Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Trop Anim Health Prod ; 55(1): 7, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36525098

ABSTRACT

The present study has analyzed the allelic-specific expression in Purebred Sistani (Bos Indicus) and their crossbreed with Holstein, Simmental, and Montbeliarde breeds (Bos Taurus). The blood samples were taken from the caudal vein of purebred Sistani cows and crossbreed Sistani's with Holstein, Simental, and Montbeliarde (4 treatments). We discovered 152,496 (Purebred Sistani), 134,285 (Sistani × Simmental), 163,362 (Sistani × Montbeliarde), and 177,042 (Sistani × Holstein) SNPs on the assembled transcriptomes. In the Purebred Sistani, 8295 (5%), Sistani × Holstein crossbreed 11,900 (7%), Sistani × Simmental crossbreed 13,187 (10%), and Sistani × Montbeliarde crossbreed 16,666 (10%) number of SNPs were identified as ASE-SNPs. In the present study, 12 SNPs types identify, of which four were transition and eight were transversion. The most common SNPs were transition types. These SNPs were present in purebred Sistani 71.84%, Sistani × Holstein crossbreed 72.65%, Sistani × Simmental crossbreed 72.60%, and Sistani × Montbeliarde crossbreed 71.94%. Ontology analysis of the expressed genes in these cows revealed the involvement of these genes in different Biological classifications. Conducting such studies in parts of the world, such as the Sistan region, where it is not possible to record accurate records of cows, is a suitable and economical method for identifying genes with different expressions.


Subject(s)
Hybridization, Genetic , Female , Cattle/genetics , Animals , Alleles
2.
BMC Genomics ; 20(1): 925, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31795948

ABSTRACT

BACKGROUND: Fusarium head blight (FHB) resistance in the durum wheat breeding gene pool is rarely reported. Triticum turgidum ssp. carthlicum line Blackbird is a tetraploid relative of durum wheat that offers partial FHB resistance. Resistance QTL were identified for the durum wheat cv. Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B in a previous study. The objective of this study was to identify the defense mechanisms underlying the resistance of Blackbird and report candidate regulator defense genes and single nucleotide polymorphism (SNP) markers within these genes for high-resolution mapping of resistance QTL reported for the durum wheat cv. Strongfield/Blackbird population. RESULTS: Gene network analysis identified five networks significantly (P < 0.05) associated with the resistance to FHB spread (Type II FHB resistance) one of which showed significant correlation with both plant height and relative maturity traits. Two gene networks showed subtle differences between Fusarium graminearum-inoculated and mock-inoculated plants, supporting their involvement in constitutive defense. The candidate regulator genes have been implicated in various layers of plant defense including pathogen recognition (mainly Nucleotide-binding Leucine-rich Repeat proteins), signaling pathways including the abscisic acid and mitogen activated protein (MAP) kinase, and downstream defense genes activation including transcription factors (mostly with dual roles in defense and development), and cell death regulator and cell wall reinforcement genes. The expression of five candidate genes measured by quantitative real-time PCR was correlated with that of RNA-seq, corroborating the technical and analytical accuracy of RNA-sequencing. CONCLUSIONS: Gene network analysis allowed identification of candidate regulator genes and genes associated with constitutive resistance, those that will not be detected using traditional differential expression analysis. This study also shed light on the association of developmental traits with FHB resistance and partially explained the co-localization of FHB resistance with plant height and maturity QTL reported in several previous studies. It also allowed the identification of candidate hub genes within the interval of three previously reported FHB resistance QTL for the Strongfield/Blackbird population and associated SNPs for future high resolution mapping studies.


Subject(s)
Disease Resistance/genetics , Fusarium , Gene Regulatory Networks , Triticum/genetics , Triticum/microbiology , Gene Expression , Genotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Tetraploidy , Triticum/metabolism
3.
BMC Genomics ; 19(1): 277, 2018 Apr 23.
Article in English | MEDLINE | ID: mdl-29685102

ABSTRACT

BACKGROUND: Japanese cedar (Cryptomeria japonica) is an important tree for Japanese forestry. Male-sterile marker development in Japanese cedar would facilitate selection of male-sterile plus trees, addressing the widespread social problem of pollinosis and facilitating the identification of heterozygotes, which are useful for breeding. RESULTS: This study used next-generation sequencing for single-nucleotide polymorphism discovery in libraries constructed from several organs, including male-sterile and male-fertile strobili. The single-nucleotide polymorphisms obtained were used to construct a high-density linkage map, which enabled identification of a locus on linkage group 9 strongly correlated with male-sterile trait. Expressed sequence tags corresponding to 11 marker loci from 5 isotigs were associated with this locus within 33.4-34.5 cM. These marker loci explained 100% of the phenotypic variation. Several homologs of these sequences are associated with male sterility in rice or Arabidopsis, including a pre-mRNA splicing factor, a DEAD-box protein, a glycosyl hydrolase, and a galactosyltransferase. These proteins are thus candidates for the causal male-sterile gene at the ms-1 locus. After we used a SNaPshot assay to develop markers for marker-assisted selection (MAS), we tested F2 progeny between male-sterile and wild-type plus trees to validate the markers and extrapolated the testing to a larger plus-tree population. We found that two developed from one of the candidates for the causal gene were suitable for MAS. CONCLUSIONS: More than half of the ESTs and SNPs we collected were new, enlarging the genomic basis for genetic research on Japanese cedar. We developed two SNP markers aimed at MAS that distinguished individuals carrying the male-sterile trait with 100% accuracy, as well as individuals heterozygous at the male-sterile locus, even outside the mapping population. These markers should enable practical MAS for conifer breeding.


Subject(s)
Cryptomeria/genetics , Cryptomeria/physiology , Genes, Plant/genetics , Genetic Markers/genetics , Plant Infertility/genetics , Genotype , High-Throughput Nucleotide Sequencing , Phenotype , Polymorphism, Single Nucleotide
4.
BMC Genomics ; 18(1): 565, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28750625

ABSTRACT

BACKGROUND: To date, genome-scale analyses in the domestic horse have been limited by suboptimal single nucleotide polymorphism (SNP) density and uneven genomic coverage of the current SNP genotyping arrays. The recent availability of whole genome sequences has created the opportunity to develop a next generation, high-density equine SNP array. RESULTS: Using whole genome sequence from 153 individuals representing 24 distinct breeds collated by the equine genomics community, we cataloged over 23 million de novo discovered genetic variants. Leveraging genotype data from individuals with both whole genome sequence, and genotypes from lower-density, legacy SNP arrays, a subset of ~5 million high-quality, high-density array candidate SNPs were selected based on breed representation and uniform spacing across the genome. Considering probe design recommendations from a commercial vendor (Affymetrix, now Thermo Fisher Scientific) a set of ~2 million SNPs were selected for a next-generation high-density SNP chip (MNEc2M). Genotype data were generated using the MNEc2M array from a cohort of 332 horses from 20 breeds and a lower-density array, consisting of ~670 thousand SNPs (MNEc670k), was designed for genotype imputation. CONCLUSIONS: Here, we document the steps taken to design both the MNEc2M and MNEc670k arrays, report genomic and technical properties of these genotyping platforms, and demonstrate the imputation capabilities of these tools for the domestic horse.


Subject(s)
Genotyping Techniques/methods , Horses/genetics , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide , Animals , Gene Frequency , Genotyping Techniques/standards , Linkage Disequilibrium , Oligonucleotide Array Sequence Analysis/standards , Reference Standards , Whole Genome Sequencing
5.
Mol Genet Genomics ; 291(3): 1277-91, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26932372

ABSTRACT

Researchers have made great advances into the development and application of genomic approaches for common beans, creating opportunities to driving more real and applicable strategies for sustainable management of the genetic resource towards plant breeding. This work provides useful polymorphic single-nucleotide polymorphisms (SNPs) for high-throughput common bean genotyping developed by RAD (restriction site-associated DNA) sequencing. The RAD tags were generated from DNA pooled from 12 common bean genotypes, including breeding lines of different gene pools and market classes. The aligned sequences identified 23,748 putative RAD-SNPs, of which 3357 were adequate for genotyping; 1032 RAD-SNPs with the highest ADT (assay design tool) score are presented in this article. The RAD-SNPs were structurally annotated in different coding (47.00 %) and non-coding (53.00 %) sequence components of genes. A subset of 384 RAD-SNPs with broad genome distribution was used to genotype a diverse panel of 95 common bean germplasms and revealed a successful amplification rate of 96.6 %, showing 73 % of polymorphic SNPs within the Andean group and 83 % in the Mesoamerican group. A slightly increased He (0.161, n = 21) value was estimated for the Andean gene pool, compared to the Mesoamerican group (0.156, n = 74). For the linkage disequilibrium (LD) analysis, from a group of 580 SNPs (289 RAD-SNPs and 291 BARC-SNPs) genotyped for the same set of genotypes, 70.2 % were in LD, decreasing to 0.10 %in the Andean group and 0.77 % in the Mesoamerican group. Haplotype patterns spanning 310 Mb of the genome (60 %) were characterized in samples from different origins. However, the haplotype frameworks were under-represented for the Andean (7.85 %) and Mesoamerican (5.55 %) gene pools separately. In conclusion, RAD sequencing allowed the discovery of hundreds of useful SNPs for broad genetic analysis of common bean germplasm. From now, this approach provides an excellent panel of molecular tools for whole genome analysis, allowing integrating and better exploring the common bean breeding practices.


Subject(s)
DNA, Plant/genetics , Phaseolus/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Cluster Analysis , Evolution, Molecular , Genotype , Haplotypes , Sequence Alignment
6.
Biochem Genet ; 54(3): 313-325, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26902470

ABSTRACT

Genetic linkage maps are valuable tools for genetic, genomic, and crop breeding studies. Several genetic linkage maps were constructed for the olive (Olea europaea L.) genome, mainly using amplified fragment length polymorphisms (AFLPs) and simple sequence repeat (SSR) markers. However, AFLPs and SSR markers were not enough to develop a high-density olive linkage map. Genotyping-by-sequencing (GBS), a recently developed single-nucleotide polymorphism (SNP) identification methodology based on next-generation sequencing (NGS) technologies, has been demonstrated to be useful for the identification of a high number of SNP markers and the construction of high-density genetic linkage maps. In the present study, we identified a total of 10,941 SNPs from a cross between the olive cultivars 'Gemlik' and 'Edincik Su' using GBS and de novo SNP discovery implemented in the computer program "Stacks." A high-density genetic linkage map for the olive genome was constructed using 121 cross-pollinated full-sib F1 progeny and 5643 markers (21 SSRs, 203 AFLPs, and 5736 SNPs). This linkage map was composed of 25 linkage groups, covering 3049 cM of the olive genome, and the mean distance between the flanking markers was 0.53 cM. To the best of our knowledge, this map is the most saturated genetic linkage map in olive to date. We demonstrated that GBS is a valuable tool for the identification of thousands of SNPs for the construction of a saturated genetic linkage map in olive. The high-density genetic map developed in this study is a useful tool for locating quantitative trait loci and other economically important traits in the olive genome.


Subject(s)
Chromosome Mapping/methods , Olea/genetics , Polymorphism, Single Nucleotide , Genetic Linkage , Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Olea/growth & development , Quantitative Trait Loci
7.
Mol Ecol ; 24(10): 2310-23, 2015 May.
Article in English | MEDLINE | ID: mdl-25808983

ABSTRACT

With the rapid increase in production of genetic data from new sequencing technologies, a myriad of new ways to study genomic patterns in nonmodel organisms are currently possible. Because genome assembly still remains a complicated procedure, and because the functional role of much of the genome is unclear, focusing on SNP genotyping from expressed sequences provides a cost-effective way to reduce complexity while still retaining functionally relevant information. This review summarizes current methods, identifies ways that using expressed sequence data benefits population genomic inference and explores how current practitioners evaluate and overcome challenges that are commonly encountered. We focus particularly on the additional power of functional analysis provided by expressed sequence data and how these analyses push beyond allele pattern data available from nonfunction genomic approaches. The massive data sets generated by these approaches create opportunities and problems as well - especially false positives. We discuss methods available to validate results from expressed SNP genotyping assays, new approaches that sidestep use of mRNA and review follow-up experiments that can focus on evolutionary mechanisms acting across the genome.


Subject(s)
Genetics, Population/methods , Genomics/methods , Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Gene Expression Profiling/methods , Gene Frequency , Genetic Markers , Sequence Analysis, RNA
8.
Mol Ecol ; 23(3): 502-12, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24304095

ABSTRACT

We develop a model based on the Dirichlet-compound multinomial distribution (CMD) and Ewens sampling formula to predict the fraction of SNP loci that will appear fixed for alternate alleles between two pooled samples drawn from the same underlying population. We apply this model to next-generation sequencing (NGS) data from Baltic Sea herring recently published by (Corander et al., 2013, Molecular Ecology, 2931-2940), and show that there are many more fixed loci than expected in the absence of genetic structure. However, we show through coalescent simulations that the degree of population structure required to explain the fraction of alternatively fixed SNPs is extraordinarily high and that the surplus of fixed loci is more likely a consequence of limited representation of individual gene copies in the pooled samples, than it is of population structure. Our analysis signals that the use of NGS on pooled samples to identify divergent SNPs warrants caution. With pooled samples, it is hard to diagnose when an NGS experiment has gone awry; especially when NGS data on pooled samples are of low read depth with a limited number of individuals, it may be worthwhile to temper claims of unexpected population differentiation from pooled samples, pending verification with more reliable methods or stricter adherence to recommended sampling designs for pooled sequencing e.g. Futschik & Schlötterer 2010, Genetics, 186, 207; Gautier et al., 2013a, Molecular Ecology, 3766-3779). Analysis of the data and diagnosis of problems is easier and more reliable (and can be less costly) with individually barcoded samples. Consequently, for some scenarios, individual barcoding may be preferable to pooling of samples.


Subject(s)
Fishes/genetics , Genetics, Population , High-Throughput Nucleotide Sequencing/methods , Models, Genetic , Sequence Analysis, DNA/methods , Alleles , Animals , Polymorphism, Single Nucleotide
9.
G3 (Bethesda) ; 14(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38366548

ABSTRACT

In species with large and complex genomes such as conifers, dense linkage maps are a useful resource for supporting genome assembly and laying the genomic groundwork at the structural, populational, and functional levels. However, most of the 600+ extant conifer species still lack extensive genotyping resources, which hampers the development of high-density linkage maps. In this study, we developed a linkage map relying on 21,570 single nucleotide polymorphism (SNP) markers in Sitka spruce (Picea sitchensis [Bong.] Carr.), a long-lived conifer from western North America that is widely planted for productive forestry in the British Isles. We used a single-step mapping approach to efficiently combine RAD-seq and genotyping array SNP data for 528 individuals from 2 full-sib families. As expected for spruce taxa, the saturated map contained 12 linkages groups with a total length of 2,142 cM. The positioning of 5,414 unique gene coding sequences allowed us to compare our map with that of other Pinaceae species, which provided evidence for high levels of synteny and gene order conservation in this family. We then developed an integrated map for P. sitchensis and Picea glauca based on 27,052 markers and 11,609 gene sequences. Altogether, these 2 linkage maps, the accompanying catalog of 286,159 SNPs and the genotyping chip developed, herein, open new perspectives for a variety of fundamental and more applied research objectives, such as for the improvement of spruce genome assemblies, or for marker-assisted sustainable management of genetic resources in Sitka spruce and related species.


Subject(s)
Picea , Tracheophyta , Humans , Picea/genetics , Tracheophyta/genetics , Chromosome Mapping , Genome , Genomics , Polymorphism, Single Nucleotide , Genetic Linkage , Genome, Plant
10.
Vet Res Forum ; 14(11): 615-623, 2023.
Article in English | MEDLINE | ID: mdl-38169601

ABSTRACT

Despite widespread vaccination against foot-and-mouth disease, many outbreaks still occur in endemic areas. We attempted to determine the genetic and antigenic properties of the O/PanAsia-2/QOM-15 foot-and-mouth disease virus new vaccine strain. Thus, whole-genome sequencing was used to identify vulnerable pinpoint sites across the genome. The VP1 sequence (1D gene) of the O/PanAsia-2/QOM-15 viral genome was then compared to the VP1 sequences of two previously used vaccine strains, O/PanAsia (JQ321837) and O/PanAsia-2 (JN676146). The antigenic relationship of these three viruses was calculated by the two dimensional-virus neutralization test. At the nucleotide level, 47 single variants were identified, of which 19.00% were in the 5' untranslated region (UTR), 79.00% in the polyprotein region, and 2.00% in the 3' UTR region. Approximately half of the single nucleotide polymorphisms that have occurred in 1D gene resulted in amino acid (AA) substitutions in the VP1 structure. The single nucleotide polymorphisms also caused AA substitutions in other structural proteins, including VP2 and VP3, and some non-structural proteins (Lpro, 2C, and 3A). The O/PanAsia-2/QOM-15 shared higher sequence similarity with O/PanAsia-2 (91.00%) compared to O/PanAsia (87.30%). Evaluating r-value showed that the antigenic relationship of O/PanAsia-2/QOM-15 with O/PanAsia-2 (29.00%) was greater than that of the O/PanAsia (24.00%); however, all three viruses were immunologically distinct. After 10 years, the alteration of virus antigenicity and the lack of detectable adaptive pressure on VP1 sequence suggest that studying genetic dynamics beyond the VP1 region is necessary to evaluate FMDV pathogenicity and vaccine failure.

11.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34751383

ABSTRACT

The gray short-tailed opossum (Monodelphis domestica) is an established laboratory-bred marsupial model for biomedical research. It is a critical species for comparative genomics research, providing the pivotal phylogenetic outgroup for studies of derived vs ancestral states of genomic/epigenomic characteristics for eutherian mammal lineages. To characterize the current genetic profile of this laboratory marsupial, we examined 79 individuals from eight established laboratory strains. Double digest restriction site-associated DNA sequencing and whole-genome resequencing experiments were performed to investigate the genetic architecture in these strains. A total of 66,640 high-quality single nucleotide polymorphisms (SNPs) were identified. We analyzed SNP density, average heterozygosity, nucleotide diversity, and population differentiation parameter Fst within and between the eight strains. Principal component and population structure analysis clearly resolve the strains at the level of their ancestral founder populations, and the genetic architecture of these strains correctly reflects their breeding history. We confirmed the successful establishment of the first inbred laboratory opossum strain LSD (inbreeding coefficient F > 0.99) and a nearly inbred strain FD2M1 (0.98 < F < 0.99), each derived from a different ancestral background. These strains are suitable for various experimental protocols requiring controlled genetic backgrounds and for intercrosses and backcrosses that can generate offspring with informative SNPs for studying a variety of genetic and epigenetic processes. Together with recent advances in reproductive manipulation and CRISPR/Cas9 techniques for Monodelphis domestica, the existence of distinctive inbred strains will enable genome editing on different genetic backgrounds, greatly expanding the utility of this marsupial model for biomedical research.


Subject(s)
Monodelphis , Animals , Genome , Genomics , Humans , Laboratories , Monodelphis/genetics , Phylogeny
12.
Insects ; 13(3)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35323556

ABSTRACT

(1) Background: Many hemipteran insects transmit plant pathogens that cause devastating crop diseases, while pest management frequently relies primarily on insecticide applications. These intense insecticide applications lead to the development of insecticide resistance, as was the case for potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), a vector of Candidatus Liberibacter solanacearum, which causes zebra chip disease in potato. (2) Methods: Here, we use double-digest restriction site-associated DNA (ddRAD) to genotype eight psyllid populations (one susceptible and seven resistant to neonicotinoid insecticides). (3) Results: Association tests identified over 400 loci that were strongly segregated between susceptible and resistant populations. Several loci were located within genes involved in insecticide resistance, gene regulation, fertility, and development. Moreover, we explored the genetic structure of these eight populations and discovered that routinely utilized haplotyping was not an accurate predictor of population structure. Pairwise comparisons of the fixation index (FST) of populations of the same haplotype were not different from pairwise FST of populations that belonged to different haplotypes. (4) Conclusions: Our findings suggest that neonicotinoid insecticide resistance has a genetic basis, most likely as a result of similar selection pressure. Furthermore, our results imply that using a single maternally inherited gene marker to designate genetic lineages for potato psyllids should be re-evaluated.

13.
Genome Biol Evol ; 14(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35179579

ABSTRACT

Parasitic worms are serious pests of humans, livestock, and crops worldwide. Multiple management strategies are employed in order to reduce their impact, and some of these may affect their genome and population allelic frequency distribution. The evolution of chemical resistance, ecological changes, and pest dispersal has allowed an increasing number of pests to become difficult to control with current management methods. Their lifestyle limits the use of ecological and individual-based management of populations. There is a need to develop rapid, affordable, and simple diagnostics to assess the efficacy of management strategies and delay the evolution of resistance to these strategies. This study presents a multilocus, equal-representation, whole-genome pooled single nucleotide polymorphisms (SNPs) selection approach as a monitoring tool for the ovine nematode parasite Haemonchus contortus. The SNP selection method used two reference genomes of different quality, then validated these SNPs against a high-quality recent genome assembly. From over 11 million high-quality SNPs identified, 334 SNPs were selected, of which 262 were species-specific, yielded similar allele frequencies when assessed as multiple individuals or as pools of individuals, and suitable to distinguish mixed nematode isolate pools from single isolate pools. As a proof-of-concept, 21 Australian H. contortus populations with various phenotypes and genotypes were screened. This analysis confirmed the overall low level of genetic differentiation between populations collected from the field, but clearly identifying highly inbred populations, and populations showing genetic signatures associated with chemical resistance. The analysis showed that 66% of the SNPs were necessary for stability in assessing population genetic patterns, and SNP pairs did not show linkage according to allelic frequencies across the 21 populations. This method demonstrates that ongoing monitoring of parasite allelic frequencies and genetic changes can be achieved as a management assessment tool to identify drug-treatment failure, population incursions, and inbreeding signatures due to selection. The SNP selection method could also be applied to other parasite species.


Subject(s)
Haemonchus , Polymorphism, Single Nucleotide , Animals , Australia , Drug Resistance/genetics , Gene Frequency , Haemonchus/genetics , Sheep
14.
Plant Sci ; 304: 110731, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33568284

ABSTRACT

Existing Elaeis guineensis cultivars lack sufficient genetic diversity due to extensive breeding. Harnessing variation in wild crop relatives is necessary to expand the breadth of agronomically valuable traits. Using RAD sequencing, we examine the natural diversity of wild American oil palm populations (Elaeis oleifera), a sister species of the cultivated Elaeis guineensis oil palm. We genotyped 192 wild E. oleifera palms collected from seven Latin American countries along with four cultivated E. guineensis palms. Honduras, Costa Rica, Panama and Colombia palms are panmictic and genetically similar. Genomic patterns of diversity suggest that these populations likely originated from the Amazon Basin. Despite evidence of a genetic bottleneck and high inbreeding observed in these populations, there is considerable genetic and phenotypic variation for agronomically valuable traits. Genome-wide association revealed several candidate genes associated with fatty acid composition along with vegetative and yield-related traits. These observations provide valuable insight into the geographic distribution of diversity, phenotypic variation and its genetic architecture that will guide choices of wild genotypes for crop improvement.


Subject(s)
Arecaceae/genetics , Fatty Acids/metabolism , Genetic Variation/genetics , Alleles , Arecaceae/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Genome-Wide Association Study , Linkage Disequilibrium/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Sequence Analysis, DNA
15.
Genes (Basel) ; 12(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-34356090

ABSTRACT

Poland is the largest European producer of goose, while goose breeding has become an essential and still increasing branch of the poultry industry. The most frequently bred goose is the White Koluda® breed, constituting 95% of the country's population, whereas geese of regional varieties are bred in smaller, conservation flocks. However, a goose's genetic diversity is inaccurately explored, mainly because the advantages of the most commonly used tools are strongly limited in non-model organisms. One of the most accurate used markers for population genetics is single nucleotide polymorphisms (SNP). A highly efficient strategy for genome-wide SNP detection is genotyping-by-sequencing (GBS), which has been already widely applied in many organisms. This study attempts to use GBS in 12 conservative goose breeds and the White Koluda® breed maintained in Poland. The GBS method allowed for the detection of 3833 common raw SNPs. Nevertheless, after filtering for read depth and alleles characters, we obtained the final markers panel used for a differentiation analysis that comprised 791 SNPs. These variants were located within 11 different genes, and one of the most diversified variants was associated with the EDAR gene, which is especially interesting as it participates in the plumage development, which plays a crucial role in goose breeding.


Subject(s)
Geese/genetics , Genetic Variation/genetics , Polymorphism, Single Nucleotide/genetics , Alleles , Animal Husbandry/methods , Animals , Biomarkers , Breeding/methods , Genetics, Population/methods , Genotype , Genotyping Techniques/methods , Poland , Sequence Analysis/methods
16.
Biology (Basel) ; 11(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35053047

ABSTRACT

Rhizoctonia solani, causing Rhizoctonia crown and root rot, is a major risk to sugar beet (Beta vulgaris L.) cultivation. The development of resistant varieties accelerated by marker-assisted selection is a priority of breeding programs. We report the identification of a single-nucleotide polymorphism (SNP) marker linked to Rhizoctonia resistance using restriction site-associated DNA (RAD) sequencing of two geographically discrete sets of plant materials with different degrees of resistance/susceptibility to enable a wider selection of superior genotypes. The variant calling pipeline utilized SAMtools for variant calling and the resulting raw SNPs from RAD sequencing (15,988 and 22,439 SNPs) were able to explain 13.40% and 25.45% of the phenotypic variation in the two sets of material from different sources of origin, respectively. An association analysis was carried out independently on both the datasets and mutually occurring significant SNPs were filtered depending on their contribution to the phenotype using principal component analysis (PCA) biplots. To provide a ready-to-use marker for the breeding community, a systematic molecular validation of significant SNPs distributed across the genome was undertaken to combine high-resolution melting, Sanger sequencing, and rhAmp SNP genotyping. We report that RsBv1 located on Chromosome 6 (9,000,093 bp) is significantly associated with Rhizoctonia resistance (p < 0.01) and able to explain 10% of the phenotypic disease variance. The related SNP assay is thus ready for marker-assisted selection in sugar beet breeding for Rhizoctonia resistance.

17.
Ecol Evol ; 10(16): 8880-8893, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32884664

ABSTRACT

For population genetic studies in nonmodel organisms, it is important to use every single source of genomic information. This paper presents EXFI, a Python pipeline that predicts the splice graph and exon sequences using an assembled transcriptome and raw whole-genome sequencing reads. The main algorithm uses Bloom filters to remove reads that are not part of the transcriptome, to predict the intron-exon boundaries, to then proceed to call exons from the assembly, and to generate the underlying splice graph. The results are returned in GFA1 format, which encodes both the predicted exon sequences and how they are connected to form transcripts. EXFI is written in Python, tested on Linux platforms, and the source code is available under the MIT License at https://github.com/jlanga/exfi.

18.
BMC Res Notes ; 13(1): 503, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33138858

ABSTRACT

OBJECTIVES: The Brown trout is a salmonid species with a high commercial value in Europe. Life history and spawning behaviour include resident (Salmo trutta m. fario) and migratory (Salmo trutta m. trutta) ecotypes. The main objective is to apply RNA-seq technology in order to obtain a reference transcriptome of two key tissues, brain and muscle, of the riverine trout Salmo trutta m. fario. Having a reference transcriptome of the resident form will complement genomic resources of salmonid species. DATA DESCRIPTION: We generate two cDNA libraries from pooled RNA samples, isolated from muscle and brain tissues of adult individuals of Salmo trutta m. fario, which were sequenced by Illumina technology. Raw reads were subjected to de-novo transcriptome assembly using Trinity, and coding regions were predicted by TransDecoder. A final set of 35,049 non-redundant ORF unigenes were annotated. Tissue differential expression analysis was evaluated by Cuffdiff. A False Discovery Rate (FDR) ≤ 0.01 was considered for significant differential expression, allowing to identify key differentially expressed unigenes. Finally, we have identified SNP variants that will be useful tools for population genomic studies.


Subject(s)
Transcriptome , Trout , Animals , Brain , Muscles , Transcriptome/genetics , Trout/genetics
19.
AoB Plants ; 11(1): ply077, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30697406

ABSTRACT

Association analysis between constructed single nucleotide polymorphism linkage disequilibrium blocks (SNPLDBs) and general combining ability (GCA) effects is a novel approach to uncover the genetic basis of GCA within the sequence genomes of parents of hybrid rice. Here, we calculated the GCA effect values of 33 parents of hybrid rice and sequenced them to identify genome-wide single nucleotide polymorphisms (SNPs). In total, 64.6 % of the uniquely mapped paired-end short reads revealed a final total of 291 959 SNPs between the 33 parental genomes and the Nipponbare reference genome. The identified SNPs were non-randomly distributed among all chromosomes of rice, whereas one-fourth of the SNPs were situated in the exonic regions with 16 % being non-synonymous. Further, the identified SNPs were merged and optimized for construction of 2612 SNPLDB markers, using linkage disequilibrium information. The single-factor analysis of variance-based association method between the constructed SNPLDB markers and GCA effects values detected 99 significant SNPLDBs for GCA of 11 yield-related traits. The associated SNPLDB markers explained 26.4 % of phenotypic variations with traits, on average. We mined 50 favourable GCA alleles at the associated SNPLDBs regions, distributed across the 33 parental genomes. The parental genomes possessed a small number of favourable GCA alleles for studied traits, with the exception of days to heading and plant height. Our results suggest that the identified GCA alleles could be used to improve the GCA performance of parents of hybrid rice through optimal crossing design. Moreover, favourable GCA alleles should be incorporated in the parental genomes through marker-assisted selection experiments, and the parental lines carrying more alleles could be utilized in breeding as superior parents for developing rice hybrids of desirable characteristics.

20.
Mol Ecol Resour ; 19(2): 512-525, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30575257

ABSTRACT

In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome-scale studies to characterize both model and non-model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome-wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site-associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms-enabling the exploration of diverse evolutionary and conservation questions.


Subject(s)
DNA Transposable Elements , Genetics, Population/methods , Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Animals , Deer , Polymerase Chain Reaction/methods , Rats , Wolves
SELECTION OF CITATIONS
SEARCH DETAIL