Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Virol ; 96(20): e0054922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36197105

ABSTRACT

Equine infectious anemia virus (EIAV) and HIV are both members of the Lentivirus genus and are similar in major virological characters. EIAV endangers the horse industry. In addition, EIAV can also be used as a model for HIV research. The maturation of the lentiviral Env protein, which is necessary for viral entry, requires Env to be folded in the endoplasmic reticulum (ER). It is currently unclear how this process is regulated. Mitochondrion-associated endoplasmic reticulum membrane (MAM) is a specialized part of the close connection between the ER and mitochondria, and one of the main functions of MAM is to promote oxidative protein production in the ER. SYNJ2BP is one of the key proteins that make up the MAM, and we found that SYNJ2BP is essential for EIAV replication. We therefore constructed a SYNJ2BP knockout HEK293T cell line in which the number of MAMs is significantly reduced. Moreover, overexpression of SYNJ2BP could increase the number of MAMs. Our study demonstrates that SYNJ2BP can improve the infectivity of the EIAV virus with elevated production of the viral Env protein through increased MAM formation. Interestingly, SYNJ2BP was able to improve the production of not only EIAV Env but also HIV. Further investigation showed that MAMs can provide more ATP and calcium ions, which are essential factors for Env production, to the ER and can also reduce ER stress induced by HIV or EIAV Envs to increase the Env production level in cells. These results may help us to understand the key production mechanisms of lentiviral Env. IMPORTANCE Lentiviral Env proteins, which are rich in disulfide bonds, need to be fully folded in the ER; otherwise, misfolded Env proteins will induce ER stress and be degraded by ER-associated protein degradation (ERAD). To date, it is still unclear about Env production mechanism in the ER. MAM is the structure of closely connection between the ER and mitochondria. MAMs play important roles in the calcium steady state and oxidative stress, especially in the production of oxidative protein. For the first time, we found that SYNJ2BP can promote the production of lentiviral Env proteins by providing the ATP and calcium ions required for oxidative protein production in the ER and by reducing ER stress through facilitating formation of MAMs. These studies shed light on how MAMs improve lentiviral Env production, which will lay the foundation for the study of replication mechanisms in other lentiviruses from the perspective of the cellular organelle microenvironment.


Subject(s)
HIV Infections , Infectious Anemia Virus, Equine , Horses , Humans , Animals , Gene Products, env/metabolism , Calcium/metabolism , HEK293 Cells , Infectious Anemia Virus, Equine/genetics , Infectious Anemia Virus, Equine/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , HIV Infections/metabolism , Adenosine Triphosphate/metabolism , Disulfides/metabolism , Membrane Proteins/metabolism
2.
Circ Res ; 113(11): 1206-18, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24025447

ABSTRACT

RATIONALE: The formation of novel blood vessels is initiated by vascular endothelial growth factor. Subsequently, DLL4-Notch signaling controls the selection of tip cells, which guide new sprouts, and trailing stalk cells. Notch signaling in stalk cells is induced by DLL4 on the tip cells. Moreover, DLL4 and DLL1 are expressed in the stalk cell plexus to maintain Notch signaling. Notch loss-of-function causes formation of a hyperdense vascular network with disturbed blood flow. OBJECTIVE: This study was aimed at identifying novel modifiers of Notch signaling that interact with the intracellular domains of DLL1 and DLL4. METHODS AND RESULTS: Synaptojanin-2 binding protein (SYNJ2BP, also known as ARIP2) interacted with the PDZ binding motif of DLL1 and DLL4, but not with the Notch ligand Jagged-1. SYNJ2BP was preferentially expressed in stalk cells, enhanced DLL1 and DLL4 protein stability, and promoted Notch signaling in endothelial cells. SYNJ2BP induced expression of the Notch target genes HEY1, lunatic fringe (LFNG), and ephrin-B2, reduced phosphorylation of ERK1/2, and decreased expression of the angiogenic factor vascular endothelial growth factor (VEGF)-C. It inhibited the expression of genes enriched in tip cells, such as angiopoietin-2, ESM1, and Apelin, and impaired tip cell formation. SYNJ2BP inhibited endothelial cell migration, proliferation, and VEGF-induced angiogenesis. This could be rescued by blockade of Notch signaling or application of angiopoietin-2. SYNJ2BP-silenced human endothelial cells formed a functional vascular network in immunocompromised mice with significantly increased vascular density. CONCLUSIONS: These data identify SYNJ2BP as a novel inhibitor of tip cell formation, executing its functions predominately by promoting Delta-Notch signaling.


Subject(s)
Carrier Proteins/physiology , Intercellular Signaling Peptides and Proteins/physiology , Membrane Proteins/physiology , Neovascularization, Physiologic/physiology , Receptors, Notch/physiology , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Cell Movement/physiology , Cell Proliferation , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Female , Humans , Mice , Mice, SCID , Models, Animal , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/physiology
3.
Free Radic Biol Med ; 212: 220-233, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38158052

ABSTRACT

Nucleus pulposus (NP) cell function-loss is one main contributor during intervertebral disc degeneration (IDD) progression. Both mitochondria and endoplasmic reticulum (ER) play vital roles in sustaining NP cell homeostasis, while the precise function of ER-mitochondria tethering and cross talk in IDD remain to be clarified. Here, we demonstrated that a notable disruption of mitochondria-associated ER membrane (MAM) was identified in degenerated discs and TBHP-induced NP cells, accompanied by mitochondrial Zn2+ overload and NP cell senescence. Importantly, experimental coupling of MAM contacts by MFN2, a critical regulator of MAM formation, could enhance NLRX1-SLC39A7 complex formation and mitochondrial Zn2+ homeostasis. Further using the sequencing data from TBHP-induced degenerative model of NP cells, combining the reported MAM proteomes, we demonstrated that SYNJ2BP loss was one critical pathological characteristic of NP cell senescence and IDD progression, which showed close relationship with MAM disruption. Overexpression of SYNJ2BP could facilitate MAM contact organization and NLRX1-SLC39A7 complex formation, thus promoted mitochondrial Zn2+ homeostasis, NP cell proliferation and intervertebral disc rejuvenation. Collectively, our present study revealed a critical role of SYNJ2BP in maintaining mitochondrial Zn2+ homeostasis in NP cells during IDD progression, partially via sustaining MAM contact and NLRX1-SLC39A7 complex formation.


Subject(s)
Cation Transport Proteins , Intervertebral Disc Degeneration , Humans , Intervertebral Disc Degeneration/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis , Zinc/metabolism , Apoptosis , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
4.
Biol Direct ; 17(1): 37, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36457006

ABSTRACT

BACKGROUND: In mouse liver hepatocytes, nearly half of the surface area of every mitochondrion is covered by wrappER, a wrapping-type of ER that is rich in fatty acids and synthesizes lipoproteins (VLDL) (Anastasia et al. in Cell Rep 34:108873, 2021; Hurtley in Science (80- ) 372:142-143, 2021; Ilacqua et al. in J Cell Sci 135:1-11, 2021). A disruption of the ultrastructure of the wrappER-mitochondria contact results in altered fatty acid flux, leading to hepatic dyslipidemia (Anastasia et al. 2021). The molecular mechanism that regulates the extent of wrappER-mitochondria contacts is unknown. METHODS: We evaluated the expression level of the mitochondrial protein Synj2bp in the liver of normal and obese (ob/ob) mice. In addition, we silenced its expression in the liver using an AAV8 vector. We coupled quantitative EM morphometric analysis to proteomics and lipid analyses on these livers. RESULTS: The expression level of Synj2bp in the liver positively correlates with the extent of wrappER-mitochondria contacts. A 50% reduction in wrappER-mitochondria contacts causes hepatic dyslipidemia, characterized by a gross accumulation of lipid droplets in the liver, an increased hepatic secretion of VLDL and triglycerides, a curtailed ApoE expression, and an increased capacity of mitochondrial fatty acid respiration. CONCLUSION: Synj2bp regulates the extent of wrappER-mitochondria contacts in the liver, thus contributing to the control of hepatic lipid flux.


Subject(s)
Fatty Acids , Liver , Mitochondria , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Fatty Acids/metabolism , Homeostasis , Liver/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondria/physiology , Proteomics
5.
Neuron ; 110(9): 1516-1531.e9, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35216662

ABSTRACT

PTEN-induced kinase 1 (PINK1) is a short-lived protein required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is associated and cotransported with neuronal mitochondria. In concert with translation, the mitochondrial outer membrane proteins synaptojanin 2 binding protein (SYNJ2BP) and synaptojanin 2 (SYNJ2) are required for tethering Pink1 mRNA to mitochondria via an RNA-binding domain in SYNJ2. This neuron-specific adaptation for the local translation of PINK1 provides distal mitochondria with a continuous supply of PINK1 for the activation of mitophagy.


Subject(s)
Mitophagy , Protein Kinases , Mitochondria/metabolism , Mitophagy/genetics , Nerve Tissue Proteins , Neurons/metabolism , Phosphoric Monoester Hydrolases , Protein Kinases/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Endocrinology ; 162(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33313679

ABSTRACT

The somatostatin receptor 2A (SST2) is a G-protein-coupled receptor (GPCR) that is expressed in neuroendocrine tissues within the gastrointestinal tract and brain, and is commonly overexpressed in many neuroendocrine tumors. Moreover, SST2 agonists are used clinically as the primary pharmacological treatment to suppress excess hormone secretion in a variety of neuroendocrine tumors. Despite its wide clinical use, mechanisms controlling the trafficking and signaling of SST2 are not fully understood. SST2 contains a C-terminal post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) domain-binding motif that has been shown to interact with 3 different PDZ domain-containing proteins. However, the consequences of these interactions are not well understood, nor is it known whether additional PDZ domain proteins interact with SST2. Through unbiased screening we have identified 10 additional PDZ domain proteins that interact with SST2. We chose one of these, SYNJ2BP, for further study. We observed that SYNJ2BP interacted with SST2 in an agonist-dependent manner, and that this required the PDZ binding site of SST2. Importantly, overexpression of SYNJ2BP enhanced ligand-stimulated receptor internalization. Mechanistically, SYNJ2BP interacted with G-protein-coupled receptor kinase 2 (GRK2) and promoted GRK-dependent phosphorylation of the receptor after somatostatin stimulation. Interaction with GRK2 required the C-terminus of SYNJ2BP. Binding to SYNJ2BP did not affect the ability of SST2 to suppress 3',5'-cyclic adenosine 5'-monophosphate production, but was required for optimal agonist-stimulated extracellularly regulated kinase 1/2 activation. These data indicated that SYNJ2BP is an SST2-interacting protein that modulates agonist-stimulated receptor regulation and downstream signaling.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , MAP Kinase Signaling System , Membrane Proteins/metabolism , PDZ Domains , Receptors, Somatostatin/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Phosphorylation
7.
BMC Mol Cell Biol ; 21(1): 30, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32303178

ABSTRACT

BACKGROUND: Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is a recently identified cell adhesion molecule which is predominantly expressed by epithelial cells of the intestine and the kidney. Its expression is downregulated in both colon and renal cancer suggesting a tumor suppressive activity. The function of TMIGD1 at the cellular level is largely unclear. Published work suggests a protective role of TMIGD1 during oxidative stress in kidney epithelial cells, but the underlying molecular mechanisms are unknown. RESULTS: In this study, we address the subcellular localization of TMIGD1 in renal epithelial cells and identify a cytoplasmic scaffold protein as interaction partner of TMIGD1. We find that TMIGD1 localizes to different compartments in renal epithelial cells and that this localization is regulated by cell confluency. Whereas it localizes to mitochondria in subconfluent cells it is localized at cell-cell contacts in confluent cells. We find that cell-cell contact localization is regulated by N-glycosylation and that both the extracellular and the cytoplasmic domain contribute to this localization. We identify Synaptojanin 2-binding protein (SYNJ2BP), a PDZ domain-containing cytoplasmic protein, which localizes to both mitochondria and the plasma membrane, as interaction partner of TMIGD1. The interaction of TMIGD1 and SYNJ2BP is mediated by the PDZ domain of SYNJ2BP and the C-terminal PDZ domain-binding motif of TMIGD1. We also find that SYNJ2BP can actively recruit TMIGD1 to mitochondria providing a potential mechanism for the localization of TMIGD1 at mitochondria. CONCLUSIONS: This study describes TMIGD1 as an adhesion receptor that can localize to both mitochondria and cell-cell junctions in renal epithelial cells. It identifies SYNJ2BP as an interaction partner of TMIGD1 providing a potential mechanism underlying the localization of TMIGD1 at mitochondria. The study thus lays the basis for a better understanding of the molecular function of TMIGD1 during oxidative stress regulation.


Subject(s)
Epithelial Cells/metabolism , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Cell Adhesion/genetics , Cell Line, Tumor , Cell Membrane/metabolism , Cytoplasm/metabolism , Glycosylation , Humans , Junctional Adhesion Molecules/genetics , Junctional Adhesion Molecules/metabolism , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Mitochondria/genetics , PDZ Domains/genetics , Protein Binding
8.
Oncotarget ; 8(52): 89692-89706, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29163781

ABSTRACT

SYNJ2BP plays an important role in breast cancer metastasis. However, the molecular mechanism associated with the function of SYNJ2BP in metastasis remains unclear. In this study, we investigated the role of SYNJ2BP in tumor metastasis and established the associated underlying mechanism. Over-expression of SYNJ2BP promoted both cell migration and invasion. In contrast, silencing SYNJ2BP caused the suppression of cell migration and invasion. SYNJ2BP increased the levels of phosphorylation for AKT and GSK3ß, which could be inhibited by the PI3K inhibitor, LY294002, and the GSK3ß inhibitor, LiCl, and regulated the accumulation of SNAI1 in the nucleus and the expression of the SNAI1 target gene, E-cadherin (EMT marker). It is known that the stability of PTEN is regulated by ubiquitination. However, in this study, we additionally demonstrated that SYNJ2BP mediated the degradation of PTEN protein by the lysosome-pathway and induced the activation of PI3K/AKT signaling by promoting the co-localization of PTEN with autophagy-lysosomes and the expression of LC3-II and p62. In vivo study, the overexpression of SYNJ2BP significantly increased the metastasis of 4T1 cells in BALB/c mice. In addition, SYNJ2BP was highly expressed in breast carcinoma (p = 0.0031), but not in normal breast tissue, while analysis of tissue samples taken from SNAI1-positive human breast cancers showed a significant correlation between the expression of SYNJ2BP and that of p-AKT (p < 0.005). Collectively, our data identified a tumor inducer, SYNJ2BP, which could activate the PI3K/AKT/GSK3ß/SNAI1 signaling pathway through the lysosome-mediated degradation of PTEN, and promote both EMT and tumor metastasis during the progression of breast cancer.

9.
J Exp Clin Cancer Res ; 35(1): 115, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27440153

ABSTRACT

BACKGROUND: Synaptojanin 2 Binding Protein (SYNJ2BP) is essential to cell proliferation. Previous studies show that SYNJ2BP participates in sprouting angiogenesis, which plays an important part in several abnormal conditions including cancer. However, the activity of SYNJ2BP in hepatocellular carcinoma (HCC) has not been elucidated yet. METHODS: Firstly, real-time PCR and western blotting (WB) were adopted to evaluate SYNJ2BP expressions in HCC tissues and HCC cell lines. Secondly, we did follow-up and prognostic study to explore the association of SYNJ2BP expression and HCC patients prognosis. Thirdly, we induced or silenced SYNJ2BP expression on selected HCC cell lines and explored the function of SYNJ2BP in vitro and in vivo. Lastly, we conducted Cignal Finder Cancer 10-Pathway Reporter Array in combination with loss- and gain-of-function assay to investigate potential mechanisms. RESULTS: Through various techniques we found that SYNJ2BP was decreased in HCC tissues and HCC cell lines. The subsequent analysis showed that low expression of SYNJ2BP was associated with tumor size, tumor nodule number, vascular invasion, TNM stage and BCLC stage, and was an independent risk factor for survival of HCC. Later, the in vitro experiments demonstrated that SYNJ2BP inhibited HCC cells invasion, migration and proliferation, also the in vivo testing revealed that SYNJ2BP inhibited tumor growth and metastasis. Finally, we also uncovered that SYNJ2BP inhibited HCC growth and metastasis through activating DLL4-mediated Notch signaling pathway. CONCLUSIONS: Collectively, our data provide evidence that SYNJ2BP may act as a tumor suppressor during HCC development and could serve as a potential therapeutic target.


Subject(s)
Carcinoma, Hepatocellular/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Liver Neoplasms/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Signal Transduction
10.
Autophagy ; 11(4): 595-606, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25915564

ABSTRACT

The selective degradation of mitochondria by the process of autophagy, termed mitophagy, is one of the major mechanisms of mitochondrial quality control. The best-studied mitophagy pathway is the one mediated by PINK1 and PARK2/Parkin. From recent studies it has become clear that ubiquitin-ligation plays a pivotal role and most of the focus has been on the role of ubiquitination of mitochondrial proteins in mitophagy. Even though ubiquitination is a reversible process, very little is known about the role of deubiquitinating enzymes (DUBs) in mitophagy. Here, we report that 2 mitochondrial DUBs, USP30 and USP35, regulate PARK2-mediated mitophagy. We show that USP30 and USP35 can delay PARK2-mediated mitophagy using a quantitative mitophagy assay. Furthermore, we show that USP30 delays mitophagy by delaying PARK2 recruitment to the mitochondria during mitophagy. USP35 does not delay PARK2 recruitment, suggesting that it regulates mitophagy through an alternative mechanism. Interestingly, USP35 only associates with polarized mitochondria, and rapidly translocates to the cytosol during CCCP-induced mitophagy. It is clear that PARK2-mediated mitophagy is regulated at many steps in this important quality control pathway. Taken together, these findings demonstrate an important role of mitochondrial-associated DUBs in mitophagy. Because defects in mitochondria quality control are implicated in many neurodegenerative disorders, our study provides clear rationales for the design and development of drugs for the therapeutic treatment of neurodegenerative diseases such as Parkinson and Alzheimer diseases.


Subject(s)
Autophagy/physiology , Endopeptidases/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitophagy/physiology , Thiolester Hydrolases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology , Cytosol/metabolism , Humans , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL