Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60.887
Filter
Add more filters

Publication year range
1.
Cell ; 187(2): 464-480.e10, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38242088

ABSTRACT

Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.


Subject(s)
Genome-Wide Association Study , Glaucoma, Open-Angle , Humans , Genetic Predisposition to Disease , Glaucoma, Open-Angle/genetics , Black People/genetics , Polymorphism, Single Nucleotide/genetics
2.
Cell ; 176(5): 1098-1112.e18, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30794774

ABSTRACT

Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-ß-muricholic acid (T-ßMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.


Subject(s)
Intestinal Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Bile Acids and Salts/metabolism , Cell Line , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Deoxycholic Acid/metabolism , Gene Expression Regulation, Neoplastic/genetics , Humans , Intestinal Neoplasms/genetics , Intestines , Liver , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/physiology , Organoids/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Risk Factors , Signal Transduction , Taurocholic Acid/analogs & derivatives , Taurocholic Acid/metabolism , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology
3.
Annu Rev Neurosci ; 44: 1-25, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34236890

ABSTRACT

Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources. Chronic pain development is a textbook example of a gene-environment interaction, requiring both chance initiating events (e.g., trauma, infection) and more immutable risk factors. The focus is on genetic factors, since twin studies have determined that a plurality of the variance likely derives from inherited genetic variants, but sex, age, ethnicity, personality variables, and environmental factors are also considered.


Subject(s)
Individuality , Pain , Humans , Pain/genetics
4.
Am J Hum Genet ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39419028

ABSTRACT

Vitiligo is a common autoimmune disease characterized by patches of depigmented skin and overlying hair due to destruction of melanocytes in the involved regions. We investigated the relationship between vitiligo risk and vitiligo age of onset (AOO) using a vitiligo polygenic risk score that incorporated the most significant SNPs from genome-wide association studies. We find that vitiligo genetic risk and AOO are strongly inversely correlated; subjects with higher common-variant polygenic risk tend to develop vitiligo at an earlier age. Nevertheless, the correlation is not simple. In individuals who carry a single high-risk major histocompatibility complex class II haplotype, the effect of additional polygenic risk on vitiligo AOO is reduced. Particularly among those with early-AOO vitiligo (onset ≤12 years of age), genetic risk can reflect contributions from high common-variant burden but also rare variants of high effect and sometimes both. While the heritability of vitiligo is relatively high, and we here show that genetic risk factors predict vitiligo AOO, vitiligo is never congenital, and thus environmental triggers also play an important role in disease onset.

5.
Circ Res ; 134(6): 695-710, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38484025

ABSTRACT

Circadian and diurnal variation in cerebral blood flow directly contributes to the diurnal variation in the risk of stroke, either through factors that trigger stroke or due to impaired compensatory mechanisms. Cerebral blood flow results from the integration of systemic hemodynamics, including heart rate, cardiac output, and blood pressure, with cerebrovascular regulatory mechanisms, including cerebrovascular reactivity, autoregulation, and neurovascular coupling. We review the evidence for the circadian and diurnal variation in each of these mechanisms and their integration, from the detailed evidence for mechanisms underlying the nocturnal nadir and morning surge in blood pressure to identifying limited available evidence for circadian and diurnal variation in cerebrovascular compensatory mechanisms. We, thus, identify key systemic hemodynamic factors related to the diurnal variation in the risk of stroke but particularly identify the need for further research focused on cerebrovascular regulatory mechanisms.


Subject(s)
Stroke , Humans , Blood Pressure/physiology , Hemodynamics , Circadian Rhythm , Cerebrovascular Circulation/physiology
6.
Circ Res ; 134(12): 1791-1807, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843293

ABSTRACT

Cardiac macrophages represent a functionally diverse population of cells involved in cardiac homeostasis, repair, and remodeling. With recent advancements in single-cell technologies, it is possible to elucidate specific macrophage subsets based on transcriptional signatures and cell surface protein expression to gain a deep understanding of macrophage diversity in the heart. The use of fate-mapping technologies and parabiosis studies have provided insight into the ontogeny and dynamics of macrophages identifying subsets derived from embryonic and adult definitive hematopoietic progenitors that include tissue-resident and bone marrow monocyte-derived macrophages, respectively. Within the heart, these subsets have distinct tissue niches and functional roles in the setting of homeostasis and disease, with cardiac resident macrophages representing a protective cell population while bone marrow monocyte-derived cardiac macrophages have a context-dependent effect, triggering both proinflammatory tissue injury, but also promoting reparative functions. With the increased understanding of the clinical relevance of cardiac macrophage subsets, there has been an increasing need to detect and measure cardiac macrophage compositions in living animals and patients. New molecular tracers compatible with positron emission tomography/computerized tomography and positron emission tomography/ magnetic resonance imaging have enabled investigators to noninvasively and serially visualize cardiac macrophage subsets within the heart to define associations with disease and measure treatment responses. Today, advancements within this thriving field are poised to fuel an era of clinical translation.


Subject(s)
Macrophages , Myocardium , Animals , Macrophages/metabolism , Humans , Myocardium/metabolism , Myocardium/cytology
7.
Circ Res ; 134(9): 1179-1196, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662868

ABSTRACT

Accumulating evidence suggests that living in areas of high surrounding greenness or even brief exposures to areas of high greenery is conducive to cardiovascular health, which may be related to the environmental, social, psychological, and physiological benefits of greenspaces. Recent data from multiple cross-sectional, longitudinal, and cohort studies suggest that living in areas of high surrounding greenness is associated with a lower risk of all-cause and cardiovascular mortality. High levels of neighborhood greenery have been linked also to a decrease in the burden of cardiovascular disease risk factors as reflected by lower rates of hypertension, dyslipidemia, and diabetes. Those who live in greener environments report better mental health and more frequent social interactions, which can benefit cardiovascular health as well. In this narrative review, we discuss evidence linking greenspaces to cardiovascular health as well as the potential mechanisms underlying the beneficial effects of greenspaces, including the impact of vegetation on air, noise and light pollution, ambient temperature, physical activity, mental health, and biodiversity. We review literature on the beneficial effects of acute and chronic exposure to nature on cardiovascular disease risk factors, inflammation and immune function, and we highlight the potential cardiovascular effects of biogenic volatile organic compounds that are emitted by trees and shrubs. We identify current knowledge gaps in this area and underscore the need for additional population studies to understand more clearly and precisely the link between greenness and health. Such understanding is urgently needed to fully redeem the promise of greenspaces in preventing adverse environmental exposures, mitigating the effects of climate change, and creating healthier living environments.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Mental Health , Risk Factors , Heart Disease Risk Factors , Residence Characteristics , Environmental Exposure/adverse effects
8.
Circ Res ; 134(5): e3-e14, 2024 03.
Article in English | MEDLINE | ID: mdl-38348651

ABSTRACT

BACKGROUND: Posttranslational glycosylation of IgG can modulate its inflammatory capacity through structural variations. We examined the association of baseline IgG N-glycans and an IgG glycan score with incident cardiovascular disease (CVD). METHODS: IgG N-glycans were measured in 2 nested CVD case-control studies: JUPITER (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; NCT00239681; primary prevention; discovery; Npairs=162); and TNT trial (Treating to New Targets; NCT00327691; secondary prevention; validation; Npairs=397). Using conditional logistic regression, we investigated the association of future CVD with baseline IgG N-glycans and a glycan score adjusting for clinical risk factors (statin treatment, age, sex, race, lipids, hypertension, and smoking) in JUPITER. Significant associations were validated in TNT, using a similar model further adjusted for diabetes. Using least absolute shrinkage and selection operator regression, an IgG glycan score was derived in JUPITER as a linear combination of selected IgG N-glycans. RESULTS: Six IgG N-glycans were associated with CVD in both studies: an agalactosylated glycan (IgG-GP4) was positively associated, while 3 digalactosylated glycans (IgG glycan peaks 12, 13, 14) and 2 monosialylated glycans (IgG glycan peaks 18, 20) were negatively associated with CVD after multiple testing correction (overall false discovery rate <0.05). Four selected IgG N-glycans comprised the IgG glycan score, which was associated with CVD in JUPITER (adjusted hazard ratio per glycan score SD, 2.08 [95% CI, 1.52-2.84]) and validated in TNT (adjusted hazard ratio per SD, 1.20 [95% CI, 1.03-1.39]). The area under the curve changed from 0.693 for the model without the score to 0.728 with the score in JUPITER (PLRT=1.1×10-6) and from 0.635 to 0.637 in TNT (PLRT=0.017). CONCLUSIONS: An IgG N-glycan profile was associated with incident CVD in 2 populations (primary and secondary prevention), involving an agalactosylated glycan associated with increased risk of CVD, while several digalactosylated and sialylated IgG glycans associated with decreased risk. An IgG glycan score was positively associated with future CVD.


Subject(s)
Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Immunoglobulin G , Glycosylation , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Case-Control Studies , Polysaccharides
9.
Circ Res ; 135(1): 138-154, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38662804

ABSTRACT

BACKGROUND: The biological mechanisms linking environmental exposures with cardiovascular disease pathobiology are incompletely understood. We sought to identify circulating proteomic signatures of environmental exposures and examine their associations with cardiometabolic and respiratory disease in observational cohort studies. METHODS: We tested the relations of >6500 circulating proteins with 29 environmental exposures across the built environment, green space, air pollution, temperature, and social vulnerability indicators in ≈3000 participants of the CARDIA study (Coronary Artery Risk Development in Young Adults) across 4 centers using penalized and ordinary linear regression. In >3500 participants from FHS (Framingham Heart Study) and JHS (Jackson Heart Study), we evaluated the prospective relations of proteomic signatures of the envirome with cardiovascular disease and mortality using Cox models. RESULTS: Proteomic signatures of the envirome identified novel/established cardiovascular disease-relevant pathways including DNA damage, fibrosis, inflammation, and mitochondrial function. The proteomic signatures of the envirome were broadly related to cardiometabolic disease and respiratory phenotypes (eg, body mass index, lipids, and left ventricular mass) in CARDIA, with replication in FHS/JHS. A proteomic signature of social vulnerability was associated with a composite of cardiovascular disease/mortality (1428 events; FHS: hazard ratio, 1.16 [95% CI, 1.08-1.24]; P=1.77×10-5; JHS: hazard ratio, 1.25 [95% CI, 1.14-1.38]; P=6.38×10-6; hazard ratio expressed as per 1 SD increase in proteomic signature), robust to adjustment for known clinical risk factors. CONCLUSIONS: Environmental exposures are related to an inflammatory-metabolic proteome, which identifies individuals with cardiometabolic disease and respiratory phenotypes and outcomes. Future work examining the dynamic impact of the environment on human cardiometabolic health is warranted.


Subject(s)
Cardiometabolic Risk Factors , Cardiovascular Diseases , Environmental Exposure , Proteomics , Humans , Proteomics/methods , Female , Male , Environmental Exposure/adverse effects , Adult , Middle Aged , Cardiovascular Diseases/blood , Cardiovascular Diseases/etiology , Cardiovascular Diseases/epidemiology , Prospective Studies , Young Adult
10.
Circ Res ; 134(11): 1515-1545, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781301

ABSTRACT

People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1ß, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.


Subject(s)
Atherosclerosis , HIV Infections , Inflammation , Humans , HIV Infections/immunology , HIV Infections/complications , HIV Infections/drug therapy , Atherosclerosis/immunology , Atherosclerosis/etiology , Atherosclerosis/metabolism , Inflammation/immunology , Animals , Immunity, Innate
11.
Circulation ; 149(3): 217-226, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38014550

ABSTRACT

BACKGROUND: Although low-density lipoprotein cholesterol (LDL-C) remains the primary cholesterol target in clinical practice in children and adults, non-high-density lipoprotein cholesterol (non-HDL-C) has been suggested as a more accurate measure of atherosclerotic cardiovascular disease (ASCVD) risk. We examined the associations of childhood non-HDL-C and LDL-C levels with adult ASCVD events and determined whether non-HDL-C has better utility than LDL-C in predicting adult ASCVD events. METHODS: This prospective cohort study included 21 126 participants from the i3C Consortium (International Childhood Cardiovascular Cohorts). Proportional hazards regressions were used to estimate the risk for incident fatal and fatal/nonfatal ASCVD events associated with childhood non-HDL-C and LDL-C levels (age- and sex-specific z scores; concordant/discordant categories defined by guideline-recommended cutoffs), adjusted for sex, Black race, cohort, age at and calendar year of child measurement, body mass index, and systolic blood pressure. Predictive utility was determined by the C index. RESULTS: After an average follow-up of 35 years, 153 fatal ASCVD events occurred in 21 126 participants (mean age at childhood visits, 11.9 years), and 352 fatal/nonfatal ASCVD events occurred in a subset of 11 296 participants who could be evaluated for this outcome. Childhood non-HDL-C and LDL-C levels were each associated with higher risk of fatal and fatal/nonfatal ASCVD events (hazard ratio ranged from 1.27 [95% CI, 1.14-1.41] to 1.35 [95% CI, 1.13-1.60] per unit increase in the risk factor z score). Non-HDL-C had better discriminative utility than LDL-C (difference in C index, 0.0054 [95% CI, 0.0006-0.0102] and 0.0038 [95% CI, 0.0008-0.0068] for fatal and fatal/nonfatal events, respectively). The discordant group with elevated non-HDL-C and normal LDL-C had a higher risk of ASCVD events compared with the concordant group with normal non-HDL-C and LDL-C (fatal events: hazard ratio, 1.90 [95% CI, 0.98-3.70]; fatal/nonfatal events: hazard ratio, 1.94 [95% CI, 1.23-3.06]). CONCLUSIONS: Childhood non-HDL-C and LDL-C levels are associated with ASCVD events in midlife. Non-HDL-C is better than LDL-C in predicting adult ASCVD events, particularly among individuals who had normal LDL-C but elevated non-HDL-C. These findings suggest that both non-HDL-C and LDL-C are useful in identifying children at higher risk of ASCVD events, but non-HDL-C may provide added prognostic information when it is discordantly higher than the corresponding LDL-C and has the practical advantage of being determined without a fasting sample.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Male , Adult , Female , Child , Humans , Cholesterol, LDL , Prospective Studies , Cholesterol , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology , Lipoproteins , Risk Factors , Cholesterol, HDL
12.
Circulation ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351674

ABSTRACT

BACKGROUND: Primary aldosteronism, characterized by renin-independent aldosterone production, is associated with adverse cardiovascular remodeling and outcomes. Elevated cardiovascular risk is observed even in subclinical forms of primary aldosteronism according to studies conducted primarily in middle-aged and elderly populations. This study aimed to assess whether early changes in primary aldosteronism biomarkers during young adulthood are associated with arterial stiffness and left ventricular mass index (LVMI) before the onset of overt disease. METHODS: The Raine Study is a longitudinal, population-based cohort study in Western Australia that enrolled women during pregnancy. We analyzed the data from the offspring of these women at 17 (2006-2009) and 27 (2016-2018) years of age. Participants with elevated high-sensitivity C-reactive protein (>10 mg/L) and female participants who were on oral contraception were excluded. Pulse wave velocity and aortic augmentation index were measured by SphygmoCor Pulse Wave System at both ages, and aortic distensibility and LVMI were measured by cardiac magnetic resonance imaging at 27 years. Multivariable linear regression was used to examine the relationship between plasma renin, aldosterone, or aldosterone-to-renin ratio and arterial stiffness and LVMI. Mediation analysis was used to test the role of systolic blood pressure. RESULTS: This study included 859 participants at 17 (38.0% female) and 758 participants at 27 (33.2% female) years of age. Females had lower renin concentration at both 17 (20.7 mU/L versus 25.7 mU/L; P<0.001) and 27 (12.0 mU/L versus 15.4 mU/L; P<0.001) years of age; hence, the aldosterone-to-renin ratio was significantly higher at both 17 (18.2 versus 13.5; P<0.001) and 27 (21.0 versus 15.6; P<0.001) years of age in females compared with males. At 27 years of age, a significant association was detected between aldosterone and LVMI in males (ß=0.009 [95% CI, 0.001-0.017]; P=0.027) and between aldosterone-to-renin ratio and LVMI in females (ß=0.098 [95% CI, 0.001-0.196]; P=0.050) independently of systolic blood pressure and other confounders. No association was found between primary aldosteronism biomarkers and measures of arterial stiffness (pulse wave velocity, aortic augmentation index, and aortic distensibility) at either age. CONCLUSIONS: Aldosterone concentration and aldosterone-to-renin ratio were positively associated with the LVMI in young males and females, respectively, independently of systolic blood pressure. Long-term follow-up is required to determine whether the relationship persists over time, and clinical trials are needed to assess the cardiovascular benefits of early interventions to block aldosterone.

13.
Circulation ; 150(1): 62-79, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38950110

ABSTRACT

Despite data suggesting that apolipoprotein B (apoB) measurement outperforms low-density lipoprotein cholesterol level measurement in predicting atherosclerotic cardiovascular disease risk, apoB measurement has not become widely adopted into routine clinical practice. One barrier for use of apoB measurement is lack of consistent guidance for clinicians on how to interpret and apply apoB results in clinical context. Whereas guidelines have often provided clear low-density lipoprotein cholesterol targets or triggers to initiate treatment change, consistent targets for apoB are lacking. In this review, we synthesize existing data regarding the epidemiology of apoB by comparing guideline recommendations regarding use of apoB measurement, describing population percentiles of apoB relative to low-density lipoprotein cholesterol levels, summarizing studies of discordance between low-density lipoprotein cholesterol and apoB levels, and evaluating apoB levels in clinical trials of lipid-lowering therapy to guide potential treatment targets. We propose evidence-guided apoB thresholds for use in cholesterol management and clinical care.


Subject(s)
Apolipoproteins B , Cholesterol, LDL , Humans , Apolipoproteins B/blood , Cholesterol, LDL/blood , Practice Guidelines as Topic , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/diagnosis , Biomarkers/blood , Atherosclerosis/blood , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology , Apolipoprotein B-100
14.
Circulation ; 149(12): 905-913, 2024 03 19.
Article in English | MEDLINE | ID: mdl-37830200

ABSTRACT

BACKGROUND: Life's Simple 7 (LS7) is an easily calculated and interpreted metric of cardiovascular health based on 7 domains: smoking, diet, physical activity, body mass index, blood pressure, cholesterol, and fasting glucose. The Life's Essential 8 (LE8) metric was subsequently introduced, adding sleep metrics and revisions of the previous 7 domains. Although calculating LE8 requires additional information, we hypothesized that it would be a more reliable index of cardiovascular health. METHODS: Both the LS7 and LE8 metrics yield scores with higher values indicating lower risk. These were calculated among 11 609 Black and White participants free of baseline cardiovascular disease (CVD) in the Reasons for Geographic and Racial Differences in Stroke study, enrolled in 2003 to 2007, and followed for a median of 13 years. Differences in 10-year risk of incident CVD (coronary heart disease or stroke) were calculated as a function LS7, and LE8 scores were calculated using Kaplan-Meier and proportional hazards analyses. Differences in incident CVD discrimination were quantified by difference in the c-statistic. RESULTS: For both LS7 and LE8, the 10-year risk was approximately 5% for participants around the 99th percentile of scores, and a 4× higher 20% risk for participants around the first percentile. Comparing LS7 to LE8, 10-year risk was nearly identical for individuals at the same relative position in score distribution. For example, the "cluster" of 2013 participants with an LS7 score of 7 was at the 35.8th percentile in distribution of LS7 scores, and had an estimated 10-year CVD risk of 8.4% (95% CI, 7.2%-9.8%). In a similar location in the LE8 distribution, the 1457 participants with an LE8 score of 60±2.5 at the 39.4th percentile of LE8 scores had a 10-year risk of CVD of 8.5% (95% CI, 7.1%-10.1%), similar to the cluster defined by LS7. The age-race-sex adjusted c-statistic of the LS7 model was 0.691 (95% CI, 0.667-0.705), and 0.695 for LE8 (95% CI, 0.681-0.709) (P for difference, 0.12). CONCLUSIONS: Both LS7 and LE8 were associated with incident CVD, with discrimination of the 2 indices practically indistinguishable. As a simpler metric, LS7 may be favored for use by the general population and clinicians.


Subject(s)
Cardiovascular Diseases , Stroke , Humans , United States/epidemiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Risk Factors , Smoking/epidemiology , Heart Disease Risk Factors , Stroke/diagnosis , Stroke/epidemiology
15.
Circulation ; 149(3): e217-e231, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38059362

ABSTRACT

Resistance training not only can improve or maintain muscle mass and strength, but also has favorable physiological and clinical effects on cardiovascular disease and risk factors. This scientific statement is an update of the previous (2007) American Heart Association scientific statement regarding resistance training and cardiovascular disease. Since 2007, accumulating evidence suggests resistance training is a safe and effective approach for improving cardiovascular health in adults with and without cardiovascular disease. This scientific statement summarizes the benefits of resistance training alone or in combination with aerobic training for improving traditional and nontraditional cardiovascular disease risk factors. We also address the utility of resistance training for promoting cardiovascular health in varied healthy and clinical populations. Because less than one-third of US adults report participating in the recommended 2 days per week of resistance training activities, this scientific statement provides practical strategies for the promotion and prescription of resistance training.


Subject(s)
Cardiovascular Diseases , Resistance Training , Adult , United States , Humans , Cardiovascular Diseases/therapy , American Heart Association , Exercise/physiology , Risk Factors
16.
Circulation ; 150(11): 826-835, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38966988

ABSTRACT

BACKGROUND: The effect of myocardial infarction (MI) on life expectancy is difficult to study because the prevalence of MI hinders direct comparison with the life expectancy of the general population. We sought to assess this in relation to age, sex, and left ventricular ejection fraction (LVEF) by comparing individuals with MI with matched comparators without previous MI. METHODS: We included patients with a first MI between 1991 and 2022 from the nationwide SWEDEHEART registry (Swedish Web-System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies), each matched with up to 5 comparators on age, sex, and region of residence. Flexible parametric survival models were used to estimate excess mortality and mean loss of life expectancy (LOLE) depending on index year, age, sex, and LVEF, and adjusted for differences in characteristics. RESULTS: A total of 335 748 cases were matched to 1 625 396 comparators. A higher LOLE was observed in younger individuals, women, and those with reduced LVEF (<50%). In 2022, the unadjusted and adjusted mean LOLE spanned from 11.1 and 9.5 years in 50-year-old women with reduced LVEF to 5 and 3.7 months in 80-year-old men with preserved LVEF. Between 1992 and 2022, the adjusted mean LOLE decreased by 36% to 55%: from 4.4 to 2.0 years and from 3.3 to 1.9 years in 50-year-old women and men, respectively, and from 1.7 to 1.0 years and from 1.4 to 0.9 years in 80-year-old women and men, respectively. CONCLUSIONS: LOLE is higher in younger individuals, women, and those with reduced LVEF, but is attenuated when adjusting for comorbidities and risk factors. Advances in MI treatment during the past 30 years have almost halved LOLE, with no clear sign of leveling off to a plateau.


Subject(s)
Life Expectancy , Myocardial Infarction , Registries , Stroke Volume , Humans , Female , Male , Myocardial Infarction/mortality , Middle Aged , Aged , Aged, 80 and over , Sweden/epidemiology , Cohort Studies , Age Factors , Sex Factors , Ventricular Function, Left , Risk Factors
17.
Circulation ; 149(8): e347-e913, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38264914

ABSTRACT

BACKGROUND: The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS: The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS: Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS: The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Stroke , Humans , United States/epidemiology , American Heart Association , Heart Diseases/epidemiology , Stroke/epidemiology , Stroke/prevention & control , Obesity/epidemiology
18.
Circulation ; 150(4): e65-e88, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38832505

ABSTRACT

BACKGROUND: Cardiovascular disease and stroke are common and costly, and their prevalence is rising. Forecasts on the prevalence of risk factors and clinical events are crucial. METHODS: Using the 2015 to March 2020 National Health and Nutrition Examination Survey and 2015 to 2019 Medical Expenditure Panel Survey, we estimated trends in prevalence for cardiovascular risk factors based on adverse levels of Life's Essential 8 and clinical cardiovascular disease and stroke. We projected through 2050, overall and by age and race and ethnicity, accounting for changes in disease prevalence and demographics. RESULTS: We estimate that among adults, prevalence of hypertension will increase from 51.2% in 2020 to 61.0% in 2050. Diabetes (16.3% to 26.8%) and obesity (43.1% to 60.6%) will increase, whereas hypercholesterolemia will decline (45.8% to 24.0%). The prevalences of poor diet, inadequate physical activity, and smoking are estimated to improve over time, whereas inadequate sleep will worsen. Prevalences of coronary disease (7.8% to 9.2%), heart failure (2.7% to 3.8%), stroke (3.9% to 6.4%), atrial fibrillation (1.7% to 2.4%), and total cardiovascular disease (11.3% to 15.0%) will rise. Clinical CVD will affect 45 million adults, and CVD including hypertension will affect more than 184 million adults by 2050 (>61%). Similar trends are projected in children. Most adverse trends are projected to be worse among people identifying as American Indian/Alaska Native or multiracial, Black, or Hispanic. CONCLUSIONS: The prevalence of many cardiovascular risk factors and most established diseases will increase over the next 30 years. Clinical and public health interventions are needed to effectively manage, stem, and even reverse these adverse trends.


Subject(s)
American Heart Association , Cardiovascular Diseases , Forecasting , Stroke , Humans , United States/epidemiology , Prevalence , Stroke/epidemiology , Cardiovascular Diseases/epidemiology , Risk Factors , Adult , Female , Male , Middle Aged , Aged , Cost of Illness , Young Adult
19.
Circulation ; 150(1): e7-e19, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38766861

ABSTRACT

Obesity is a recognized public health epidemic with a prevalence that continues to increase dramatically in nearly all populations, impeding progress in reducing incidence rates of cardiovascular disease. Over the past decade, obesity science has evolved to improve knowledge of its multifactorial causes, identifying important biological causes and sociological determinants of obesity. Treatments for obesity have also continued to develop, with more evidence-based programs for lifestyle modification, new pharmacotherapies, and robust data to support bariatric surgery. Despite these advancements, there continues to be a substantial gap between the scientific evidence and the implementation of research into clinical practice for effective obesity management. Addressing barriers to obesity science implementation requires adopting feasible methodologies and targeting multiple levels (eg, clinician, community, system, policy) to facilitate the delivery of obesity-targeted therapies and maximize the effectiveness of guideline-driven care to at-need patient populations. This scientific statement (1) describes strategies shown to be effective or promising for enhancing translation and clinical application of obesity-based research; (2) identifies key gaps in the implementation of obesity science into clinical practice; and (3) provides guidance and resources for health care professionals, health care systems, and other stakeholders to promote broader implementation and uptake of obesity science for improved population-level obesity management. In addition, advances in implementation science that hold promise to bridge the know-do gap in obesity prevention and treatment are discussed. Last, this scientific statement highlights implications for health research policy and future research to improve patient care models and optimize the delivery and sustainability of equitable obesity-related care.


Subject(s)
American Heart Association , Obesity , Humans , Obesity/therapy , Obesity/epidemiology , United States/epidemiology
20.
Circulation ; 149(15): e1067-e1089, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38436070

ABSTRACT

Nearly 56% of the global population lives in cities, with this number expected to increase to 6.6 billion or >70% of the world's population by 2050. Given that cardiometabolic diseases are the leading causes of morbidity and mortality in people living in urban areas, transforming cities and urban provisioning systems (or urban systems) toward health, equity, and economic productivity can enable the dual attainment of climate and health goals. Seven urban provisioning systems that provide food, energy, mobility-connectivity, housing, green infrastructure, water management, and waste management lie at the core of human health, well-being, and sustainability. These provisioning systems transcend city boundaries (eg, demand for food, water, or energy is met by transboundary supply); thus, transforming the entire system is a larger construct than local urban environments. Poorly designed urban provisioning systems are starkly evident worldwide, resulting in unprecedented exposures to adverse cardiometabolic risk factors, including limited physical activity, lack of access to heart-healthy diets, and reduced access to greenery and beneficial social interactions. Transforming urban systems with a cardiometabolic health-first approach could be accomplished through integrated spatial planning, along with addressing current gaps in key urban provisioning systems. Such an approach will help mitigate undesirable environmental exposures and improve cardiovascular and metabolic health while improving planetary health. The purposes of this American Heart Association policy statement are to present a conceptual framework, summarize the evidence base, and outline policy principles for transforming key urban provisioning systems to heart-health and sustainability outcomes.


Subject(s)
American Heart Association , Cardiovascular Diseases , Humans , Cities , Environmental Exposure , Policy , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL