Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 729
Filter
Add more filters

Publication year range
1.
Cell ; 187(13): 3262-3283.e23, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38815580

ABSTRACT

In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.


Subject(s)
Cell Cycle Proteins , Heterochromatin , Histone-Lysine N-Methyltransferase , Histones , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Cell Cycle Proteins/metabolism , Centromere/metabolism , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Methylation , Methyltransferases/metabolism , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , RNA, Fungal/genetics , RNA, Small Interfering/genetics
2.
Cell ; 185(13): 2309-2323.e24, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35662414

ABSTRACT

The mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells. Using cryo-EM, we show that POLRMT dimerization is induced by interactions with 7S RNA. The resulting POLRMT dimer interface sequesters domains necessary for promoter recognition and unwinding, thereby preventing transcription initiation. We propose that the non-coding 7S RNA molecule is a component of a negative feedback loop that regulates mitochondrial transcription in mammalian cells.


Subject(s)
DNA, Mitochondrial , Mitochondrial Proteins , Animals , DNA, Mitochondrial/genetics , DNA-Directed RNA Polymerases/metabolism , Dimerization , Humans , Mammals/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , RNA/metabolism , RNA, Mitochondrial , RNA, Small Cytoplasmic , Signal Recognition Particle , Transcription, Genetic
3.
Cell ; 184(2): 352-369.e23, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33357448

ABSTRACT

Repetitive elements (REs) compose ∼50% of the human genome and are normally transcriptionally silenced, although the mechanism has remained elusive. Through an RNAi screen, we identified FBXO44 as an essential repressor of REs in cancer cells. FBXO44 bound H3K9me3-modified nucleosomes at the replication fork and recruited SUV39H1, CRL4, and Mi-2/NuRD to transcriptionally silence REs post-DNA replication. FBXO44/SUV39H1 inhibition reactivated REs, leading to DNA replication stress and stimulation of MAVS/STING antiviral pathways and interferon (IFN) signaling in cancer cells to promote decreased tumorigenicity, increased immunogenicity, and enhanced immunotherapy response. FBXO44 expression inversely correlated with replication stress, antiviral pathways, IFN signaling, and cytotoxic T cell infiltration in human cancers, while a FBXO44-immune gene signature correlated with improved immunotherapy response in cancer patients. FBXO44/SUV39H1 were dispensable in normal cells. Collectively, FBXO44/SUV39H1 are crucial repressors of RE transcription, and their inhibition selectively induces DNA replication stress and viral mimicry in cancer cells.


Subject(s)
DNA Replication/genetics , F-Box Proteins/metabolism , Neoplasms/genetics , Repetitive Sequences, Nucleic Acid/genetics , Adult , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , DNA Breaks, Double-Stranded , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunity , Interferons/metabolism , Lysine/metabolism , Male , Methylation , Middle Aged , Neoplasm Proteins/metabolism , Neoplasms/immunology , Nucleosomes/metabolism , Signal Transduction , Transcription, Genetic , Treatment Outcome
4.
Mol Cell ; 83(16): 2884-2895.e7, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37536340

ABSTRACT

DNA replication ensures the accurate transmission of genetic information during the cell cycle. Histone variant H2A.Z is crucial for early replication origins licensing and activation in which SUV420H1 preferentially recognizes H2A.Z-nucleosome and deposits H4 lysine 20 dimethylation (H4K20me2) on replication origins. Here, we report the cryo-EM structures of SUV420H1 bound to H2A.Z-nucleosome or H2A-nucleosome and demonstrate that SUV420H1 directly interacts with H4 N-terminal tail, the DNA, and the acidic patch in the nucleosome. The H4 (1-24) forms a lasso-shaped structure that stabilizes the SUV420H1-nucleosome complex and precisely projects the H4K20 residue into the SUV420H1 catalytic center. In vitro and in vivo analyses reveal a crucial role of the SUV420H1 KR loop (residues 214-223), which lies close to the H2A.Z-specific residues D97/S98, in H2A.Z-nucleosome preferential recognition. Together, our findings elucidate how SUV420H1 recognizes nucleosomes to ensure site-specific H4K20me2 modification and provide insights into how SUV420H1 preferentially recognizes H2A.Z nucleosome.


Subject(s)
Histones , Nucleosomes , Histones/metabolism , Nucleosomes/genetics , Methylation , DNA/metabolism , DNA Replication
5.
Mol Cell ; 83(16): 2872-2883.e7, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37595555

ABSTRACT

SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/H4K20me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation. It is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes, suggesting that the enzyme likely has uncharacterized non-catalytic activities. Our cryoelectron microscopy (cryo-EM), biochemical, biophysical, and cellular analyses reveal how SUV420H1 recognizes its nucleosome substrates, and how histone variant H2A.Z stimulates its catalytic activity. SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from the histone octamer, which is a non-catalytic activity. We hypothesize that this regulates the accessibility of large macromolecular complexes to chromatin. We show that SUV420H1 can promote chromatin condensation, another non-catalytic activity that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Chromatin/genetics , Cryoelectron Microscopy , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Lysine , Nucleosomes/genetics , Humans
6.
Mol Cell ; 81(19): 3979-3991.e4, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34375584

ABSTRACT

Epigenetic inheritance of heterochromatin requires DNA-sequence-independent propagation mechanisms, coupling to RNAi, or input from DNA sequence, but how DNA contributes to inheritance is not understood. Here, we identify a DNA element (termed "maintainer") that is sufficient for epigenetic inheritance of pre-existing histone H3 lysine 9 methylation (H3K9me) and heterochromatin in Schizosaccharomyces pombe but cannot establish de novo gene silencing in wild-type cells. This maintainer is a composite DNA element with binding sites for the Atf1/Pcr1 and Deb1 transcription factors and the origin recognition complex (ORC), located within a 130-bp region, and can be converted to a silencer in cells with lower rates of H3K9me turnover, suggesting that it participates in recruiting the H3K9 methyltransferase Clr4/Suv39h. These results suggest that, in the absence of RNAi, histone H3K9me is only heritable when it can collaborate with maintainer-associated DNA-binding proteins that help recruit the enzyme responsible for its epigenetic deposition.


Subject(s)
Chromatin Assembly and Disassembly , DNA Methylation , DNA, Fungal/genetics , Heredity , Heterochromatin/genetics , Regulatory Sequences, Nucleic Acid , Schizosaccharomyces/genetics , Activating Transcription Factors/genetics , Activating Transcription Factors/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Binding Sites , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA, Fungal/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Fungal , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Proteins/genetics , Proteins/metabolism , RNA Interference , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
7.
Mol Cell ; 77(1): 51-66.e8, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31784357

ABSTRACT

Spatially and functionally distinct domains of heterochromatin and euchromatin play important roles in the maintenance of chromosome stability and regulation of gene expression, but a comprehensive knowledge of their composition is lacking. Here, we develop a strategy for the isolation of native Schizosaccharomyces pombe heterochromatin and euchromatin fragments and analyze their composition by using quantitative mass spectrometry. The shared and euchromatin-specific proteomes contain proteins involved in DNA and chromatin metabolism and in transcription, respectively. The heterochromatin-specific proteome includes all proteins with known roles in heterochromatin formation and, in addition, is enriched for subsets of nucleoporins and inner nuclear membrane (INM) proteins, which associate with different chromatin domains. While the INM proteins are required for the integrity of the nucleolus, containing ribosomal DNA repeats, the nucleoporins are required for aggregation of heterochromatic foci and epigenetic inheritance. The results provide a comprehensive picture of heterochromatin-associated proteins and suggest a role for specific nucleoporins in heterochromatin function.


Subject(s)
Cell Nucleus/metabolism , Chromatin Assembly and Disassembly/physiology , Chromatin/metabolism , Heterochromatin/metabolism , DNA, Ribosomal/metabolism , Epigenesis, Genetic/physiology , Euchromatin/metabolism , Nuclear Pore Complex Proteins/metabolism , Proteomics/methods , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Transcription, Genetic/physiology
8.
Mol Cell ; 76(4): 646-659.e6, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31543422

ABSTRACT

Eukaryotic chromosomes contain compartments of various functions, which are marked by and enriched with specific histone modifications. However, the molecular mechanisms by which these histone marks function in chromosome compartmentalization are poorly understood. Constitutive heterochromatin is a largely silent chromosome compartment characterized in part by H3K9me2 and 3. Here, we show that heterochromatin protein 1 (HP1), an H3K9me2 and 3 "reader," interacts with SUV39H1, an H3K9me2 and 3 "writer," and with TRIM28, an abundant HP1 scaffolding protein, to form complexes with increased multivalent engagement of H3K9me2 and 3-modified chromatin. H3K9me2 and 3-marked nucleosomal arrays and associated complexes undergo phase separation to form macromolecule-enriched liquid droplets. The droplets are reminiscent of heterochromatin as they are highly dense chromatin-containing structures that are resistant to DNase and exclude the general transcription factor TFIIB. Our data suggest a general mechanism by which histone marks regulate chromosome compartmentalization by promoting phase separation.


Subject(s)
Chromatin Assembly and Disassembly , Heterochromatin/metabolism , Histones/metabolism , Lipid Droplets/metabolism , Nucleosomes/metabolism , Protein Processing, Post-Translational , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , HEK293 Cells , Heterochromatin/genetics , Humans , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Multiprotein Complexes , Nucleosomes/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Time Factors , Tripartite Motif-Containing Protein 28/genetics , Tripartite Motif-Containing Protein 28/metabolism
9.
J Biol Chem ; 300(3): 105714, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309502

ABSTRACT

Inhibition of protein kinase C (PKC) efficiently promoted the self-renewal of embryonic stem cells (ESCs). However, information about the function of PKC inhibition remains lacking. Here, RNA-sequencing showed that the addition of Go6983 significantly inhibited the expression of de novo methyltransferases (Dnmt3a and Dnmt3b) and their regulator Dnmt3l, resulting in global hypomethylation of DNA in mouse ESCs. Mechanistically, PR domain-containing 14 (Prdm14), a site-specific transcriptional activator, partially contributed to Go6983-mediated repression of Dnmt3 genes. Administration of Go6983 increased Prdm14 expression mainly through the inhibition of PKCδ. High constitutive expression of Prdm14 phenocopied the ability of Go6983 to maintain` mouse ESC stemness in the absence of self-renewal-promoting cytokines. In contrast, the knockdown of Prdm14 eliminated the response to PKC inhibition and substantially impaired the Go6983-induced resistance of mouse ESCs to differentiation. Furthermore, liquid chromatography-mass spectrometry profiling and Western blotting revealed low levels of Suv39h1 and Suv39h2 in Go6983-treated mouse ESCs. Suv39h enzymes are histone methyltransferases that recognize dimethylated and trimethylated histone H3K9 specifically and usually function as transcriptional repressors. Consistently, the inhibition of Suv39h1 by RNA interference or the addition of the selective inhibitor chaetocin increased Prdm14 expression. Moreover, chromatin immunoprecipitation assay showed that Go6983 treatment led to decreased enrichment of dimethylation and trimethylation of H3K9 at the Prdm14 promoter but increased RNA polymerase Ⅱ binding affinity. Together, our results provide novel insights into the pivotal association between PKC inhibition-mediated self-renewal and epigenetic changes, which will help us better understand the regulatory network of stem cell pluripotency.


Subject(s)
DNA-Binding Proteins , Mouse Embryonic Stem Cells , Protein Kinase C , Animals , Mice , DNA Methylation , DNA-Binding Proteins/metabolism , Indoles/pharmacology , Maleimides/pharmacology , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/enzymology , Mouse Embryonic Stem Cells/physiology , Protein Kinase C/genetics , Protein Kinase C/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Kinase Inhibitors/pharmacology
10.
Genes Cells ; 29(5): 361-379, 2024 May.
Article in English | MEDLINE | ID: mdl-38403935

ABSTRACT

Constitutive heterochromatin is transcriptionally repressed and densely packed chromatin, typically harboring histone H3 Lys9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1). SUV420H2, a histone H4 Lys20 methyltransferase, is recruited to heterochromatin by binding to HP1 through its Heterochromatic Targeting Module (HTM). Here, we have identified three HP1 binding motifs within the HTM. Both the full-length HTM and its N-terminal region (HTM-N), which contains the first and second motifs, stabilized HP1 on heterochromatin. The intervening region between the first and second HP1 binding motifs in HTM-N was also crucial for HP1 binding. In contrast, the C-terminal region of HTM (HTM-C), containing the third motif, destabilized HP1 on chromatin. An HTM V374D mutant, featuring a Val374 to Asp substitution in the second HP1 binding motif, localizes to heterochromatin without affecting HP1 stability. These data suggest that the second HP1 binding motif in the SUV420H2 HTM is critical for locking HP1 on H3K9me3-enriched heterochromatin. HTM V374D, tagged with a fluorescent protein, can serve as a live-cell probe to visualize HP1-bound heterochromatin.


Subject(s)
Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone , Heterochromatin , Histone-Lysine N-Methyltransferase , Protein Binding , Heterochromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromobox Protein Homolog 5/metabolism , Humans , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Amino Acid Motifs , HeLa Cells , Binding Sites
11.
Cancer Sci ; 115(2): 385-400, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38082550

ABSTRACT

Hepatocellular carcinoma (HCC) has a high rate of recurrence and poor prognosis, even after curative surgery. Multikinase inhibitors have been applied for HCC patients, but their effect has been restricted. This study aims to clarify the clinical impact of SUV420H1/KMT5B, one of the methyltransferases for histone H4 at lysine 20, and elucidate the novel mechanisms of HCC progression. We retrospectively investigated SUV420H1 expression using HCC clinical tissue samples employing immunohistochemical analysis (n = 350). We then performed loss-of-function analysis of SUV420H1 with cell cycle analysis, migration assay, invasion assay and RNA sequence for Gene Ontology (GO) pathway analysis in vitro, and animal experiments with xenograft mice in vivo. The SUV420H1-high-score group (n = 154) had significantly poorer prognosis for both 5-year overall and 2-year/5-year disease-free survival than the SUV420H1-low-score group (n = 196) (p < 0.001 and p < 0.05, respectively). The SUV420H1-high-score group had pathologically larger tumor size, more tumors, poorer differentiation, and more positive vascular invasion than the SUV420H1-low-score group. Multivariate analysis demonstrated that SUV420H1 high score was the poorest independent factor for overall survival. SUV420H1 knockdown could suppress cell cycle from G1 to S phase and cell invasion. GO pathway analysis showed that SUV420H1 contributed to cell proliferation, cell invasion, and/or metastasis. Overexpression of SUV420H1 clinically contributed to poor prognosis in HCC, and the inhibition of SUV420H1 could repress tumor progression and invasion both in vitro and in vivo; thus, further analyses of SUV420H1 are necessary for the discovery of future molecularly targeted drugs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Liver Neoplasms/pathology , Methyltransferases/genetics , Prognosis , Retrospective Studies
12.
Gastroenterology ; 164(2): 214-227, 2023 02.
Article in English | MEDLINE | ID: mdl-36402192

ABSTRACT

BACKGROUND & AIMS: Epigenetic processes regulating gene expression contribute markedly to epithelial cell plasticity in colorectal carcinogenesis. The lysine methyltransferase SUV420H2 comprises an important regulator of epithelial plasticity and is primarily responsible for trimethylation of H4K20 (H4K20me3). Loss of H4K20me3 has been suggested as a hallmark of human cancer due to its interaction with DNMT1. However, the role of Suv4-20h2 in colorectal cancer is unknown. METHODS: We examined the alterations in histone modifications in patient-derived colorectal cancer organoids. Patient-derived colorectal cancer organoids and mouse intestinal organoids were genetically manipulated for functional studies in patient-derived xenograft and orthotopic transplantation. Gene expression profiling, micrococcal nuclease assay, and chromatin immunoprecipitation were performed to understand epigenetic regulation of chromatin states and gene expression in patient-derived and mouse intestinal organoids. RESULTS: We found that reduced H4K20me3 levels occurred predominantly in right-sided patient-derived colorectal cancer organoids, which were associated with increased chromatin accessibility. Re-compaction of chromatin by methylstat, a histone demethylase inhibitor, resulted in reduced growth selectively in subcutaneously grown tumors derived from right-sided cancers. Using mouse intestinal organoids, we confirmed that Suv4-20h2-mediated H4K20me3 is required for maintaining heterochromatin compaction and to prevent R-loop formation. Cross-species comparison of Suv4-20h2-depleted murine organoids with right-sided colorectal cancer organoids revealed a large overlap of gene signatures involved in chromatin silencing, DNA methylation, and stemness/Wnt signaling. CONCLUSIONS: Loss of Suv4-20h2-mediated H4K20me3 drives right-sided colorectal tumorigenesis through an epigenetically controlled mechanism of chromatin compaction. Our findings unravel a conceptually novel approach for subtype-specific therapy of this aggressive form of colorectal cancer.


Subject(s)
Colonic Neoplasms , Histone-Lysine N-Methyltransferase , Animals , Humans , Mice , Cell Transformation, Neoplastic/genetics , Chromatin/genetics , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Epigenesis, Genetic , Histones/metabolism , Heterografts , Histone-Lysine N-Methyltransferase/metabolism
13.
Ann Oncol ; 35(6): 549-558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423389

ABSTRACT

BACKGROUND: 18F-fluoroestradiol (FES) positron emission tomography (PET)/computed tomography (CT) is considered an accurate diagnostic tool to determine whole-body endocrine responsiveness. In the endocrine therapy (ET)-FES trial, we evaluated 18F-FES PET/CT as a predictive tool in estrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC). PATIENTS AND METHODS: Eligible patients underwent an 18F-FES PET/CT at baseline. Patients with standardized uptake value (SUV) ≥ 2 received single-agent ET until progressive disease; patients with SUV < 2 were randomized to single-agent ET (arm A) or chemotherapy (ChT) (arm B). The primary objective was to compare the activity of first-line ET versus ChT in patients with 18F-FES SUV < 2. RESULTS: Overall, 147 patients were enrolled; 117 presented with 18F-FES SUV ≥ 2 and received ET; 30 patients with SUV < 2 were randomized to ET or ChT. After a median follow-up of 62.4 months, 104 patients (73.2%) had disease progression and 53 died (37.3%). Median progression-free survival (PFS) was 12.4 months [95% confidence interval (CI) 3.1-59.6 months] in patients with SUV < 2 randomized to arm A versus 23.0 months (95% CI 7.7-30.0 months) in arm B, [hazard (HR) = 0.71, 95% CI 0.3-1.7 months]; median PFS was 18.0 months (95% CI 11.2-23.1 months) in patients with SUV ≥ 2 treated with ET. Median overall survival (OS) was 28.2 months (95% CI 14.2 months-not estimable) in patients with SUV < 2 randomized to ET (arm A) versus 52.8 months (95% CI 16.2 months-not estimable) in arm B (ChT). Median OS was not reached in patients with SUV ≥ 2. 60-month OS rate was 41.6% (95% CI 10.4% to 71.1%) in arm A, 42.0% (95% CI 14.0% to 68.2%) in arm B, and 59.6% (95% CI 48.6% to 69.0%) in patients with SUV ≥ 2. In patients with SUV ≥ 2, 60-month OS rate was 72.6% if treated with aromatase inhibitors (AIs) versus 40.6% in case of fulvestrant or tamoxifen (P < 0.005). CONCLUSIONS: The ET-FES trial demonstrated that ER+/HER2- MBC patients are a heterogeneous population, with different levels of endocrine responsiveness based on 18F-FES CT/PET SUV.


Subject(s)
Breast Neoplasms , Estradiol , Positron Emission Tomography Computed Tomography , Receptor, ErbB-2 , Receptors, Estrogen , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/mortality , Middle Aged , Pilot Projects , Positron Emission Tomography Computed Tomography/methods , Receptors, Estrogen/metabolism , Estradiol/analogs & derivatives , Aged , Receptor, ErbB-2/metabolism , Adult , Antineoplastic Agents, Hormonal/therapeutic use , Radiopharmaceuticals , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
14.
J Transl Med ; 22(1): 216, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424632

ABSTRACT

Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, but the early diagnosis rate is low. The RNA-binding ubiquitin ligase MEX3C promotes tumorigenesis in several cancers but its mechanism of action in LUAD is unclear. In this study, the biological activity of MEX3C was assessed in LUAD. MEX3C and RUNX3 mRNA levels in the tissues of LUAD patients were determined using reverse transcription­quantitative PCR. The involvement of MEX3C in the growth and metastasis of LUAD cells was measured by EdU assay, CCK-8, colony formation, Transwell assay, TUNEL, and flow cytometry. Expression of apoptosis and epithelial-mesenchymal transition related proteins were determined using western blotting analysis. LUAD cells transfected with si-MEX3C were administered to mice subcutaneously to monitor tumor progression and metastasis. We found that MEX3C is strongly upregulated in LUAD tissue sections, and involved in proliferation and migration. A549 and H1299 cells had significantly higher levels of MEX3C expression compared to control HBE cells. Knockdown of MEX3C dramatically decreased cell proliferation, migration, and invasion, and accelerated apoptosis. Mechanistically, we demonstrate MEX3C induces ubiquitylation and degradation of tumor suppressor RUNX3. Moreover, RUNX3 transcriptionally represses Suv39H1, as revealed by RNA pull-down and chromatin immunoprecipitation assays. The in vivo mice model demonstrated that knockdown of MEX3C reduced LUAD growth and metastasis significantly. Collectively, we reveal a novel MEX3C-RUNX3-Suv39H1 signaling axis driving LUAD pathogenesis. Targeting MEX3C may represent a promising therapeutic strategy against LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Ligases/genetics , Ligases/metabolism , Lung Neoplasms/pathology , MicroRNAs/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination
15.
J Med Virol ; 96(4): e29607, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628076

ABSTRACT

Hepatitis B e antigen (HBeAg) seropositivity during the natural history of chronic hepatitis B (CHB) is known to coincide with significant increases in serum and intrahepatic HBV DNA levels. However, the precise underlying mechanism remains unclear. In this study, we found that PreC (HBeAg precursor) genetic ablation leads to reduced viral replication both in vitro and in vivo. Furthermore, PreC impedes the proteasomal degradation of HBV polymerase, promoting viral replication. We discovered that PreC interacts with SUV39H1, a histone methyltransferase, resulting in a reduction in the expression of Cdt2, an adaptor protein of CRL4 E3 ligase targeting HBV polymerase. SUV39H1 induces H3K9 trimethylation of the Cdt2 promoter in a PreC-induced manner. CRISPR-mediated knockout of endogenous SUV39H1 or pharmaceutical inhibition of SUV39H1 decreases HBV loads in the mouse liver. Additionally, genetic depletion of Cdt2 in the mouse liver abrogates PreC-related HBV replication. Interestingly, a negative correlation of intrahepatic Cdt2 with serum HBeAg and HBV DNA load was observed in CHB patient samples. Our study thus sheds light on the mechanistic role of PreC in inducing HBV replication and identifies potential therapeutic targets for HBV treatment.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Animals , Humans , Mice , DNA, Viral , Hepatitis B e Antigens , Hepatitis B virus/genetics , Methyltransferases , Repressor Proteins/genetics , Virus Replication
16.
Hematol Oncol ; 42(2): e3266, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444261

ABSTRACT

Diffuse Large B-Cell Lymphomas (DLCBL) and mucosa-associated lymphoid tissue (MALT) are the two most common primary gastric lymphomas (PGLs), but have strongly different features. DLBCL is more aggressive, is frequently diagnosed at an advanced stage and has a poorer prognosis. The aim of this retrospective study was to explore the role of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (2-[18 F]-FDG-PET/CT) and radiomics features (RFs) in predicting the final diagnosis of patients with PGLs. Ninety-one patients with newly diagnosed PGLs who underwent pre-treatment 2-[18 F]-FDG-PET/CT were included. PET images were qualitatively and semi-quantitatively analyzed by deriving maximum standardized uptake value body weight (SUVbw), maximum standardized uptake value lean body mass (SUVlbm), maximum standardized uptake value body surface area (SUVbsa), lesion to liver SUVmax ratio (L-L SUV R), lesion to blood-pool SUVmax ratio (L-BP SUV R), metabolic tumor volume (gMTV) and total lesion glycolysis of gastric lesion (gTLG), total MTV (tMTV), TLG, and first-order RFs (histogram-related and shape related). Receiver-operating characteristic (ROC) curve analyses were performed to determine the differential diagnostic values of PET parameters. The final diagnosis was DLBCL in 54 (59%) cases and MALT in 37 cases (41%). PGLs showed FDG avidity in 83 cases (90%), 54/54 of DLBCL and 29/37 of MALT. All PET/CT metabolic features, such as stage of disease and tumor size, were significantly higher in DLBCL than MALT; while the presence of H. Pylori infection was more common in MALT. At univariate analysis, all PET/CT metrics were significantly higher in DLBCL than MALT lymphomas, while among RFs only Shape volume_vx and Shape sphericity showed a significant difference between the two groups. In conclusion we demonstrated that 2-[18 F]-FDG-PET/CT parameters can potentially discriminate between DLBCL and MALT lymphomas with high accuracy. Among first-order RFs, only Shape volume_vx and Shape sphericity helped in the differential diagnosis.


Subject(s)
Lymphoma, B-Cell, Marginal Zone , Lymphoma, Non-Hodgkin , Organothiophosphorus Compounds , Positron Emission Tomography Computed Tomography , Stomach Neoplasms , Humans , Fluorodeoxyglucose F18 , Radiomics , Retrospective Studies
17.
Eur Radiol ; 34(3): 1960-1970, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37668694

ABSTRACT

OBJECTIVE: We conducted a prospective study using 18F-flurodeoxyglucose (18F-FDG) and 68Ga-DOTA-FAPI-04 (fibroblast-activation protein inhibitor, 68Ga-FAPI) PET/CT to diagnose, differentiate, and stage primary extrapulmonary tumors of the thorax. METHODS: Fifty-four participants were undergoing 18F-FDG and 68Ga-FAPI PET/CT and divided into the benign, intermediate, and malignant based on pathology. The maximum standardized uptake value (SUVmax), the tumor-to-blood pool ratio, and tumor-to-liver ratio were compared for primary tumors, lymph nodes, and metastases between the two modalities by two independent samples t tests. One-way ANOVA was used to compare the uptake of 18F-FDG or 68Ga-FAPI among the three groups. RESULTS: Fifty-four participants were confirmed to have 71 primary lesions, 56 metastatic lymph nodes, and 43 metastatic lesions. 18F-FDG PET/CT could both effectively distinguish malignant lesions from non-malignant lesions, accuracies of 87.32% (p < 0.001). 68Ga-FAPI PET/CT effectively differentiated benign lesions from the non-benign, accuracy being 91.55% (p < 0.001). The accuracies of 18F-FDG and 68Ga-FAPI for detecting lymph node metastasis were 77.22% (61/79) and 87.34% (69/79) (p = 0.096). The uptake of 68Ga-FAPI in metastatic lymph nodes was significantly higher than that of the nonmetastatic (p < 0.001). The detection rate of 68Ga-FAPI PET/CT for metastatic lesions was significantly higher than that of 18F-FDG, 100% (43/43) vs. 53.49% (23/43) (p < 0.001). Compared with 18F-FDG PET/CT, 68Ga-FAPI PET/CT changed the treatment strategy of 7.4% (4/54) participants. CONCLUSION: 68Ga-FAPI PET/CT is valuable in the diagnosis and differentiation of primary extrapulmonary tumors and superior to 18F-FDG PET/CT for evaluating lymph node and distant metastasis. CLINICAL RELEVANCE STATEMENT: The application of 68Ga-FAPI PET/CT in primary extrapulmonary chest tumors is valuable, which is reflected in diagnosis, differentiation and exploration of lymph node metastasis and distant metastasis. KEY POINTS: • 68Ga-FAPI PET/CT is valuable in the diagnosis, differentiation, and staging of primary extrapulmonary tumors. • 68Ga-FAPI PET/CT is superior to 18 F-FDG PET/CT for evaluating lymph node and distant metastasis.


Subject(s)
Heterocyclic Compounds, 1-Ring , Liver Neoplasms , Positron Emission Tomography Computed Tomography , Quinolines , Humans , Fluorodeoxyglucose F18 , Gallium Radioisotopes , Lymphatic Metastasis/diagnostic imaging , Prospective Studies , Thorax
18.
J Nucl Cardiol ; : 101911, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009215

ABSTRACT

PURPOSE: The heart-to-mediastinum ratio (H/M-Ratio) of 123iodo-metaiodobenzylguanidine (123I-MIBG) represents state-of-the-art assessment for sympathetic dysfunction in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). This study aims to evaluate quantitative reconstruction of 123I-MIBG uptake and to demonstrate its correlation with echocardiographic parameters. METHODS: Cardiac innervation was assessed in 23 patients diagnosed with definite ARVC or borderline ARVC and 12 patients with other cardiac disease presenting arrhythmia, using quantitative 123I-MIBG Single Photon Emission Computed Tomography / Computed Tomography (SPECT/CT) imaging. Tracer uptake was evaluated in the left (LV) and right ventricle (RV) based on a CT scan after quantitative image reconstruction. The relationship between tracer uptake and echocardiographic parameter data was examined. RESULTS: Absolute quantification of 123I-MIBG uptake in the LV and RV is feasible and correlates accurately with the gold standard H/M-Ratio. When comparing sensitivity and specificity, the area under the curve (AUC) favors standardized uptake value (SUV) of the RV over the right-ventricle-to-mediastinum-ratio (RV/M-Ratio) for diagnosing ARVC. A reduced RV-SUV in patients with definite ARVC is associated with reduced RV function. RV polar maps revealed globally reduced 123I-MIBG uptake without segment-specific reduction in the RV. CONCLUSION: Quantitative 123I-MIBG SPECT in ARCV patients offers robust potential for clinical reporting and demonstrates a significant correlation with RV function. Segmental RV analysis needs to be evaluated in larger samples. In summary, cardiac 123I-MIBG imaging using SUV could facilitate image-guided therapy in patients diagnosed with ARVC.

19.
Mol Cell ; 64(6): 1088-1101, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27984744

ABSTRACT

Quiescence (G0) is a ubiquitous stress response through which cells enter reversible dormancy, acquiring distinct properties including reduced metabolism, resistance to stress, and long life. G0 entry involves dramatic changes to chromatin and transcription of cells, but the mechanisms coordinating these processes remain poorly understood. Using the fission yeast, here, we track G0-associated chromatin and transcriptional changes temporally and show that as cells enter G0, their survival and global gene expression programs become increasingly dependent on Clr4/SUV39H, the sole histone H3 lysine 9 (H3K9) methyltransferase, and RNAi proteins. Notably, G0 entry results in RNAi-dependent H3K9 methylation of several euchromatic pockets, prior to which Argonaute1-associated small RNAs from these regions emerge. Overall, our data reveal another function for constitutive heterochromatin proteins (the establishment of the global G0 transcriptional program) and suggest that stress-induced alterations in Argonaute-associated sRNAs can target the deployment of transcriptional regulatory proteins to specific sequences.


Subject(s)
Argonaute Proteins/genetics , Cell Cycle Proteins/genetics , Euchromatin/metabolism , Gene Expression Regulation, Fungal , Methyltransferases/genetics , RNA, Small Interfering/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Argonaute Proteins/metabolism , Binding Sites , Cell Cycle Proteins/metabolism , Euchromatin/ultrastructure , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Histone-Lysine N-Methyltransferase , Histones/genetics , Histones/metabolism , Methyltransferases/metabolism , Protein Binding , RNA Interference , RNA, Small Interfering/metabolism , Resting Phase, Cell Cycle/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Transcription, Genetic
20.
Neurol Sci ; 45(5): 2223-2243, 2024 May.
Article in English | MEDLINE | ID: mdl-37994963

ABSTRACT

OBJECTIVE: The aim of this investigation was to determine whether a correlation could be discerned between perfusion acquired through ASL MRI and metabolic data acquired via 18F-fluorodeoxyglucose (18F-FDG) PET in mesial temporal lobe epilepsy (mTLE). METHODS: ASL MRI and 18F-FDG PET data were gathered from 22 mTLE patients. Relative cerebral blood flow (rCBF) asymmetry index (AIs) were measured using ASL MRI, and standardized uptake value ratio (SUVr) maps were obtained from 18F-FDG PET, focusing on bilateral vascular territories and key bitemporal lobe structures (amygdala, hippocampus, and parahippocampus). Intra-group comparisons were carried out to detect hypoperfusion and hypometabolism between the left and right brain hemispheres for both rCBF and SUVr in right and left mTLE. Correlations between the two AIs computed for each modality were examined. RESULTS: Significant correlations were observed between rCBF and SUVr AIs in the middle temporal gyrus, superior temporal gyrus, and hippocampus. Significant correlations were also found in vascular territories of the distal posterior, intermediate anterior, intermediate middle, proximal anterior, and proximal middle cerebral arteries. Intra-group comparisons unveiled significant differences in rCBF and SUVr between the left and right brain hemispheres for right mTLE, while hypoperfusion and hypometabolism were infrequently observed in any intracranial region for left mTLE. CONCLUSION: The study's findings suggest promising concordance between hypometabolism estimated by 18F-FDG PET and hypoperfusion determined by ASL perfusion MRI. This raises the possibility that, with prospective technical enhancements, ASL perfusion MRI could be considered an alternative modality to 18F-FDG PET in the future.


Subject(s)
Epilepsy, Temporal Lobe , Fluorine Radioisotopes , Fluorodeoxyglucose F18 , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Prospective Studies , Perfusion , Magnetic Resonance Imaging , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL