Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.885
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(1): e2306295121, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38150498

ABSTRACT

Focusing on the upside of negative events often promotes resilience. Yet, the underlying mechanisms that allow some people to spontaneously see the good in the bad remain unclear. The broaden-and-build theory of positive emotion has long suggested that positive affect, including positivity in the face of negative events, is linked to idiosyncratic thought patterns (i.e., atypical cognitive responses). Yet, evidence in support of this view has been limited, in part, due to difficulty in measuring idiosyncratic cognitive processes as they unfold. To overcome this barrier, we applied Inter-Subject Representational Similarity Analysis to test whether and how idiosyncratic neural responding supports positive reactions to negative experience. We found that idiosyncratic functional connectivity patterns in the brain's default network while resting after a negative experience predicts more positive descriptions of the event. This effect persisted when controlling for connectivity 1) before and during the negative experience, 2) before, during, and after a neutral experience, and 3) between other relevant brain regions (i.e., the limbic system). The relationship between idiosyncratic default network responding and positive affect was largely driven by functional connectivity patterns between the ventromedial prefrontal cortex and the rest of the default network and occurred relatively quickly during rest. We identified post-encoding rest as a key moment and the default network as a key brain system in which idiosyncratic responses correspond with seeing the good in the bad.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Neural Pathways/physiology , Brain/diagnostic imaging , Brain/physiology , Prefrontal Cortex
2.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814872

ABSTRACT

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Subject(s)
Cerebral Cortex , Cognition , Magnetic Resonance Imaging , Humans , Cognition/physiology , Cognition/drug effects , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Male , Magnetic Resonance Imaging/methods , Female , Adolescent , Child , Connectome/methods , Alprazolam/pharmacology , Receptors, GABA-A/metabolism , Young Adult
3.
Proc Natl Acad Sci U S A ; 120(5): e2202435120, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36693103

ABSTRACT

The neural circuit of the brain is organized as a hierarchy of functional units with wide-ranging connections that support information flow and functional connectivity. Studies using MRI indicate a moderate coupling between structural and functional connectivity at the system level. However, how do connections of different directions (feedforward and feedback) and regions with different excitatory and inhibitory (E/I) neurons shape the hemodynamic activity and functional connectivity over the hierarchy are unknown. Here, we used functional MRI to detect optogenetic-evoked and resting-state activities over a somatosensory pathway in the mouse brain in relation to axonal projection and E/I distribution. Using a highly sensitive ultrafast imaging, we identified extensive activation in regions up to the third order of axonal projections following optogenetic excitation of the ventral posteriomedial nucleus of the thalamus. The evoked response and functional connectivity correlated with feedforward projections more than feedback projections and weakened with the hierarchy. The hemodynamic response exhibited regional and hierarchical differences, with slower and more variable responses in high-order areas and bipolar response predominantly in the contralateral cortex. Electrophysiological recordings suggest that these reflect differences in neural activity rather than neurovascular coupling. Importantly, the positive and negative parts of the hemodynamic response correlated with E/I neuronal densities, respectively. Furthermore, resting-state functional connectivity was more associated with E/I distribution, whereas stimulus-evoked effective connectivity followed structural wiring. These findings indicate that the structure-function relationship is projection-, cell-type- and hierarchy-dependent. Hemodynamic transients could reflect E/I activity and the increased complexity of hierarchical processing.


Subject(s)
Connectome , Neurovascular Coupling , Mice , Animals , Brain/physiology , Brain Mapping/methods , Hemodynamics , Neurovascular Coupling/physiology , Magnetic Resonance Imaging , Neural Pathways/physiology , Nerve Net/physiology , Connectome/methods
4.
Proc Natl Acad Sci U S A ; 120(15): e2219693120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37023134

ABSTRACT

Corticostriatal activity is an appealing target for nonpharmacological treatments of brain disorders. In humans, corticostriatal activity may be modulated with noninvasive brain stimulation (NIBS). However, a NIBS protocol with a sound neuroimaging measure demonstrating a change in corticostriatal activity is currently lacking. Here, we combine transcranial static magnetic field stimulation (tSMS) with resting-state functional MRI (fMRI). We first present and validate the ISAAC analysis, a well-principled framework that disambiguates functional connectivity between regions from local activity within regions. All measures of the framework suggested that the region along the medial cortex displaying greater functional connectivity with the striatum is the supplementary motor area (SMA), where we applied tSMS. We then use a data-driven version of the framework to show that tSMS of the SMA modulates the local activity in the SMA proper, in the adjacent sensorimotor cortex, and in the motor striatum. We finally use a model-driven version of the framework to clarify that the tSMS-induced modulation of striatal activity can be primarily explained by a change in the shared activity between the modulated motor cortical areas and the motor striatum. These results suggest that corticostriatal activity can be targeted, monitored, and modulated noninvasively in humans.


Subject(s)
Motor Cortex , Sensorimotor Cortex , Humans , Corpus Striatum/diagnostic imaging , Neostriatum , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods , Magnetic Resonance Imaging
5.
J Neurosci ; 44(13)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38290847

ABSTRACT

Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating their functional roles, how the brain navigates the spatial coordination among them and the biological relevance of this coordination is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed a new concept, that is, co-representation of functional brain networks, to delineate the spatial coordination among them. To further quantify the co-representation pattern, we defined two indexes, that is, the co-representation specificity (CoRS) and intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic) regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, paralimbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual behavioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical organization of the brain by emphasizing the assembly of functional networks.


Subject(s)
Brain Mapping , Brain , Female , Humans , Male , Brain/diagnostic imaging , Magnetic Resonance Imaging , Sensation
6.
J Neurosci ; 44(5)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37973377

ABSTRACT

Individuals' phenotypes, including the brain's structure and function, are largely determined by genes and their interplay. The resting brain generates salient rhythmic patterns that can be characterized noninvasively using functional neuroimaging such as magnetoencephalography (MEG). One of these rhythms, the somatomotor (rolandic) beta rhythm, shows intermittent high amplitude "events" that predict behavior across tasks and species. Beta rhythm is altered in neurological disease. The aperiodic (1/f) signal present in electrophysiological recordings is also modulated by some neurological conditions and aging. Both sensorimotor beta and aperiodic signal could thus serve as biomarkers of sensorimotor function. Knowledge about the extent to which these brain functional measures are heritable could shed light on the mechanisms underlying their generation. We investigated the heritability and variability of human spontaneous sensorimotor beta rhythm events and aperiodic activity in 210 healthy male and female adult siblings' spontaneous MEG activity. The most heritable trait was the aperiodic 1/f signal, with a heritability of 0.87 in the right hemisphere. Time-resolved beta event amplitude parameters were also highly heritable, whereas the heritabilities for overall beta power, peak frequency, and measures of event duration remained nonsignificant. Human sensorimotor neural activity can thus be dissected into different components with variable heritability. We postulate that these differences partially reflect different underlying signal-generating mechanisms. The 1/f signal and beta event amplitude measures may depend more on fixed, anatomical parameters, whereas beta event duration and its modulation reflect dynamic characteristics, guiding their use as potential disease biomarkers.


Subject(s)
Brain , Magnetoencephalography , Adult , Humans , Male , Female , Magnetoencephalography/methods , Brain/physiology , Brain Mapping , Beta Rhythm/physiology , Biomarkers
7.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38538141

ABSTRACT

The human hand possesses both consolidated motor skills and remarkable flexibility in adapting to ongoing task demands. However, the underlying mechanisms by which the brain balances stability and flexibility remain unknown. In the absence of external input or behavior, spontaneous (intrinsic) brain connectivity is thought to represent a prior of stored memories. In this study, we investigated how manual dexterity modulates spontaneous functional connectivity in the motor cortex during hand movement. Using magnetoencephalography, in 47 human participants (both sexes), we examined connectivity modulations in the α and ß frequency bands at rest and during two motor tasks (i.e., finger tapping or toe squeezing). The flexibility and stability of such modulations allowed us to identify two groups of participants with different levels of performance (high and low performers) on the nine-hole peg test, a test of manual dexterity. In the α band, participants with higher manual dexterity showed distributed decreases of connectivity, specifically in the motor cortex, increased segregation, and reduced nodal centrality. Participants with lower manual dexterity showed an opposite pattern. Notably, these patterns from the brain to behavior are mirrored by results from behavior to the brain. Indeed, when participants were divided using the median split of the dexterity score, we found the same connectivity patterns. In summary, this experiment shows that a long-term motor skill-manual dexterity-influences the way the motor systems respond during movements.


Subject(s)
Magnetoencephalography , Motor Cortex , Motor Skills , Humans , Male , Female , Adult , Motor Cortex/physiology , Motor Skills/physiology , Young Adult , Magnetoencephalography/methods , Alpha Rhythm/physiology , Hand/physiology , Psychomotor Performance/physiology , Movement/physiology , Neural Pathways/physiology
8.
J Neurosci ; 44(10)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38286629

ABSTRACT

Identification of replicable neuroimaging correlates of attention-deficit hyperactivity disorder (ADHD) has been hindered by small sample sizes, small effects, and heterogeneity of methods. Given evidence that ADHD is associated with alterations in widely distributed brain networks and the small effects of individual brain features, a whole-brain perspective focusing on cumulative effects is warranted. The use of large, multisite samples is crucial for improving reproducibility and clinical utility of brain-wide MRI association studies. To address this, a polyneuro risk score (PNRS) representing cumulative, brain-wide, ADHD-associated resting-state functional connectivity was constructed and validated using data from the Adolescent Brain Cognitive Development (ABCD, N = 5,543, 51.5% female) study, and was further tested in the independent Oregon-ADHD-1000 case-control cohort (N = 553, 37.4% female). The ADHD PNRS was significantly associated with ADHD symptoms in both cohorts after accounting for relevant covariates (p < 0.001). The most predictive PNRS involved all brain networks, though the strongest effects were concentrated among the default mode and cingulo-opercular networks. In the longitudinal Oregon-ADHD-1000, non-ADHD youth had significantly lower PNRS (Cohen's d = -0.318, robust p = 5.5 × 10-4) than those with persistent ADHD (age 7-19). The PNRS, however, did not mediate polygenic risk for ADHD. Brain-wide connectivity was robustly associated with ADHD symptoms in two independent cohorts, providing further evidence of widespread dysconnectivity in ADHD. Evaluation in enriched samples demonstrates the promise of the PNRS approach for improving reproducibility in neuroimaging studies and unraveling the complex relationships between brain connectivity and behavioral disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Adolescent , Humans , Female , Child , Young Adult , Adult , Male , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain Mapping , Reproducibility of Results , Brain/diagnostic imaging , Cognition , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging
9.
Brain ; 147(4): 1423-1435, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38537253

ABSTRACT

Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Cross-Sectional Studies , Parietal Lobe , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology , Neural Inhibition/physiology
10.
Brain ; 147(2): 458-471, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37677056

ABSTRACT

Visual hallucinations in Parkinson's disease can be viewed from a systems-level perspective, whereby dysfunctional communication between brain networks responsible for perception predisposes a person to hallucinate. To this end, abnormal functional interactions between higher-order and primary sensory networks have been implicated in the pathophysiology of visual hallucinations in Parkinson's disease, however the precise signatures remain to be determined. Dimensionality reduction techniques offer a novel means for simplifying the interpretation of multidimensional brain imaging data, identifying hierarchical patterns in the data that are driven by both within- and between-functional network changes. Here, we applied two complementary non-linear dimensionality reduction techniques-diffusion-map embedding and t-distributed stochastic neighbour embedding (t-SNE)-to resting state functional MRI data, in order to characterize the altered functional hierarchy associated with susceptibility to visual hallucinations. Our study involved 77 people with Parkinson's disease (31 with hallucinations; 46 without hallucinations) and 19 age-matched healthy control subjects. In patients with visual hallucinations, we found compression of the unimodal-heteromodal gradient consistent with increased functional integration between sensory and higher order networks. This was mirrored in a traditional functional connectivity analysis, which showed increased connectivity between the visual and default mode networks in the hallucinating group. Together, these results suggest a route by which higher-order regions may have excessive influence over earlier sensory processes, as proposed by theoretical models of hallucinations across disorders. By contrast, the t-SNE analysis identified distinct alterations in prefrontal regions, suggesting an additional layer of complexity in the functional brain network abnormalities implicated in hallucinations, which was not apparent in traditional functional connectivity analyses. Together, the results confirm abnormal brain organization associated with the hallucinating phenotype in Parkinson's disease and highlight the utility of applying convergent dimensionality reduction techniques to investigate complex clinical symptoms. In addition, the patterns we describe in Parkinson's disease converge with those seen in other conditions, suggesting that reduced hierarchical differentiation across sensory-perceptual systems may be a common transdiagnostic vulnerability in neuropsychiatric disorders with perceptual disturbances.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Magnetic Resonance Imaging/methods , Hallucinations/etiology , Brain/diagnostic imaging , Brain Mapping
11.
Brain ; 147(1): 186-200, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37656990

ABSTRACT

Stroke results in local neural disconnection and brain-wide neuronal network dysfunction leading to neurological deficits. Beyond the hyper-acute phase of ischaemic stroke, there is no clinically-approved pharmacological treatment that alleviates sensorimotor impairments. Functional recovery after stroke involves the formation of new or alternative neuronal circuits including existing neural connections. The type-5 metabotropic glutamate receptor (mGluR5) has been shown to modulate brain plasticity and function and is a therapeutic target in neurological diseases outside of stroke. We investigated whether mGluR5 influences functional recovery and network reorganization rodent models of focal ischaemia. Using multiple behavioural tests, we observed that treatment with negative allosteric modulators (NAMs) of mGluR5 (MTEP, fenobam and AFQ056) for 12 days, starting 2 or 10 days after stroke, restored lost sensorimotor functions, without diminishing infarct size. Recovery was evident within hours after initiation of treatment and progressed over the subsequent 12 days. Recovery was prevented by activation of mGluR5 with the positive allosteric modulator VU0360172 and accelerated in mGluR5 knock-out mice compared with wild-type mice. After stroke, multisensory stimulation by enriched environments enhanced recovery, a result prevented by VU0360172, implying a role of mGluR5 in enriched environment-mediated recovery. Additionally, MTEP treatment in conjunction with enriched environment housing provided an additive recovery enhancement compared to either MTEP or enriched environment alone. Using optical intrinsic signal imaging, we observed brain-wide disruptions in resting-state functional connectivity after stroke that were prevented by mGluR5 inhibition in distinct areas of contralesional sensorimotor and bilateral visual cortices. The levels of mGluR5 protein in mice and in tissue samples of stroke patients were unchanged after stroke. We conclude that neuronal circuitry subserving sensorimotor function after stroke is depressed by a mGluR5-dependent maladaptive plasticity mechanism that can be restored by mGluR5 inhibition. Post-acute stroke treatment with mGluR5 NAMs combined with rehabilitative training may represent a novel post-acute stroke therapy.


Subject(s)
Brain Ischemia , Nervous System Diseases , Stroke , Animals , Humans , Mice , Brain/metabolism , Brain Ischemia/drug therapy , Mice, Knockout , Nervous System Diseases/metabolism , Receptor, Metabotropic Glutamate 5/metabolism
12.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38494419

ABSTRACT

Alterations to the resting-state default mode network (rsDMN) are early indicators of memory decline and Alzheimer's disease (AD). Brain regions shared by the rsDMN and memory circuitry are highly sexually dimorphic. However, data are limited regarding the impact of sex and reproductive status on rsDMN connectivity and memory circuitry and function. In the current investigation, rsDMN connectivity was assessed in 180 early midlife adults aged 45 to 55 by sex and reproductive status (87 women; 93 men). Associations between left and right hippocampal connectivity of rsDMN and verbal memory encoding circuitry were examined using linear mixed models, controlled for age and parental socioeconomic status, testing interactions by sex and reproductive status. Relative to men, women exhibited greater rsDMN connectivity between the left and right hippocampus. In relation to rsDMN-memory encoding connectivity, sex differences were revealed across the menopausal transition, such that only postmenopausal women exhibited loss of the ability to decrease rsDMN left-right hippocampal connectivity during memory encoding associated with poorer memory performance. Results demonstrate that sex and reproductive status play an important role in aging of the rsDMN and interactions with memory circuitry/function. This suggests the critical importance of sex and reproductive status when studying early midlife indicators of memory decline and AD risk.


Subject(s)
Aging , Default Mode Network , Female , Humans , Male , Brain/diagnostic imaging , Memory Disorders , Menopause , Middle Aged
13.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771240

ABSTRACT

In vitro and ex vivo studies have shown consistent indications of hyperexcitability in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mouse model of autism spectrum disorder. We recently introduced a method to quantify network-level functional excitation-inhibition ratio from the neuronal oscillations. Here, we used this measure to study whether the implicated synaptic excitation-inhibition disturbances translate to disturbances in network physiology in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) gene knockout model. Vigilance-state scoring was used to extract segments of inactive wakefulness as an equivalent behavioral condition to the human resting-state and, subsequently, we performed high-frequency resolution analysis of the functional excitation-inhibition biomarker, long-range temporal correlations, and spectral power. We corroborated earlier studies showing increased high-frequency power in Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mice. Long-range temporal correlations were higher in the gamma frequency ranges. Contrary to expectations, functional excitation-inhibition was lower in the knockout mice in high frequency ranges, suggesting more inhibition-dominated networks. Exposure to the Gamma-aminobutyric acid (GABA)-agonist clonazepam decreased the functional excitation-inhibition in both genotypes, confirming that increasing inhibitory tone results in a reduction of functional excitation-inhibition. In addition, clonazepam decreased electroencephalogram power and increased long-range temporal correlations in both genotypes. These findings show applicability of these new resting-state electroencephalogram biomarkers to animal for translational studies and allow investigation of the effects of lower-level disturbances in excitation-inhibition balance.


Subject(s)
Fragile X Mental Retardation Protein , Neural Inhibition , Neurons , Animals , Mice , Electroencephalography , Fragile X Mental Retardation Protein/genetics , Mice, Inbred C57BL , Mice, Knockout , Neural Inhibition/physiology , Neural Inhibition/drug effects , Neurons/physiology , Neurons/drug effects , Neurons/metabolism
14.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38517178

ABSTRACT

Cognitive decline with aging involves multifactorial processes, including changes in brain structure and function. This study focuses on the role of white matter functional characteristics, as reflected in blood oxygenation level-dependent signals, in age-related cognitive deterioration. Building on previous research confirming the reproducibility and age-dependence of blood oxygenation level-dependent signals acquired via functional magnetic resonance imaging, we here employ mediation analysis to test if aging affects cognition through white matter blood oxygenation level-dependent signal changes, impacting various cognitive domains and specific white matter regions. We used independent component analysis of resting-state blood oxygenation level-dependent signals to segment white matter into coherent hubs, offering a data-driven view of white matter's functional architecture. Through correlation analysis, we constructed a graph network and derived metrics to quantitatively assess regional functional properties based on resting-state blood oxygenation level-dependent fluctuations. Our analysis identified significant mediators in the age-cognition relationship, indicating that aging differentially influences cognitive functions by altering the functional characteristics of distinct white matter regions. These findings enhance our understanding of the neurobiological basis of cognitive aging, highlighting the critical role of white matter in maintaining cognitive integrity and proposing new approaches to assess interventions targeting cognitive decline in older populations.


Subject(s)
Cognitive Dysfunction , White Matter , Humans , Aged , White Matter/diagnostic imaging , Reproducibility of Results , Brain Mapping , Aging , Brain/diagnostic imaging , Cognition , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging
15.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771241

ABSTRACT

The functional brain connectome is highly dynamic over time. However, how brain connectome dynamics evolves during the third trimester of pregnancy and is associated with later cognitive growth remains unknown. Here, we use resting-state functional Magnetic Resonance Imaging (MRI) data from 39 newborns aged 32 to 42 postmenstrual weeks to investigate the maturation process of connectome dynamics and its role in predicting neurocognitive outcomes at 2 years of age. Neonatal brain dynamics is assessed using a multilayer network model. Network dynamics decreases globally but increases in both modularity and diversity with development. Regionally, module switching decreases with development primarily in the lateral precentral gyrus, medial temporal lobe, and subcortical areas, with a higher growth rate in primary regions than in association regions. Support vector regression reveals that neonatal connectome dynamics is predictive of individual cognitive and language abilities at 2  years of age. Our findings highlight network-level neural substrates underlying early cognitive development.


Subject(s)
Brain , Cognition , Connectome , Magnetic Resonance Imaging , Humans , Connectome/methods , Female , Male , Magnetic Resonance Imaging/methods , Cognition/physiology , Infant, Newborn , Brain/growth & development , Brain/diagnostic imaging , Brain/physiology , Child, Preschool , Language Development , Child Development/physiology
16.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38044477

ABSTRACT

Volitional eyes closing would shift brain's information processing modes from the "exteroceptive" to "interoceptive" state. This transition induced by the eyes closing is underpinned by a large-scale reconfiguration of brain network, which is still not fully comprehended. Here, we investigated the eyes-closing-relevant network reconfiguration by examining the functional integration among intrinsic modules. Our investigation utilized a publicly available dataset with 48 subjects being scanned in both eyes closed and eyes open conditions. It was found that the modular integration was significantly enhanced during the eyes closing, including lower modularity index, higher participation coefficient, less provincial hubs, and more connector hubs. Moreover, the eyes-closing-enhanced integration was particularly noticeable in the hubs of network, mainly located in the default-mode network. Finally, the hub-dominant modular enhancement was positively correlated to the eyes-closing-reduced entropy of BOLD signal, suggesting a close connection to the diminished consciousness of individuals. Collectively, our findings strongly suggested that the enhanced modular integration with substantially reorganized hubs characterized the large-scale cortical underpinning of the volitional eyes closing.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Eye , Brain Mapping , Cognition , Nerve Net/diagnostic imaging
17.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37991275

ABSTRACT

Neuroimage studies have reported functional connectome abnormalities in posttraumatic stress disorder (PTSD), especially in adults. However, these studies often treated the brain as a static network, and time-variance of connectome topology in pediatric posttraumatic stress disorder remain unclear. To explore case-control differences in dynamic connectome topology, resting-state functional magnetic resonance imaging data were acquired from 24 treatment-naïve non-comorbid pediatric posttraumatic stress disorder patients and 24 demographically matched trauma-exposed non-posttraumatic stress disorder controls. A graph-theoretic analysis was applied to construct time-varying modular structure of whole-brain networks by maximizing the multilayer modularity. Network switching rate at the global, subnetwork, and nodal levels were calculated and compared between posttraumatic stress disorder and trauma-exposed non-posttraumatic stress disorder groups, and their associations with posttraumatic stress disorder symptom severity and sex interactions were explored. At the global level, individuals with posttraumatic stress disorder exhibited significantly lower network switching rates compared to trauma-exposed non-posttraumatic stress disorder controls. This difference was mainly involved in default-mode and dorsal attention subnetworks, as well as in inferior temporal and parietal brain nodes. Posttraumatic stress disorder symptom severity was negatively correlated with switching rate in the global network and default mode network. No significant differences were observed in the interaction between diagnosis and sex/age. Pediatric posttraumatic stress disorder is associated with dynamic reconfiguration of brain networks, which may provide insights into the biological basis of this disorder.


Subject(s)
Connectome , Stress Disorders, Post-Traumatic , Adult , Humans , Child , Stress Disorders, Post-Traumatic/diagnostic imaging , Magnetic Resonance Imaging/methods , Nerve Net , Brain , Connectome/methods
18.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37885127

ABSTRACT

Brain age is a promising biomarker for predicting chronological age based on brain imaging data. Although movie and resting-state functional MRI techniques have attracted much research interest for the investigation of brain function, whether the 2 different imaging paradigms show similarities and differences in terms of their capabilities and properties for predicting brain age remains largely unexplored. Here, we used movie and resting-state functional MRI data from 528 participants aged from 18 to 87 years old in the Cambridge Centre for Ageing and Neuroscience data set for functional network construction and further used elastic net for age prediction model building. The connectivity properties of movie and resting-state functional MRI were evaluated based on the connections supporting predictive model building. We found comparable predictive abilities of movie and resting-state connectivity in estimating brain age of individuals, as evidenced by correlation coefficients of 0.868 and 0.862 between actual and predicted age, respectively. Despite some similarities, notable differences in connectivity properties were observed between the predictive models using movie and resting-state functional MRI data, primarily involving components of the default mode network. Our results highlight that both movie and resting-state functional MRI are effective and promising techniques for predicting brain age. Leveraging its data acquisition advantages, such as improved child and patient compliance resulting in reduced motion artifacts, movie functional MRI is emerging as an important paradigm for studying brain function in pediatric and clinical populations.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Motion Pictures , Brain/diagnostic imaging , Aging , Nerve Net , Rest
19.
Cereb Cortex ; 34(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39270674

ABSTRACT

Brain network hubs are highly connected brain regions serving as important relay stations for information integration. Recent studies have linked mental disorders to impaired hub function. Provincial hubs mainly integrate information within their own brain network, while connector hubs share information between different brain networks. This study used a novel time-varying analysis to investigate whether hubs aberrantly follow the trajectory of other brain networks than their own. The aim was to characterize brain hub functioning in clinically remitted bipolar patients. We analyzed resting-state functional magnetic resonance imaging data from 96 euthymic individuals with bipolar disorder and 61 healthy control individuals. We characterized different hub qualities within the somatomotor network. We found that the somatomotor network comprised mainly provincial hubs in healthy controls. Conversely, in bipolar disorder patients, hubs in the primary somatosensory cortex displayed weaker provincial and stronger connector hub function. Furthermore, hubs in bipolar disorder showed weaker allegiances with their own brain network and followed the trajectories of the limbic, salience, dorsal attention, and frontoparietal network. We suggest that these hub aberrancies contribute to previously shown functional connectivity alterations in bipolar disorder and may thus constitute the neural substrate to persistently impaired sensory integration despite clinical remission.


Subject(s)
Bipolar Disorder , Magnetic Resonance Imaging , Nerve Net , Somatosensory Cortex , Humans , Bipolar Disorder/physiopathology , Bipolar Disorder/diagnostic imaging , Male , Female , Adult , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/physiology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Connectome , Middle Aged , Brain/physiopathology , Brain/diagnostic imaging , Young Adult
20.
Cereb Cortex ; 34(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39256896

ABSTRACT

Turner syndrome, caused by complete or partial loss of an X-chromosome, is often accompanied by specific cognitive challenges. Magnetic resonance imaging studies of adults and children with Turner syndrome suggest these deficits reflect differences in anatomical and functional connectivity. However, no imaging studies have explored connectivity in infants with Turner syndrome. Consequently, it is unclear when in development connectivity differences emerge. To address this gap, we compared functional connectivity and white matter microstructure of 1-year-old infants with Turner syndrome to typically developing 1-year-old boys and girls. We examined functional connectivity between the right precentral gyrus and five regions that show reduced volume in 1-year old infants with Turner syndrome compared to controls and found no differences. However, exploratory analyses suggested infants with Turner syndrome have altered connectivity between right supramarginal gyrus and left insula and right putamen. To assess anatomical connectivity, we examined diffusivity indices along the superior longitudinal fasciculus and found no differences. However, an exploratory analysis of 46 additional white matter tracts revealed significant group differences in nine tracts. Results suggest that the first year of life is a window in which interventions might prevent connectivity differences observed at later ages, and by extension, some of the cognitive challenges associated with Turner syndrome.


Subject(s)
Brain , Neural Pathways , Turner Syndrome , White Matter , Humans , Turner Syndrome/pathology , Turner Syndrome/diagnostic imaging , Turner Syndrome/physiopathology , White Matter/diagnostic imaging , White Matter/pathology , Female , Infant , Male , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/pathology , Magnetic Resonance Imaging , Diffusion Tensor Imaging
SELECTION OF CITATIONS
SEARCH DETAIL