receptors, Purinergic P2X7/metabolism , Signal Transduction , Spinal Cord/cytology , Spinal Cord/immunology
8.
J Neurosci Res ; 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33350496

ABSTRACT

Mammalian cerebellar astrocytes critically regulate the differentiation and maturation of neuronal Purkinje cells and granule precursors. The G protein-coupled receptor 37-like 1 (Gpr37l1) is expressed by Bergmann astrocytes and interacts with patched 1 (Ptch1) at peri-ciliary membranes. Cerebellar primary astrocyte cultures from wild-type and Gpr37l1 null mutant mouse pups were established and studied. Primary cilia were produced by cultures of both genotypes, as well as Ptch1 and smoothened (Smo) components of the sonic hedgehog (Shh) mitogenic pathway. Compared to wild-type cells, Gpr37l1-/- astrocytes displayed striking increases in proliferative activity, Ptch1 protein expression and internalization, intracellular cholesterol content, ciliary localization of Smo, as well as a marked production of active Shh. Similar effects were reproduced by treating wild-type astrocytes with a putative prosaptide ligand of Gpr37l1. These findings indicate that Gpr37l1-Ptch1 interactions specifically regulate Ptch1 internalization and trafficking, with consequent stimulation of Shh production and activation of proliferative signaling.

9.
J Neurosci Res ; 97(9): 1081-1094, 2019 09.
Article in English | MEDLINE | ID: mdl-31175682

ABSTRACT

Astrocytes are essential mediators of many aspects of synaptic transmission and neuroplasticity. Exercise has been demonstrated to induce neuroplasticity and synaptic remodeling, such as through mediating neurorehabilitation in animal models of neurodegeneration. However, the effects of exercise on astrocytic function, and how such changes may be relevant to neuroplasticity remain unclear. Here, we show that exercise remodels astrocytes in an exercise- and region-dependent manner as measured by GFAP and SOX9 immunohistochemistry and morphological analysis in male mice. Additionally, qRT-PCR analysis of reactive astrocyte gene expression showed an exercise-induced elevation in brain regions known to be activated by exercise. Taken together, these data demonstrate that exercise actively modifies astrocyte morphology and drives changes in astrocyte gene expression and suggest that astrocytes may be a central component to exercise-induced neuroplasticity and neurorehabilitation.


Subject(s)
Astrocytes/cytology , Gene Expression Regulation/physiology , Physical Conditioning, Animal/physiology , Animals , Astrocytes/metabolism , Brain/metabolism , Glial Fibrillary Acidic Protein/metabolism , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity
10.
J Neurosci Res ; 97(11): 1469-1482, 2019 11.
Article in English | MEDLINE | ID: mdl-31379045

ABSTRACT

Recent years have led to increased effort to describe and understand the peripheral nervous system and its influence on central mechanisms and behavior in gastropod molluscs. This study revealed that an antibody raised against keyhole limpet hemocyanin (KLH) cross-reacts with an antigen(s) found extensively in both the central and the peripheral nervous systems of Biomphalaria alexandrina. The results revealed KLH-like immunoreactive (LIR) neurons in the cerebral, pedal, buccal, left pleural, right parietal, and visceral ganglion within the CNS with fibers projecting throughout all the peripheral nerves. Numerous KLH-LIR peripheral sensory neurons located in the foot, lips, tentacles, mantle, esophagus, and penis exhibited a bipolar morphology with long tortuous dendrites. KLH-LIR cells were also present in the eye and statocyst, thus suggesting the labeling of multiple sensory modalities/cell types. KLH-LIR cells did not co-localize with tyrosine hydroxylase (TH)-LIR cells, which have previously been described in this and other gastropods. The results thus provide descriptions of thousands of peripheral sensory neurons, not previously described in detail. Future research should seek to pair sensory modalities with peripheral cell type and attempt to further elucidate the nature of KLH-like reactivity. These findings also emphasize the need for caution when analyzing results obtained through use of antibodies raised against haptens conjugated to carrier proteins, suggesting the need for stringent controls to help limit potential confounds caused by cross-reactivity. In addition, this study is the first to describe neuronal cross-reactivity with KLH in Biomphalaria, which could provide a substrate for host-parasite interactions with a parasitic trematode, Schistosoma.


Subject(s)
Biomphalaria/metabolism , Ganglia, Invertebrate/metabolism , Hemocyanins/analysis , Neurons/metabolism , Animals , Antibodies/administration & dosage , Hemocyanins/immunology , Immunohistochemistry
11.
J Comp Neurol ; 528(13): 2269-2279, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32090331

ABSTRACT

The sexual characteristics of the vertebrate body change under the control of sex hormones. In mammals, genitals undergo major changes in puberty. While such bodily changes have been well documented, the associated changes in the nervous system are poorly understood. To address this issue, we studied the growth and innervation of the mouse penis throughout puberty. To this end, we measured length and thickness of the mouse penis in prepubertal (3-4 week old) and adult (8-10 week old) mice and performed fiber counts of the dorsal penile nerve. We obtained such counts with confocal imaging of proximal sections of the mouse penis after paraffin embedding and antibody staining against Protein-Gene-Product-9.5 or Neurofilament-H in combination with antigen retrieval procedures. We find that the mouse penis grows roughly 1.4 times in both thickness and length. Fiber counts in the dorsal penile nerve were not different in prepubertal (1,620 ± 165 fibers per penis) and adult (1,572 ± 383 fibers per penis) mice, however. Antibody staining along with myelin staining by Luxol-Fast-Blue suggested about 57% of penile nerve fibers were myelinated. Quantification of the area of mouse somatosensory penis cortex allowed us to compare cortical magnification of the penile cortex and the whisker-barrel-cortex systems. This comparison suggested that 2 to 4 times less cortical area is devoted to a penile-nerve-fiber than to a whisker-nerve-fiber. The constant innervation of mouse penis through puberty suggests that the pubertal increase of cortical magnification of the penis is not simply a reflection of peripheral change.


Subject(s)
Nerve Fibers/physiology , Penis/growth & development , Penis/innervation , Sexual Maturation/physiology , Somatosensory Cortex/growth & development , Age Factors , Animals , Male , Mice , Mice, Inbred C57BL
12.
J Comp Neurol ; 527(9): 1419-1442, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30620046

ABSTRACT

The mammalian visual system is one of the most well-studied brain systems. Visual information from the retina is relayed to the dorsal lateral geniculate nucleus of the thalamus (LGd). The LGd then projects topographically to primary visual cortex (VISp) to mediate visual perception. In this view, the VISp is a critical network hub where visual information must traverse LGd-VISp circuits to reach higher order "extrastriate" visual cortices, which surround the VISp on its medial and lateral borders. However, decades of conflicting reports in a variety of mammals support or refute the existence of extrastriate LGd connections that can bypass the VISp. Here, we provide evidence of bidirectional extrastriate connectivity with the mouse LGd. Using small, discrete coinjections of anterograde and retrograde tracers within the thalamus and cortex, our cross-validated approach identified bidirectional connectivity between LGd and extrastriate visual cortices. We find robust reciprocal connectivity of the medial extrastriate regions with LGd neurons distributed along the "ventral strip" border with the intergeniculate leaflet. In contrast, LGd input to lateral extrastriate regions is sparse, but lateral extrastriate regions return stronger descending projections to localized LGd areas. We show further evidence that axons from lateral extrastriate regions can overlap onto medial extrastriate-projecting LGd neurons in the ventral strip, providing a putative subcortical LGd pathway for communication between medial and lateral extrastriate regions. Overall, our findings support the existence of extrastriate LGd circuits and provide novel understanding of LGd organization in rodent visual system.


Subject(s)
Geniculate Bodies/anatomy & histology , Visual Cortex/anatomy & histology , Visual Pathways/anatomy & histology , Animals , Axonal Transport , Connectome , Fluorescent Dyes , Male , Mice , Mice, Inbred C57BL , Neurons/ultrastructure , Visual Perception/physiology
13.
J Comp Neurol ; 527(8): 1401-1415, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30620045

ABSTRACT

The corticospinal (CS) neurons projecting to the cervical cord distribute not only in motor-related cortical areas, but also in somatosensory areas, including the primary somatosensory cortex (S1). The exact functions of these widely distributed CS neurons are largely unknown, however. In this study, we injected mice with adeno-associated virus encoding membrane-binding fluorescent proteins to investigate the distribution of axons from CS neurons in different regions within a broad cortical area. We found that CS axons from the primary motor cortex (M1), the rostral part of S1 (S1r), and the caudal part of S1 (S1c) differentially project to specific compartments within the spinal gray matter of the seventh cervical cord segment: (a) M1 projects mainly to intermediate and ventral areas, (b) S1r to the mediodorsal area, and (c) S1c to the dorsolateral area. We also found that the projection from S1r, which corresponds to the forelimb area, largely overlaps the cutaneous afferent terminals from the forepaw (hand) in the dorsal horn, and we detected a similar relation between S1c and the trunk. Our findings suggest the existence of considerably fine somatotopic compartments within the dorsal horn that process somatosensation and descending information, which is provided mainly by S1 CS neurons and contribute to delicate control of sensory information in generation of movement.


Subject(s)
Afferent Pathways/cytology , Gray Matter/cytology , Pyramidal Tracts/cytology , Somatosensory Cortex/cytology , Spinal Cord/cytology , Animals , Mice
14.
J Comp Neurol ; 527(7): 1228-1244, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30592044

ABSTRACT

Olfactory ensheathing cells (OECs) are often described as being present in both the peripheral and the central nervous systems (PNS and CNS). Furthermore, the olfactory nervous system glia limitans (the glial layer defining the PNS-CNS border) is considered unique as it consists of intermingling OECs and astrocytes. In contrast, the glia limitans of the rest of the nervous system consists solely of astrocytes which create a distinct barrier to Schwann cells (peripheral glia). The ability of OECs to interact with astrocytes is one reason why OECs are believed to be superior to Schwann cells for transplantation therapies to treat CNS injuries. We have used transgenic reporter mice in which glial cells express DsRed fluorescent protein to study the cellular constituents of the glia limitans. We found that the glia limitans layer of the olfactory nervous system is morphologically similar to elsewhere in the nervous system, with a similar low degree of intermingling between peripheral glia and astrocytes. We found that the astrocytic layer of the olfactory bulb is a distinct barrier to bacterial infection, suggesting that this layer constitutes the PNS-CNS immunological barrier. We also found that OECs interact with astrocytes in a similar fashion as Schwann cells in vitro. When cultured in three dimensions, however, there were subtle differences between OECs and Schwann cells in their interactions with astrocytes. We therefore suggest that glial fibrillary acidic protein-reactive astrocyte layer of the olfactory bulb constitutes the glia limitans of the olfactory nervous system and that OECs are primarily "PNS glia."


Subject(s)
Neuroglia/cytology , Olfactory Bulb/cytology , Peripheral Nervous System/cytology , Animals , Astrocytes/cytology , Burkholderia pseudomallei/isolation & purification , Cell Culture Techniques , Cells, Cultured , Genes, Reporter , Melioidosis/microbiology , Melioidosis/pathology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Nasal Cavity/innervation , Olfactory Bulb/microbiology , Schwann Cells/cytology , Sensory Receptor Cells/cytology , Trigeminal Nerve/cytology
15.
J Comp Neurol ; 527(1): 297-311, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30311650

ABSTRACT

We have identified a novel, sixth type of intrinsically photosensitive retinal ganglion cell (ipRGC) in the mouse-the M6 cell. Its spiny, highly branched dendritic arbor is bistratified, with dendrites restricted to the inner and outer margins of the inner plexiform layer, co-stratifying with the processes of other ipRGC types. We show that M6 cells are by far the most abundant ganglion cell type labeled in adult pigmented Cdh3-GFP BAC transgenic mice. A few M5 ipRGCs are also labeled, but no other RGC types were encountered. Several distinct subnuclei in the geniculate complex and the pretectum contain labeled retinofugal axons in the Cdh3-GFP mouse. These are presumably the principle central targets of M6 cells (as well as M5 cells). Projections from M6 cells to the dorsal lateral geniculate nucleus were confirmed by retrograde tracing, suggesting they contribute to pattern vision. M6 cells have low levels of melanopsin expression and relatively weak melanopsin-dependent light responses. They also exhibit strong synaptically driven light responses. Their dendritic fields are the smallest and most abundantly branched of all ipRGCs. They have small receptive fields and strong antagonistic surrounds. Despite deploying dendrites partly in the OFF sublamina, M6 cells appear to be driven exclusively by the ON pathway, suggesting that their OFF arbor, like those of certain other ipRGCs, may receive ectopic input from passing ON bipolar cells axons in the OFF sublayer.


Subject(s)
Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/physiology , Animals , Mice , Mice, Transgenic , Rod Opsins/metabolism
16.
J Comp Neurol ; 525(17): 3683-3704, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28771712

ABSTRACT

We employed an anti-transducin antibody (Gαt-S), in combination with other markers, to characterize the Gαt-S-immunoreactive (ir) system in the CNS of the sea lamprey, Petromyzon marinus. Gαt-S immunoreactivity was observed in some neuronal populations and numerous fibers distributed throughout the brain. Double Gαt-S- and opsin-ir neurons (putative photoreceptors) are distributed in the hypothalamus (postoptic commissure nucleus, dorsal and ventral hypothalamus) and caudal diencephalon, confirming results of García-Fernández et al. (Cell and Tissue Research, 288, 267-278, 1997). Singly Gαt-S-ir cells were observed in the midbrain and hindbrain, increasing the known populations. Our results reveal for the first time in vertebrates the extensive innervation of many brain regions and the spinal cord by Gαt-S-ir fibers. The Gαt-S innervation of the habenula is very selective, fibers densely innervating the lamprey homologue of the mammalian medial nucleus (Stephenson-Jones et al., Proceedings of the National Academy of Sciences of the United States of America, 109, E164-E173, 2012), but not the lateral nucleus homologue. The lamprey neurohypophysis was not innervated by Gαt-S-ir fibers. We also analyzed by double immunofluorescence the relation of this system with other systems. A dopaminergic marker (TH), serotonin (5-HT) or GABA do not co-localize with Gαt-S-ir neurons although codistribution of fibers was observed. Codistribution of Gαt-S-ir fibers and isolectin-labeled extrabulbar primary olfactory fibers was observed in the striatum and hypothalamus. Neurobiotin retrograde transport from the spinal cord combined with immunofluorescence revealed spinal-projecting Gαt-S-ir reticular neurons in the caudal hindbrain. Present results in an ancient vertebrate reveal for the first time a collection of brain targets of Gαt-S-ir neurons, suggesting they might mediate non-visual modulation by light in many systems.


Subject(s)
Brain/metabolism , Neurons/metabolism , Petromyzon , Retina/metabolism , Transducin/metabolism , Age Factors , Animals , Biotin/analogs & derivatives , Biotin/metabolism , Brain/cytology , Brain/embryology , Larva , Opsins/metabolism , Petromyzon/anatomy & histology , Petromyzon/embryology , Petromyzon/metabolism , Retina/cytology , Retina/embryology , Serotonin/metabolism , Tyrosine 3-Monooxygenase/metabolism , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL