Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 988
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37930030

ABSTRACT

Bacterial infections often involve virulence factors that play a crucial role in the pathogenicity of bacteria. Accurate detection of virulence factor genes (VFGs) is essential for precise treatment and prognostic management of hypervirulent bacterial infections. However, there is a lack of rapid and accurate methods for VFG identification from the metagenomic data of clinical samples. Here, we developed a Reads-based Virulence Factors Scanner (RVFScan), an innovative user-friendly online tool that integrates a comprehensive VFG database with similarity matrix-based criteria for VFG prediction and annotation using metagenomic data without the need for assembly. RVFScan demonstrated superior performance compared to previous assembly-based and read-based VFG predictors, achieving a sensitivity of 97%, specificity of 98% and accuracy of 98%. We also conducted a large-scale analysis of 2425 clinical metagenomic datasets to investigate the utility of RVFScan, the species-specific VFG profiles and associations between VFGs and virulence phenotypes for 24 important pathogens were analyzed. By combining genomic comparisons and network analysis, we identified 53 VFGs with significantly higher abundances in hypervirulent Klebsiella pneumoniae (hvKp) than in classical K. pneumoniae. Furthermore, a cohort of 1256 samples suspected of K. pneumoniae infection demonstrated that RVFScan could identify hvKp with a sensitivity of 90%, specificity of 100% and accuracy of 98.73%, with 90% of hvKp samples consistent with clinical diagnosis (Cohen's kappa, 0.94). RVFScan has the potential to detect VFGs in low-biomass and high-complexity clinical samples using metagenomic reads without assembly. This capability facilitates the rapid identification and targeted treatment of hvKp infections and holds promise for application to other hypervirulent pathogens.


Subject(s)
Bacterial Infections , Virulence Factors , Humans , Virulence Factors/genetics , Metagenome , Virulence/genetics , Klebsiella pneumoniae/genetics , Bacterial Infections/genetics
2.
Emerg Infect Dis ; 30(2): 255-261, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38270160

ABSTRACT

We developed a novel culture-based test, the Rapid CAZ/AVI NP test, for rapid identification of ceftazidime/avibactam susceptibility/resistance in Enterobacterales. This test is based on glucose metabolization upon bacterial growth in the presence of a defined concentration of ceftazidime/avibactam (128/53 µg/mL). Bacterial growth is visually detectable by a red to yellow color change of red phenol, a pH indicator. A total of 101 well characterized enterobacterial isolates were used to evaluate the test performance. This test showed positive percent agreement of 100% and negative percent agreement of 98.5% with overall percent agreement of 99%, by comparison with the MIC gradient strip test (Etest) taken as the reference standard method. The Rapid CAZ/AVI NP test had only 1.5% major errors and 0% extremely major errors. This test is rapid (result within 2 hours 45 minutes), reliable, affordable, easily interpretable, and easy to implement in clinical microbiology laboratories without requiring any specific equipment.


Subject(s)
Azabicyclo Compounds , Ceftazidime , Gammaproteobacteria , Ceftazidime/pharmacology , Enterobacteriaceae , Laboratories
3.
J Clin Microbiol ; 62(7): e0015424, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38809033

ABSTRACT

The increasing use of ceftazidime-avibactam has led to the emergence of a wide range of ceftazidime-avibactam-resistant blaKPC-2 variants. Particularly, the conventional carbapenemase phenotypic assay exhibited a high false-negative rate for KPC-2 variants. In this study, three colloidal gold immunoassays, including the Gold Mountainriver CGI test, Dynamiker CGI test and NG-Test CARBA5, and GeneXpert Carba-R, were used to detect the presence of KPC-2 carbapenemase and its various variants in 42 Klebsiella pneumoniae strains. These strains covered blaKPC-2 (13/42) and 16 other blaKPC-2 variants including blaKPC-12 (1/42), blaKPC-23 (1/42), blaKPC-25 (1/42), blaKPC-33 (6/42), blaKPC-35 (1/42), blaKPC-44 (1/42), blaKPC-71 (1/42), blaKPC-76 (8/42), blaKPC-78 (1/42), blaKPC-79 (1/42), blaKPC-100 (1/42), blaKPC-127 (1/42), blaKPC-128 (1/42), blaKPC-144 (1/42), blaKPC-157 (2/42), and blaKPC-180 (1/42). For KPC-2 strains, all four assays showed 100% negative percentage agreement (NPA) and 100% positive percentage agreement (PPA) with sequencing results. For all 16 KPC-2 variants, GeneXpert Carba-R showed 100% NPA and 100% PPA, and the three colloidal gold immunoassays showed 100% NPA, while the PPAs of the Gold Mountainriver CGI test, Dynamiker CGI test, and NG-Test CARBA5 were 87.5%, 87.5%, and 68.8%, respectively. We also found a correlation between the mutation site in the amino acid of the variants and false-negative results by colloidal gold immunoassays. In conclusion, the GeneXpert Carba-R has been proven to be a reliable method in detecting KPC-2 and its variants, and the colloidal gold immunoassay tests offer a practical and cost-effective approach for their detection. For the sample with a negative result by a colloidal gold immunoassay test but not matching the drug-resistant phenotype, it is recommended to retest using another type of kit or the GeneXpert Carba-R assay, which can significantly improve the accuracy of detection.


Subject(s)
Gold Colloid , Klebsiella Infections , Klebsiella pneumoniae , beta-Lactamases , beta-Lactamases/genetics , Klebsiella pneumoniae/genetics , Immunoassay/methods , Humans , Gold Colloid/chemistry , Klebsiella Infections/microbiology , Klebsiella Infections/diagnosis , Sensitivity and Specificity , Bacterial Proteins/genetics , Microbial Sensitivity Tests
4.
BMC Microbiol ; 24(1): 37, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279108

ABSTRACT

BACKGROUND: Vibrio vulnificus exists as one of the most serious foodborne pathogens for humans, and rapid and sensitive detection methods are needed to control its infections. As an emerging method, The Loop-Mediated Isothermal Amplification (LAMP) assay has been applied to the early detection of various foodborne pathogens due to its high efficiency, but sample preprocessing still prolongs the complete detection. To optimize the detection process, our study established a novel sample preprocessing method that was more efficient compared to common methods. RESULT: Using V. vulnificus as the detecting pathogen, the water-lysis-based detecting LAMP method shortened the preprocessing time to ≤ 1 min with 100% LAMP specificity; the detection limits of the LAMP assay were decreased to 1.20 × 102 CFU/mL and 1.47 × 103 CFU/g in pure culture and in oyster, respectively. Furthermore, the 100% LAMP specificity and high sensitivity of the water-lysis method were also obtained on detecting V. parahaemolyticus, V. alginolyticus, and P. mirabilis, revealing its excellent LAMP adaption with improvement in sensitivity and efficiency. CONCLUSION: Our study provided a novel LAMP preprocessing method that was more efficient compared to common methods and possessed the practical potential for LAMP application in the future.


Subject(s)
Molecular Diagnostic Techniques , Vibrio vulnificus , Humans , Vibrio vulnificus/genetics , Nucleic Acid Amplification Techniques/methods , Water , Specimen Handling , Sensitivity and Specificity
5.
Vox Sang ; 119(6): 556-562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523360

ABSTRACT

BACKGROUND AND OBJECTIVES: Malaria continues to be a significant public health concern in India, with several regions experiencing endemicity and sporadic outbreaks. The prevalence of malaria in blood donors, in India, varies between 0.02% and 0.07%. Common techniques to screen for malaria, in blood donors and patients, include microscopic smear examination and rapid diagnostic tests (RDTs) based on antigen detection. The aim of this study was to evaluate a new fully automated analyser, XN-31, for malaria detection, as compared with current practice of using RDT. MATERIALS AND METHODS: Cross-sectional analytical study was conducted to evaluate clinical sensitivity and specificity of new automated analyser XN-31 among blood donors' samples and clinical samples (patients with suspicion of malaria) from outpatient clinic collected over between July 2021 and October 2022. No additional sample was drawn from blood donor or patient. All blood donors and patients' samples were processed by malaria rapid diagnostic test, thick-smear microscopy (MIC) and the haematology analyser XN-31. Any donor blood unit incriminated for malaria was discarded. Laboratory diagnosis using MIC was considered the 'gold standard' in the present study. Clinical sensitivity and specificity of XN-31 were compared with the gold standard. RESULTS: Fife thousand and five donor samples and 82 diagnostic samples were evaluated. While the clinical sensitivity and specificity for donor samples were 100%, they were 72.7% and 100% for diagnostic samples. CONCLUSION: Automated haematology analysers represent a promising solution, as they can deliver speedy and sensitive donor malaria screening assessments. This method also has the potential to be used for pre-transfusion malaria screening along with haemoglobin estimation.


Subject(s)
Blood Donors , Malaria , Humans , India , Malaria/diagnosis , Malaria/blood , Cross-Sectional Studies , Female , Male , Sensitivity and Specificity , Adult , Hematologic Tests/methods , Hematologic Tests/instrumentation
6.
Int J Legal Med ; 138(2): 561-570, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37801116

ABSTRACT

Species identification of biological specimens can provide the valuable clues and accelerate the speed of prosecution material processing for forensic investigation, especially when the case scene is inaccessible and the physical evidence is cumbersome. Thus, establishing a rapid, simple, and field-adapted species identification method is crucial for forensic scientists, particularly as first-line technology at the crime scene for initial rapid screening. In this study, we established a new field-adapted species identification method by combining multiplex multienzyme isothermal rapid amplification (MIRA), lateral flow dipstick (LFD) system, and universal primers. Universal primers targeting COX I and COX II genes were used in multiplex MIRA-LFD system for seven species identification, and a dedicated MIRA-LFD system primer targeting CYT B gene was used to detect the human material. DNA extraction was performed by collecting DNA directly from the centrifuged supernatant. Our study found that the entire amplification process took only 15 min at 37 °C and the results of LFDs could be visually observed after 10 min. The detection sensitivity of human material could reach 10 pg, which is equivalent to the detection of single cell. Different common animal samples mixed at the ratio of 1 ng:1 ng, 10 ng:1 ng, and 1 ng:10 ng could be detected successfully. Furthermore, the damaged and degraded samples could also be detected. Therefore, the convenient, feasible, and rapid approach for species identification is suitable for popularization as first-line technology at the crime scene for initial rapid screening and provides a great convenient for forensic application.


Subject(s)
DNA , Nucleic Acid Amplification Techniques , Animals , Humans , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , DNA Primers/genetics , Polymerase Chain Reaction/methods
7.
BMC Infect Dis ; 24(1): 326, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500041

ABSTRACT

BACKGROUND: Currently, culture methods are commonly used in clinical tests to detect pathogenic fungi including Candida spp. Nonetheless, these methods are cumbersome and time-consuming, thereby leading to considerable difficulties in diagnosis of pathogenic fungal infections, especially in situations that respiratory samples such as alveolar lavage fluid and pleural fluid contain extremely small amounts of microorganisms. The aim of this study was to elucidate the utility and practicality of microfluidic chip technology in quick detection of respiratory pathogenic fungi. METHODS: DNAs of clinical samples (mainly derived from sputa, alveolar lavage fluid, and pleural fluid) from 64 coastal patients were quickly detected using microfluidic chip technology with 20 species of fungal spectrum and then validated by Real-time qPCR, and their clinical baseline data were analyzed. RESULTS: Microfluidic chip results showed that 36 cases infected with Candida spp. and 27 cases tested negative for fungi, which was consistent with Real-time qPCR validation. In contrast, only 16 cases of fungal infections were detected by the culture method; however, one of the culture-positive samples tested negative by microfluidic chip and qPCR validation. Moreover, we found that the patients with Candida infections had significantly higher rates of platelet count reduction than fungi-negative controls. When compared with the patients infected with C. albicans alone, the proportion of males in the patients co-infected with multiple Candidas significantly increased, while their platelet counts significantly decreased. CONCLUSIONS: These findings suggest that constant temperature amplification-based microfluidic chip technology combined with routine blood tests can increase the detection speed and accuracy (including sensitivity and specificity) of identifying respiratory pathogenic fungi.


Subject(s)
Mycoses , Respiratory Tract Infections , Male , Humans , Microfluidics , Fungi/genetics , Mycoses/diagnosis , Candida/genetics , Candida albicans , Sensitivity and Specificity , Respiratory Tract Infections/diagnosis
8.
J Invertebr Pathol ; 204: 108080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38432354

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) is highly contagious and poses a serious threat to sericulture production. Because there are currently no effective treatments for BmNPV, a rapid and simple detection method is urgently needed. This paper describes an electrochemical immunosensor for the detection of BmNPV. The immunosensor was fabricated by covalently immobilizing anti-BmNPV, a biorecognition element, onto the surface of the working gold electrode via 11-mercaptoundecanoic acid (MUA)/ß-mercaptoethanol (ME) hybrid self-assembled monolayers. Electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) were used to characterize the electrochemical performance and morphology of the immunosensor, respectively. Under optimum conditions, the developed immunosensor exhibited a linear response to BmNPV polyhedrin in the range of 1 × 102-1 × 108 fg/mL, with a low detection limit of 14.54 fg/mL. The immunosensor also exhibited remarkable repeatability, reproducibility, specificity, accuracy, and regeneration. Normal silkworm blood was mixed with BmNPV polyhedrin and analyzed quantitatively using this sensor, and the recovery was 92.31 %-100.61 %. Additionally, the sensor was used to analyze silkworm blood samples at different time points after BmNPV infection, and an obvious antigen signal was detected at 12 h post infection. Although this result agreed with that provided by the conventional polymerase chain reaction (PCR) method, the electroanalysis method established in this study was simpler, shorter in detection period, and lower in material cost. Furthermore, this innovative electrochemical immunosensor, developed for the ultra-sensitive and rapid detection of BmNPV, can be used for the early detection of virus-infected silkworms.


Subject(s)
Biosensing Techniques , Bombyx , Nucleopolyhedroviruses , Nucleopolyhedroviruses/isolation & purification , Biosensing Techniques/methods , Animals , Bombyx/virology , Electrochemical Techniques/methods , Immunoassay/methods
9.
Acta Microbiol Immunol Hung ; 71(2): 140-147, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38573768

ABSTRACT

Bloodstream infections (BSIs) caused by multidrug-resistant bacteria are a critical life-threatening challenge which necessitates the urgency to trigger life-saving treatment in a timely manner. This study aimed to evaluate the time required for rapid detection of carbapenemase-producing Enterobacterales (CPE) directly from blood culture bottles to optimize empirical treatment of BSI, especially in pediatric and infant patients, using a cost-effective method. This study included 419 Gram-negative bacteria, of which Klebsiella pneumoniae and Escherichia coli were the most common CPE causing BSI in pediatric and neonatal patients. Phenotypic and genotypic resistance of the selected isolates (45 K. pneumoniae and 9 E. coli) were determined by VITEK-2 Compact system and PCR, respectively. BACT/ALERT bottles were spiked with isolates. Finally, colorimetric RESIST-BC assay and Vitek-2 compact system were evaluated for the rapid detection of carbapenem-resistant bacteria directly from positive blood culture bottles. All selected isolates were phenotypically resistant to carbapenems. PCR showed that blaNDM and blaOXA-48 were present in all isolates, blaVIM was present in 44.4%, while blaKPC and blaIMP were entirely absent. The RESIST-BC kit showed good agreement with PCR for blaNDM and blaOXA-48, demonstrating high sensitivity and specificity, but not with blaVIM. These findings point out that RESIST-BC assay demonstrated an exceptionally short detection time for CPE, completing all cases within the first hour after the blood culture bottles flagged positive. It is also superior in providing a clue for clinicians on antibiotic combinations that can be administered, depending on the type of ß-lactamases detected, promptly and efficiently, with low expenses.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Blood Culture , beta-Lactamases , Humans , beta-Lactamases/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/enzymology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Infant , Child , Bacteremia/microbiology , Bacteremia/diagnosis , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/blood , Polymerase Chain Reaction/methods , Infant, Newborn
10.
Ecotoxicol Environ Saf ; 274: 116201, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38489901

ABSTRACT

Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.


Subject(s)
Foodborne Diseases , Marine Toxins , Animals , Humans , Marine Toxins/toxicity , Seafood/analysis , Bioaccumulation , Foodborne Diseases/epidemiology , Harmful Algal Bloom
11.
Luminescence ; 39(2): e4666, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38178772

ABSTRACT

We developed a facile strategy for the fabrication of red fluorescent carbon nanodots (R-CDs) and demonstrated their applications for Al3+ sensing. Red-emission carbon dots (CDs) were synthesized using a simple hydrothermal treatment with citric acid and urea as precursors, manifesting intriguing red-emission behaviour at 610 nm. With increasing Al3+ concentration, the fluorescence band at 610 nm decreased gradually. Monitoring the intrinsic fluorescence variation (I610nm ), as-prepared CDs were developed as an effective platform for fluorescent Al3+ sensing, with a linear range of 0.5-60.0 µM and a detection limit of 3.0 nM. More importantly, R-CDs have been applied successfully to the analysis of Al3+ in actual samples with satisfactory recoveries in the range 97.12-102.05%, which indicated that obtained CDs could be implemented as an effective tool for the identification and detection of Al3+ in actual samples.


Subject(s)
Quantum Dots , Fluorescent Dyes , Carbon , Solubility , Spectrometry, Fluorescence , Water
12.
Luminescence ; 39(5): e4769, 2024 May.
Article in English | MEDLINE | ID: mdl-38720528

ABSTRACT

Fluorene nucleus derivatives show great potential for building outstanding fluorescence probes. In this paper, a novel fluorescent probe was developed by reacting with fluorene core with azacyclobutane, which exhibits typical solvation chromogenic effect in solvent. The fluorescence of the probe quenched in highly polar solvent. Based on this phenomenon, a novel fluorescence system for trace water was constructed. The response of this probe was fast (30 s) and sensitive for the detection of trace water in organic solvents, and the detection limit of water content in DMSO reached 0.13%. In addition, the probe can also be made as a test strip combined with homemade portable device and a smartphone for rapid detection of trace water. The luminescence mechanism of the probe is theoretically calculated based on time-contained density functional theory (TDDFT). To showcase its practicality, it has been applied for the detection of trace water in honey and alcohol by dipstick. This method provides a new idea for designing efficient fluorescent probes based on dipstick and mobile phone rapid detection.


Subject(s)
Fluorenes , Fluorescent Dyes , Spectrometry, Fluorescence , Water , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorenes/chemistry , Water/chemistry , Molecular Structure , Limit of Detection , Density Functional Theory , Fluorescence , Water Pollutants, Chemical/analysis
13.
Plant Dis ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587798

ABSTRACT

Rice blast, caused by Pyricularia oryzae, is one of the most destructive rice diseases worldwide. Using resistant rice varieties is the most cost-effective way to control rice blast. Consequently, it is critical to monitor the distribution frequency of avirulence genes in rice planting field to facilitate the breedings of resistant rice varieties. In this study, we established a rapid RPA-LFD detection system for the identification of AvrPik, Avr-Piz-t and Avr-Pi9. The optimized reaction temperature and duration were 37°C and 20 min, indicating that the reaction system could be initiated by body temperature without relying on any precision instruments. Specificity analysis showed that the primer and probe combinations targeting three Avr genes exhibited a remarkable specificity for at genus-level detection. Under the optimized condition, the lower detected thresholds of AvrPik, Avr-Piz-t and Avr-Pi9 were 10 fg/µl, 100 fg/µl and 10 pg/µl, respectively. Notably, the detection sensitivity of three Avr genes was much higher than that of PCR. In addition, we also successfully detected the presence of AvrPik, Avr-Piz-t and Avr-Pi9 in the leaf and panicle blast lesions with the RPA-LFD detection system. In particular, the genomic DNA was extracted using the simpler PEG-NaOH rapid extraction method. In summary, we developed the RPA detection system for AvrPik, Avr-Pi9 and Avr-Piz-t, combined with the PEG-NaOH rapid DNA extraction method. The innovative approach achieved rapid, real-time and accurate detection of three Avr genes in the field, which is helpful to understand the distribution frequency of the three Avr genes in the field and provide theoretical reference for the scientific layout of rice resistant varieties.

14.
Mikrochim Acta ; 191(2): 107, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38240908

ABSTRACT

A novel strategy based on gradient porous hollow fiber membrane (GPF) is proposed for the modular assembly of enzyme-nanozyme cascade systems. The porous structure of GPF provided sufficient specific surface area, while the gradient structure effectively minimized the leaching of enzymes and nanozymes. To enhance stability, we prepared and immobilized metal-organic framework (MOF) nanozymes, resulting in the fabrication of GPF-MOF with excellent stability and reusability for colorimetric H2O2 detection. To improve specificity and expand the detection range, micro-crosslinked natural enzymes were modularly assembled, using glucose oxidase as the model enzyme. The assembled system, GPF-mGOx@MOF, achieved a low detection limit of 0.009 mM and a linear range of 0.2 to 11 mM. The sensor retained 87.2% and 80.7% of initial activity after being stored for 49 days and 9 recycles, respectively. Additionally, the reliability of the biosensor was validated through glucose determination of human blood and urine samples, yielding comparable results to a commercial glucose meter.


Subject(s)
Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Glucose/chemistry , Hydrogen Peroxide/chemistry , Reproducibility of Results , Glucose Oxidase/chemistry
15.
Mikrochim Acta ; 191(2): 114, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38286853

ABSTRACT

The detection of botulinum neurotoxin A (BoNT/A) endopeptidase activity by pregnancy test paper based on human chorionic gonadotropin (hCG)-functionalized peptide-modified magnetic nanoparticles (MNs) is described for the first time. HCG-functionalized SNAP-25 peptide substrate with hydrolysis recognition sites was optimally designed. HCG can be recognized by pregnancy test strips. BoNT/A light chain (BoNT-LcA) is the central part of the endopeptidase function in holotoxin, which can specifically hydrolyze SNAP-25 peptide to release the hCG-peptide probe, and the hCG-peptide probe released can be quantitatively detected by pregnancy test strips, achieving indirect determination of BoNT/A. By quantifying the T-line color intensity of test strips, the visual detection limit for BoNT-LcA is 12.5 pg/mL, and the linear range of detection for BoNT-LcA and BoNT/A holotoxin was 100 pg/mL to 1 ng/mL and 25 to 250 ng/mL. The ability of the method to quantify BoNT/A was validated in human serum samples. This method shows the potential for sensitive detecting BoNT/A and has prospects for the diagnosis and prognosis of clinical botulism.


Subject(s)
Botulinum Toxins, Type A , Glycosides , Magnetite Nanoparticles , Pregnancy Tests , Triterpenes , Humans , Female , Pregnancy , Endopeptidases , Chorionic Gonadotropin
16.
Sensors (Basel) ; 24(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38544002

ABSTRACT

Ofloxacin (OFL) is widely used in animal husbandry and aquaculture due to its low price and broad spectrum of bacterial inhibition, etc. However, it is difficult to degrade and is retained in animal-derived food products, which are hazardous to human health. In this study, a simple and efficient method was developed for the detection of OFL residues in meat products. OFL coupled with amino magnetic beads by an amination reaction was used as a stationary phase. Aptamer AWO-06, which showed high affinity and specificity for OFL, was screened using the exponential enrichment (SELEX) technique. A fluorescent biosensor was developed by using AWO-06 as a probe and graphene oxide (GO) as a quencher. The OFL detection results could be obtained within 6 min. The linear range was observed in the range of 10-300 nM of the OFL concentration, and the limit of the detection of the sensor was 0.61 nM. Furthermore, the biosensor was stored at room temperature for more than 2 months, and its performance did not change. The developed biosensor in this study is easy to operate and rapid in response, and it is suitable for on-site detection. This study provided a novel method for the detection of OFL residues in meat products.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Meat Products , Animals , Humans , Ofloxacin/chemistry , Allergens , Aptamers, Nucleotide/chemistry , Immunomagnetic Separation , Biosensing Techniques/methods , SELEX Aptamer Technique/methods
17.
Sensors (Basel) ; 24(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38610537

ABSTRACT

Conventional spherical nucleic acid enzymes (SNAzymes), made with gold nanoparticle (AuNPs) cores and DNA shells, are widely applied in bioanalysis owing to their excellent physicochemical properties. Albeit important, the crowded catalytic units (such as G-quadruplex, G4) on the limited AuNPs surface inevitably influence their catalytic activities. Herin, a hybridization chain reaction (HCR) is employed as a means to expand the quantity and spaces of G4 enzymes for their catalytic ability enhancement. Through systematic investigations, we found that when an incomplete G4 sequence was linked at the sticky ends of the hairpins with split modes (3:1 and 2:2), this would significantly decrease the HCR hybridization capability due to increased steric hindrance. In contrast, the HCR hybridization capability was remarkably enhanced after the complete G4 sequence was directly modified at the non-sticky end of the hairpins, ascribed to the steric hindrance avoided. Accordingly, the improved SNAzymes using HCR were applied for the determination of AFB1 in food samples as a proof-of-concept, which exhibited outstanding performance (detection limit, 0.08 ng/mL). Importantly, our strategy provided a new insight for the catalytic activity improvement in SNAzymes using G4 as a signaling molecule.


Subject(s)
Metal Nanoparticles , Nucleic Acids , Aflatoxin B1 , Gold , Nucleic Acid Hybridization
18.
Int J Mol Sci ; 25(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38473916

ABSTRACT

Phalaenopsis orchids are one of the most popular ornamental plants. More than thirty orchid viruses have been reported, and virus-infected Phalaenopsis orchids significantly lose their commercial value. Therefore, the development of improved viral disease detection methods could be useful for quality control in orchid cultivation. In this study, we first utilized the MinION, a portable sequencing device based on Oxford Nanopore Technologies (ONT) to rapidly detect plant viruses in Phalaenopsis orchids. Nanopore sequencing revealed the presence of three plant viruses in Phalaenopsis orchids: odontoglossum ringspot virus, cymbidium mosaic virus, and nerine latent virus (NeLV). Furthermore, for the first time, we detected NeLV infection in Phalaenopsis orchids using nanopore sequencing and developed the reverse transcription-recombinase polymerase amplification (RT-RPA)-CRISPR/Cas12a method for rapid, instrument-flexible, and accurate diagnosis. The developed RT-RPA-CRISPR/Cas12a technique can confirm NeLV infection in less than 20 min and exhibits no cross-reactivity with other viruses. To determine the sensitivity of RT-RPA-CRISPR/Cas12a for NeLV, we compared it with RT-PCR using serially diluted transcripts and found a detection limit of 10 zg/µL, which is approximately 1000-fold more sensitive. Taken together, the ONT platform offers an efficient strategy for monitoring plant viral pathogens, and the RT-RPA-CRISPR/Cas12a method has great potential as a useful tool for the rapid and sensitive diagnosis of NeLV.


Subject(s)
Amaryllidaceae , Latent Infection , Nanopore Sequencing , Orchidaceae , CRISPR-Cas Systems , Cross Reactions , Recombinases
19.
Curr Issues Mol Biol ; 45(11): 9252-9261, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37998756

ABSTRACT

Pentatrichomonas hominis is a trichomonad protozoan that infects the cecum and colon of humans and other mammals. It is a zoonotic pathogen that causes diarrhea in both animals and humans. As companion animals, dogs infected with P. hominis pose a risk of transmitting it to humans. Current methods, such as direct smears and polymerase chain reaction (PCR), used for P. hominis detection have limitations, including low detection rates and the need for specialized equipment. Therefore, there is an urgent need to develop rapid, sensitive, and simple detection methods for clinical application. Recombinase polymerase amplification (RPA) has emerged as a technology for rapid pathogen detection. In this study, we developed a lateral flow dipstick (LFD)-RPA method based on the highly conserved SPO11-1 gene for detecting P. hominis infection by optimizing the primers, probes, and reaction conditions, and evaluating cross-reactivity with genomes of Giardia duodenalis and other parasites. The LFD-RPA method was then used to test 128 dog fecal samples collected from Changchun. The results confirmed the high specificity of the method with no cross-reactivity with the five other parasites. The lowest detection limit of the method was 102 copies/µL, and its sensitivity was 100 times higher than that of the conventional PCR method. Consistent with the positivity rate observed using nested PCR, 12 samples (out of 128) tested positive using this method (positivity rate, 9.38%). In conclusion, the LFD-RPA method developed in this study represents a simple and sensitive assay that allows for the rapid detection of P. hominis infection in dogs, especially in this field.

20.
Biochem Biophys Res Commun ; 678: 78-83, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37619314

ABSTRACT

Bacterial infection is a life-threatening situation, and its rapid diagnosis is essential for treatment. Apart from medical applications, rapid identification of bacteria is vital in the food industry or the public health system. There are various bacterial identification techniques, including molecular-based methods, immunological approaches, and biosensor-based procedures. The most commonly used methods are culture-based methods, which are time-consuming. The objective of this study is to find a fingerprint of bacteria to identify them. Three strains of bacteria were selected, and seven different concentrations of each bacterium were prepared. The bacteria were then treated with two different molar concentrations of the fluorescent fluorophore, dichlorodihydrofluorescein diacetate for 30 minutes. Then, using the fluorescence mode of a multimode reader, the fluorescence emission of each bacterium is scanned twice during 60 minutes. Plotting the difference between two scans versus the bacteria concentration results in a unique fluorescence pattern for each bacterium. Observation of the redox state of bacteria, during 90 minutes, results in a fluorescence pattern that is clearly a fingerprint of different bacteria. This pattern is independent of fluorophore concentration. Mean Squares Errors (MSE) between the fluorescence patterns of similar bacteria is less than that of different bacteria, which shows the method can properly identify the bacteria. In this study, a new label-free method is developed to detect and identify different species of bacteria by measuring the redox activity and using the fluorescence fluorophore, dichlorodihydrofluorescein diacetate. This robust and low-cost method can properly identify the bacteria, uses only one excitation and emission wavelength, and can be simply implemented with current multimode plate readers.


Subject(s)
Bacteria , Fluorescent Dyes , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL