Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.590
Filter
Add more filters

Publication year range
1.
Cell ; 187(9): 2129-2142.e17, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670071

ABSTRACT

Interspecies blastocyst complementation (IBC) provides a unique platform to study development and holds the potential to overcome worldwide organ shortages. Despite recent successes, brain tissue has not been achieved through IBC. Here, we developed an optimized IBC strategy based on C-CRISPR, which facilitated rapid screening of candidate genes and identified that Hesx1 deficiency supported the generation of rat forebrain tissue in mice via IBC. Xenogeneic rat forebrain tissues in adult mice were structurally and functionally intact. Cross-species comparative analyses revealed that rat forebrain tissues developed at the same pace as the mouse host but maintained rat-like transcriptome profiles. The chimeric rate of rat cells gradually decreased as development progressed, suggesting xenogeneic barriers during mid-to-late pre-natal development. Interspecies forebrain complementation opens the door for studying evolutionarily conserved and divergent mechanisms underlying brain development and cognitive function. The C-CRISPR-based IBC strategy holds great potential to broaden the study and application of interspecies organogenesis.


Subject(s)
Prosencephalon , Animals , Prosencephalon/metabolism , Prosencephalon/embryology , Mice , Rats , Blastocyst/metabolism , Female , CRISPR-Cas Systems/genetics , Transcriptome , Organogenesis , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Male , Mice, Inbred C57BL
2.
Cell ; 186(13): 2929-2949.e20, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37269831

ABSTRACT

Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.


Subject(s)
Longevity , Phosphatidylinositol 3-Kinases , Animals , Mice , Longevity/genetics , Phosphatidylinositol 3-Kinases/genetics , Aging/genetics , Mammals/genetics , Gene Expression Profiling
3.
Cell ; 170(1): 72-85.e14, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28666126

ABSTRACT

Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere replication is altered at shortened telomeres. R-loop persistence at short telomeres contributes to activation of the DNA damage response (DDR) and promotes recruitment of the Rad51 recombinase. Thus, the telomere length-dependent regulation of TERRA and TERRA R-loops is a critical determinant of the rate of replicative senescence.


Subject(s)
Cell Cycle , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Telomere/metabolism , Cellular Senescence , DNA Damage , Exoribonucleases/metabolism , Nucleic Acid Hybridization , Recombinational DNA Repair , Repressor Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Telomere/chemistry , Telomere-Binding Proteins/metabolism
4.
Mol Cell ; 83(18): 3253-3267.e7, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37683646

ABSTRACT

RNA polymerase II (RNAPII) transcription involves initiation from a promoter, transcriptional elongation through the gene, and termination in the terminator region. In bacteria, terminators often contain specific DNA elements provoking polymerase dissociation, but RNAPII transcription termination is thought to be driven entirely by protein co-factors. We used biochemical reconstitution, single-molecule studies, and genome-wide analysis in yeast to study RNAPII termination. Transcription into natural terminators by pure RNAPII results in spontaneous termination at specific sequences containing T-tracts. Single-molecule analysis indicates that termination involves pausing without backtracking. The "torpedo" Rat1-Rai1 exonuclease (XRN2 in humans) greatly stimulates spontaneous termination but is ineffectual on other paused RNAPIIs. By contrast, elongation factor Spt4-Spt5 (DSIF) suppresses termination. Genome-wide analysis further indicates that termination occurs by transcript cleavage at the poly(A) site exposing a new 5' RNA-end that allows Rat1-Rai1 loading, which then catches up with destabilized RNAPII at specific termination sites to end transcription.


Subject(s)
RNA Polymerase II , Saccharomyces cerevisiae Proteins , Humans , RNA Polymerase II/genetics , DNA , Transcription, Genetic , Exonucleases , Peptide Elongation Factors , Saccharomyces cerevisiae/genetics , RNA-Binding Proteins , Saccharomyces cerevisiae Proteins/genetics
5.
EMBO J ; 42(16): e111133, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37431790

ABSTRACT

Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.


Subject(s)
Cellular Senescence , Serotonin , Animals , Mice , Serotonin/metabolism , Cellular Senescence/physiology , Aging/metabolism , Cell Death , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Mole Rats/metabolism
6.
Development ; 151(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38112206

ABSTRACT

Placental development involves coordinated expansion and differentiation of trophoblast cell lineages possessing specialized functions. Among the differentiated trophoblast cell lineages are invasive trophoblast cells, which exit the placenta and invade the uterus, where they restructure the uterine parenchyma and facilitate remodeling of uterine spiral arteries. The rat exhibits deep intrauterine trophoblast cell invasion, a feature shared with human placentation, and is also amenable to gene manipulation using genome-editing techniques. In this investigation, we generated a conditional rat model targeting the invasive trophoblast cell lineage. Prolactin family 7, subfamily b, member 1 (Prl7b1) is uniquely and abundantly expressed in the rat invasive trophoblast cell lineage. Disruption of Prl7b1 did not adversely affect placental development. We demonstrated that the Prl7b1 locus could be effectively used to drive the expression of Cre recombinase in invasive trophoblast cells. Our rat model represents a new tool for investigating candidate genes contributing to the regulation of invasive trophoblast cells and their roles in trophoblast-guided uterine spiral artery remodeling.


Subject(s)
Placenta , Placentation , Pregnancy , Rats , Female , Animals , Humans , Placenta/metabolism , Placentation/genetics , Trophoblasts , Uterus , Cell Lineage/genetics , Models, Animal
7.
Trends Genet ; 39(12): 889-891, 2023 12.
Article in English | MEDLINE | ID: mdl-37574379

ABSTRACT

In aged animals from worms to humans, transcriptional elongation rates are faster, leading to changes in transcript quality and alternative splicing. Recent work by Debès et al. shows how interventions that slow elongation rates, such as mutating RNA polymerase II (Pol II) or increasing nucleosome density to impose transcriptional 'traffic', delay senescence and promote longevity.


Subject(s)
Longevity , Transcription, Genetic , Animals , Humans , Aged , Longevity/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Nucleosomes , Alternative Splicing
8.
EMBO J ; 41(15): e109694, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35694726

ABSTRACT

Naked mole rats (NMRs) are the longest-lived rodents yet their stem cell characteristics remain enigmatic. Here, we comprehensively mapped the NMR hematopoietic landscape and identified unique features likely contributing to longevity. Adult NMRs form red blood cells in spleen and marrow, which comprise a myeloid bias toward granulopoiesis together with decreased B-lymphopoiesis. Remarkably, youthful blood and marrow single-cell transcriptomes and cell compositions are largely maintained until at least middle age. Similar to primates, the primitive stem and progenitor cell (HSPC) compartment is marked by CD34 and THY1. Stem cell polarity is seen for Tubulin but not CDC42, and is not lost until 12 years of age. HSPC respiration rates are as low as in purified human stem cells, in concert with a strong expression signature for fatty acid metabolism. The pool of quiescent stem cells is higher than in mice, and the cell cycle of hematopoietic cells is prolonged. By characterizing the NMR hematopoietic landscape, we identified resilience phenotypes such as an increased quiescent HSPC compartment, absence of age-related decline, and neotenic traits likely geared toward longevity.


Subject(s)
Aging , Mole Rats , Adult , Aging/metabolism , Animals , Hematopoiesis , Humans , Mice , Middle Aged , Mole Rats/genetics , Mole Rats/metabolism , Phenotype , Stem Cells
9.
Development ; 150(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37376888

ABSTRACT

The reactivation of developmental genes and pathways during adulthood may contribute to pathogenesis of diseases such as prostate cancer. Analysis of the mechanistic links between development and disease could be exploited to identify signalling pathways leading to disease in the prostate. However, the mechanisms underpinning prostate development require further characterisation to interrogate fully the link between development and disease. Previously, our group developed methods to produce prostate organoids using induced pluripotent stem cells (iPSCs). Here, we show that human iPSCs can be differentiated into prostate organoids using neonatal rat seminal vesicle mesenchyme in vitro. The organoids can be used to study prostate development or modified to study prostate cancer. We also elucidated molecular drivers of prostate induction through RNA-sequencing analyses of the rat urogenital sinus and neonatal seminal vesicles. We identified candidate drivers of prostate development evident in the inductive mesenchyme and epithelium involved with prostate specification. Our top candidates included Spx, Trib3, Snai1, Snai2, Nrg2 and Lrp4. This work lays the foundations for further interrogation of the reactivation of developmental genes in adulthood, leading to prostate disease.


Subject(s)
Induced Pluripotent Stem Cells , Prostatic Neoplasms , Male , Humans , Rats , Animals , Prostate , Rodentia , Urogenital System/physiology , Cell Differentiation/genetics , Organoids
10.
Development ; 150(15)2023 08 01.
Article in English | MEDLINE | ID: mdl-37417811

ABSTRACT

The invasive trophoblast cell lineages in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model for studying hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus ATAC-seq data from gestation day 15.5 and 19.5 rat uterine-placental interface tissues, and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial and smooth muscle cells, and compared invasive trophoblast chromatin accessibility with extravillous trophoblast cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.


Subject(s)
Gene Regulatory Networks , Trophoblasts , Animals , Pregnancy , Rats , Cell Nucleus , Chromatin , Placenta/cytology , Single-Cell Gene Expression Analysis , Transcription Factors/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism , Uterus/cytology , Female
11.
Development ; 150(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36607602

ABSTRACT

Hemochorial placentation involves the differentiation of invasive trophoblast cells, specialized cells that possess the capacity to exit the placenta and invade into the uterus where they restructure the vasculature. Invasive trophoblast cells arise from a well-defined compartment within the placenta, referred to as the junctional zone in rat and the extravillous trophoblast cell column in human. In this study, we investigated roles for AKT1, a serine/threonine kinase, in placental development using a genome-edited/loss-of-function rat model. Disruption of AKT1 resulted in placental, fetal and postnatal growth restriction. Forkhead box O4 (Foxo4), which encodes a transcription factor and known AKT substrate, was abundantly expressed in the junctional zone and in invasive trophoblast cells of the rat placentation site. Foxo4 gene disruption using genome editing resulted in placentomegaly, including an enlarged junctional zone. AKT1 and FOXO4 regulate the expression of many of the same transcripts expressed by trophoblast cells, but in opposite directions. In summary, we have identified AKT1 and FOXO4 as part of a regulatory network that reciprocally controls critical indices of hemochorial placenta development.


Subject(s)
Placenta , Placentation , Animals , Female , Pregnancy , Rats , Cell Cycle Proteins/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Placenta/metabolism , Placentation/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Trophoblasts , Uterus
12.
Development ; 150(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37283046

ABSTRACT

In mammals, a near complete resetting of DNA methylation (DNAme) is observed during germline establishment. This wave of epigenetic reprogramming is sensitive to the environment, which could impair the establishment of an optimal state of the gamete epigenome, hence proper embryo development. Yet, we lack a comprehensive understanding of DNAme dynamics during spermatogenesis, especially in rats, the model of choice for toxicological studies. Using a combination of cell sorting and DNA methyl-seq capture, we generated a stage-specific mapping of DNAme in nine populations of differentiating germ cells from perinatal life to spermiogenesis. DNAme was found to reach its lowest level at gestational day 18, the last demethylated coding regions being associated with negative regulation of cell movement. The following de novo DNAme displayed three different kinetics with common and distinct genomic enrichments, suggesting a non-random process. DNAme variations were also detected at key steps of chromatin remodeling during spermiogenesis, revealing potential sensitivity. These methylome datasets for coding sequences during normal spermatogenesis in rat provide an essential reference for studying epigenetic-related effects of disease or environmental factors on the male germline.


Subject(s)
DNA Methylation , Germ Cells , Male , Pregnancy , Female , Rats , Animals , DNA Methylation/genetics , Spermatogenesis/genetics , DNA , Epigenome , Mammals/genetics
13.
Proc Natl Acad Sci U S A ; 120(25): e2300794120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307448

ABSTRACT

Chemical communication by females remains poorly understood, with most attention focused on female advertisement of sexual receptivity to males or mother-offspring communication. However, in social species, scents are likely to be important for mediating competition and cooperation between females determining individual reproductive success. Here, we explore chemical signaling by female laboratory rats (Rattus norvegicus) to test i) whether females target their deployment of scent information differentially according to their sexual receptivity and the genetic identity of both female and male conspecifics signaling in the local environment and ii) whether females are attracted to gain the same or different information from female scents compared to males. Consistent with targeting of scent information to colony members of similar genetic background, female rats increased scent marking in response to scents from females of the same strain. Females also suppressed scent marking in response to male scent from a genetically foreign strain while sexually receptive. Proteomic analysis of female scent deposits revealed a complex protein profile, contributed from several sources but dominated by clitoral gland secretion. In particular, female scent marks contained a series of clitoral-derived hydrolases and proteolytically truncated major urinary proteins (MUPs). Manipulated blends of clitoral secretion and urine from estrus females were strongly attractive to both sexes, while voided urine alone stimulated no interest. Our study reveals that information about female receptive status is shared between females as well as with males, while clitoral secretions containing a complex set of truncated MUPs and other proteins play a key role in female communication.


Subject(s)
Body Fluids , Odorants , Female , Male , Animals , Rats , Proteomics , Genetic Background , Hydrolases , Pheromones
14.
Proc Natl Acad Sci U S A ; 120(20): e2220334120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155893

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% decrease in ESCC incidence vs. Zn-untreated controls. Zn treatment eliminated ESCCs by affecting a spectrum of biological processes that included downregulation of expression of the two miRs and miR-31-controlled inflammatory pathway, stimulation of miR-21-PDCD4 axis apoptosis, and reversal of the ESCC metabolome: with decrease in putrescine, increase in glucose, accompanied by downregulation of metabolite enzymes ODC and HK2. Thus, Zn treatment or miR-31/21 silencing are effective therapeutic strategies for ESCC in this rodent model and should be examined in the human counterpart exhibiting the same biological processes.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , Rats , Animals , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Antagomirs , Zinc/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis Regulatory Proteins/metabolism , Inflammation/complications , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement , RNA-Binding Proteins/metabolism
15.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38561224

ABSTRACT

Coordinated neuronal activity has been identified to play an important role in information processing and transmission in the brain. However, current research predominantly focuses on understanding the properties and functions of neuronal coordination in hippocampal and cortical areas, leaving subcortical regions relatively unexplored. In this study, we use single-unit recordings in female Sprague Dawley rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity in the auditory thalamus-the medial geniculate body (MGB). We reliably identify coordinated neuronal ensembles (cNEs), which are groups of neurons that fire synchronously, in the MGB. cNEs are shown not to be the result of false-positive detections or by-products of slow-state oscillations in anesthetized animals. We demonstrate that cNEs in the MGB have enhanced information-encoding properties over individual neurons. Their neuronal composition is stable between spontaneous and evoked activity, suggesting limited stimulus-induced ensemble dynamics. These MGB cNE properties are similar to what is observed in cNEs in the primary auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing local networks and play a fundamental role in sensory processing within the brain.


Subject(s)
Acoustic Stimulation , Geniculate Bodies , Neurons , Rats, Sprague-Dawley , Animals , Female , Rats , Neurons/physiology , Geniculate Bodies/physiology , Acoustic Stimulation/methods , Auditory Pathways/physiology , Action Potentials/physiology , Auditory Cortex/physiology , Auditory Cortex/cytology , Thalamus/physiology , Thalamus/cytology , Evoked Potentials, Auditory/physiology
16.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38589230

ABSTRACT

Animals must distinguish the sensory consequences of self-generated movements (reafference) from those of other-generated movements (exafference). Only self-generated movements entail the production of motor copies (i.e., corollary discharges), which are compared with reafference in the cerebellum to compute predictive or internal models of movement. Internal models emerge gradually over the first three postnatal weeks in rats through a process that is not yet fully understood. Previously, we demonstrated in postnatal day (P) 8 and P12 rats that precerebellar nuclei convey corollary discharge and reafference to the cerebellum during active (REM) sleep when pups produce limb twitches. Here, recording from a deep cerebellar nucleus (interpositus, IP) in P12 rats of both sexes, we compared reafferent and exafferent responses with twitches and limb stimulations, respectively. As expected, most IP units showed robust responses to twitches. However, in contrast with other sensory structures throughout the brain, relatively few IP units showed exafferent responses. Upon finding that exafferent responses occurred in pups under urethane anesthesia, we hypothesized that urethane inhibits cerebellar cortical cells, thereby disinhibiting exafferent responses in IP. In support of this hypothesis, ablating cortical tissue dorsal to IP mimicked the effects of urethane on exafference. Finally, the results suggest that twitch-related corollary discharge and reafference are conveyed simultaneously and in parallel to cerebellar cortex and IP. Based on these results, we propose that twitches provide opportunities for the nascent cerebellum to integrate somatotopically organized corollary discharge and reafference, thereby enabling the development of closed-loop circuits and, subsequently, internal models.


Subject(s)
Cerebellum , Movement , Animals , Rats , Female , Male , Movement/physiology , Cerebellum/physiology , Animals, Newborn , Cerebellar Nuclei/physiology , Rats, Sprague-Dawley , Rats, Long-Evans , Action Potentials/physiology
17.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38569923

ABSTRACT

Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.


Subject(s)
Gyrus Cinguli , Optogenetics , Rats, Long-Evans , Animals , Gyrus Cinguli/physiology , Male , Rats , Female , Attention/physiology , Reward , Choice Behavior/physiology , Decision Making/physiology , Neural Inhibition/physiology
18.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38897724

ABSTRACT

The nucleus accumbens (NAc) is thought to contribute to motivated behavior by signaling the value of reward-predicting cues and the delivery of anticipated reward. The NAc is subdivided into core and shell, with each region containing different populations of neurons that increase or decrease firing to rewarding events. While there are numerous theories of functions pertaining to these subregions and cell types, most are in the context of reward processing, with fewer considering that the NAc might serve functions related to action selection more generally. We recorded from single neurons in the NAc as rats of both sexes performed a STOP-change task that is commonly used to study motor control and impulsivity. In this task, rats respond quickly to a spatial cue on 80% of trials (GO) and must stop and redirect planned movement on 20% of trials (STOP). We found that the activity of reward-excited neurons signaled accurate response direction on GO, but not STOP, trials and that these neurons exhibited higher precue firing after correct trials. In contrast, reward-inhibited neurons significantly represented response direction on STOP trials at the time of the instrumental response. Finally, the proportion of reward-excited to reward-inhibited neurons and the strength of precue firing decreased as the electrode traversed the NAc. We conclude that reward-excited cells (more common in core) promote proactive action selection, while reward-inhibited cells (more common in shell) contribute to accurate responding on STOP trials that require reactive suppression and redirection of behavior.


Subject(s)
Action Potentials , Neurons , Nucleus Accumbens , Rats, Long-Evans , Reward , Nucleus Accumbens/physiology , Animals , Rats , Male , Female , Action Potentials/physiology , Neurons/physiology , Conditioning, Operant/physiology , Reaction Time/physiology , Psychomotor Performance/physiology , Cues
19.
Front Neuroendocrinol ; 74: 101146, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004314

ABSTRACT

Over the past two decades, there has been increasing evidence for the importance of rapid-onset actions of corticosteroid hormones in the brain. Here, we highlight the distinct rapid corticosteroid actions that regulate excitatory and inhibitory synaptic transmission in the hypothalamus, the hippocampus, basolateral amygdala, and prefrontal cortex. The receptors that mediate rapid corticosteroid actions are located at or close to the plasma membrane, though many of the receptor characteristics remain unresolved. Rapid-onset corticosteroid effects play a role in fast neuroendocrine feedback as well as in higher brain functions, including increased aggression and anxiety, and impaired memory retrieval. The rapid non-genomic corticosteroid actions precede and complement slow-onset, long-lasting transcriptional actions of the steroids. Both rapid and slow corticosteroid actions appear to be indispensable to adapt to a continuously changing environment, and their imbalance can increase an individual's susceptibility to psychopathology.

20.
Am J Hum Genet ; 109(2): 328-344, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35077668

ABSTRACT

Progress in earlier detection and clinical management has increased life expectancy and quality of life in people with Down syndrome (DS). However, no drug has been approved to help individuals with DS live independently and fully. Although rat models could support more robust physiological, behavioral, and toxicology analysis than mouse models during preclinical validation, no DS rat model is available as a result of technical challenges. We developed a transchromosomic rat model of DS, TcHSA21rat, which contains a freely segregating, EGFP-inserted, human chromosome 21 (HSA21) with >93% of its protein-coding genes. RNA-seq of neonatal forebrains demonstrates that TcHSA21rat expresses HSA21 genes and has an imbalance in global gene expression. Using EGFP as a marker for trisomic cells, flow cytometry analyses of peripheral blood cells from 361 adult TcHSA21rat animals show that 81% of animals retain HSA21 in >80% of cells, the criterion for a "Down syndrome karyotype" in people. TcHSA21rat exhibits learning and memory deficits and shows increased anxiety and hyperactivity. TcHSA21rat recapitulates well-characterized DS brain morphology, including smaller brain volume and reduced cerebellar size. In addition, the rat model shows reduced cerebellar foliation, which is not observed in DS mouse models. Moreover, TcHSA21rat exhibits anomalies in craniofacial morphology, heart development, husbandry, and stature. TcHSA21rat is a robust DS animal model that can facilitate DS basic research and provide a unique tool for preclinical validation to accelerate DS drug development.


Subject(s)
Anxiety/genetics , Chromosomes, Human, Pair 21 , Down Syndrome/genetics , Founder Effect , Hyperkinesis/genetics , Animals , Anxiety/metabolism , Anxiety/pathology , Cerebellum/metabolism , Cerebellum/pathology , Disease Models, Animal , Down Syndrome/metabolism , Down Syndrome/pathology , Female , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Hyperkinesis/metabolism , Hyperkinesis/pathology , Karyotype , Learning , Male , Mutagenesis, Insertional , Organ Size , Posture , Prosencephalon/metabolism , Prosencephalon/pathology , Rats , Rats, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL